1
|
Katiyar D, Manish, Pal RS, Bansal P, Kumar A, Prakash S. Electrochemical Sensors for Detection of Phytomolecules: A Mechanistic Approach. Comb Chem High Throughput Screen 2024; 27:1887-1899. [PMID: 38279749 DOI: 10.2174/0113862073282883231218145941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 01/28/2024]
Abstract
High demand and ongoing technological advancements have created a market for sensors that is both varied and rapidly evolving. Bioactive compounds are separated systematically to conduct an in-depth investigation, allowing for the profiling or fingerprinting of different Plantae kingdoms. The profiling field is significant in elucidating the complex interplay of plant traits, attributes, and environmental factors. Flexible technology advancements have enabled the creation of highly sensitive sensors for the non-destructive detection of molecules. Additionally, very specialized integrated systems that will allow multiplexed detection by integrating many hybrid approaches have been developed, but these systems are highly laborious and expensive. Electrochemical sensors, on the other hand, are a viable option because of their ability to accomplish exact compound detection via efficient signal transduction. However, this has not been investigated because of some obstacles to learning minimum metabolites' fundamentals and nonredox properties. This article reviews the electrochemical basis of plants, contrasting it with more conventional techniques and offering both positive and negative perspectives on the topic. Because few studies have been devoted to the concept of merging the domains, we've expanded the scope of this work by including pertinent non-phytochemical reports for better report comparison.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Manish
- Department of Electronics and Communication Engineering, ABES Engineering College, 19th KM Stone, NH-09 Ghaziabad, 201009, Uttar Pradesh, India
| | - Rashmi Saxena Pal
- Department of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Abhishek Kumar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Surya Prakash
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
2
|
A novel electrochemical micro-titration method for quantitative evaluation of the DPPH free radical scavenging capacity of caffeic acid. OPEN CHEM 2023. [DOI: 10.1515/chem-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Abstract
In this report, the stoichiometric ratio (R) for the interaction of diphenylpicrylhydrazyl (DPPH) radicals with the antioxidant was employed as an evaluation index for the DPPH radical scavenging activity of antioxidants. This evaluation index was related only to the stoichiometric relationship of DPPH radicals with the antioxidant and had no relationship with the initial DPPH amount and the sample volume, which could offer a solution to the problem of poor comparability of EC50 values under different conditions. A novel electrochemical micro-titration method was proposed for the determination of the stoichiometric ratio (R) for the interaction of DPPH radicals with the antioxidant. This electrochemical micro-titration model was verified using caffeic acid as the DPPH radical scavenger, with the stoichiometric ratio (R) of DPPH radicals to caffeic acid determined to be in the range of 2.003–2.046. The calculated EC50 values were 0.513, 1.011, and 1.981 × 10–5 mol/L for 2.10, 4.05, and 8.02 × 10–7 moL of added DPPH radicals, respectively. The proposed method showed no differences from the conventional method, but had better precision and reliability, and used a smaller amount of sample.
Collapse
|
3
|
Akyüz E. Optimizing Pulsed Ultrasound-Assisted Extraction of Antioxidants from Linden and Quantification by HPLC–PDA. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
A Review on Electrochemical Sensors and Biosensors Used in Assessing Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11030584. [PMID: 35326234 PMCID: PMC8945540 DOI: 10.3390/antiox11030584] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Currently, there is growing interest in screening and quantifying antioxidants from biological samples in the quest for natural and effective antioxidants to combat free radical-related pathological complications. Antioxidants play an important role in human health and provide a defense against many diseases. Due to the valuable dietary role of these compounds, the analysis and determination of their amount in food is of particular importance. In recent years, many attempts have been made to provide simple, fast, and economical analytical approaches for the on-site detection and determination of antioxidant activity in food antioxidants. In this regard, electrochemical sensors and biosensors are considered promising tools for antioxidant research due to their high sensitivity, fast response time, and ease of miniaturization; thus, they are used in a variety of fields, including food analysis, drug screening, and toxicity research. Herein, we review the recent advances in sensors and biosensors for the detection of antioxidants, underlying principles, and emphasizing advantages, along with limitations regarding the ability to discriminate between the specific antioxidant or quantifying total antioxidant content. In this work, both direct and indirect methods for antioxidants detecting with electrochemical sensors and biosensors are analyzed in detail. This review aims to prove how electrochemical sensors and biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
|
5
|
Nejadmansouri M, Majdinasab M, Nunes GS, Marty JL. An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. SENSORS (BASEL, SWITZERLAND) 2021; 21:1176. [PMID: 33562374 PMCID: PMC7915219 DOI: 10.3390/s21041176] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Antioxidants are a group of healthy substances which are useful to human health because of their antihistaminic, anticancer, anti-inflammatory activity and inhibitory effect on the formation and the actions of reactive oxygen species. Generally, they are phenolic complexes present in plant-derived foods. Due to the valuable nutritional role of these mixtures, analysis and determining their amount in food is of particular importance. In recent years, many attempts have been made to supply uncomplicated, rapid, economical and user-friendly analytical approaches for the on-site detection and antioxidant capacity (AOC) determination of food antioxidants. In this regards, sensors and biosensors are regarded as favorable tools for antioxidant analysis because of their special features like high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current five-year progresses in different types of optical and electrochemical sensors/biosensors for the analysis of antioxidants in foods are discussed and evaluated well. Moreover, advantages, limitations, and the potential for practical applications of each type of sensors/biosensors have been discussed. This review aims to prove how sensors/biosensors represent reliable alternatives to conventional methods for antioxidant analysis.
Collapse
Affiliation(s)
- Maryam Nejadmansouri
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Gilvanda S Nunes
- Pesticide Residue Analysis Center, Federal University of Maranhao, 65080-040 Sao Luis, Brazil
| | - Jean Louis Marty
- Faculty of Sciences, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX 9, France
| |
Collapse
|
6
|
Comparative study of different methodologies for the determination the antioxidant activity of Venezuelan propolis. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Evaluation of Antioxidant Activity, Toxicity, and Phenolic Profile of Aqueous Extracts of Chamomile (Matricaria chamomilla L.) and Sage (Salvia officinalis L.) Prepared at Different Temperatures. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072270] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chamomile and sage are common herbs that are mostly used as infusions due to their beneficial properties. The aims of this study were to determine the total phenolic content, antioxidant activity, and potential toxicity of chamomile and sage aqueous extracts prepared at three different temperatures (25, 80, 100 °C) and finally, to detect their phenolic profiles at the optimum temperature. In order to measure the total phenolic content and antioxidant capacity, Folin–Ciocalteu and 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH) assays were applied, respectively. The extraction temperature at 80 °C was the optimum, with maximal antioxidant activity and the highest total phenolic content for both herbs. Luminescence-based assay demonstrated that all the examined aqueous extracts possessed toxicity towards Vibrio fischeri. Microtox assay demonstrated no correlation with the other two assays, which were positively correlated. The major phenolics of chamomile were rutin trihydrate, ferulic acid, chlorogenic acid, and apigenin-7-O-glucoside; and major phenolics of sage were rosmarinic acid, salvianolic acid K, and luteolin-7-O-glucuronide, as defined by LC-MS of aqueous extracts at 80 °C. It can be concluded that the extraction of herbal aqueous extracts at 80 °C can provide significant bioactive and antioxidant compounds, but their consumption must be in moderation.
Collapse
|
8
|
Antioxidants: Terminology, Methods, and Future Considerations. Antioxidants (Basel) 2019; 8:antiox8080297. [PMID: 31404992 PMCID: PMC6720181 DOI: 10.3390/antiox8080297] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023] Open
Abstract
Unreliable terminology and incompatible units of antioxidant activity/concentration expression lead to the failure of antioxidant clinical trials, ambiguity of conclusions about the effect of a chosen therapy in medicine and evaluation of food quality, diet, difficulties using information in monitoring the training process in sports, etc. Many different terms (antiradical activity, antioxidant activity, antioxidant capacity, antioxidant power, antioxidant ability) and methods: Trolox equivalent capacity assay (TEAC), Ferric Reducing Antioxidant Power assay (FRAP), Cupric Reducing Antioxidant Capacity assay (CUPRAC), antioxidative activity assay (ABTS), the oxygen radical absorbance capacity (ORAC), and different options of electrochemical ones) proposed for the determination of antioxidants are described. Possible approaches to the development of this field of science and practice are considered.
Collapse
|
9
|
Vinci G, Rapa M. Noble Metal Nanoparticles Applications: Recent Trends in Food Control. Bioengineering (Basel) 2019; 6:bioengineering6010010. [PMID: 30669604 PMCID: PMC6466389 DOI: 10.3390/bioengineering6010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/15/2019] [Accepted: 01/19/2019] [Indexed: 02/01/2023] Open
Abstract
Scientific research in the nanomaterials field is constantly evolving, making it possible to develop new materials and above all to find new applications. Therefore, nanoparticles (NPs) are suitable for different applications: nanomedicine, drug delivery, sensors, optoelectronics and food control. This review explores the recent trend in food control of using noble metallic nanoparticles as determination tools. Two major uses of NPs in food control have been found: the determination of contaminants and bioactive compounds. Applications were found for the determination of mycotoxins, pesticides, drug residues, allergens, probable carcinogenic compounds, bacteria, amino acids, gluten and antioxidants. The new developed methods are competitive for their use in food control, demonstrated by their validation and application to real samples.
Collapse
Affiliation(s)
- Giuliana Vinci
- Laboratory of Commodity Sciences, Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy.
| | - Mattia Rapa
- Laboratory of Commodity Sciences, Department of Management, Sapienza University of Rome, via del Castro Laurenziano 9, 00161 Rome, Italy.
| |
Collapse
|
10
|
Runeberg PA, Brusentsev Y, Rendon SMK, Eklund PC. Oxidative Transformations of Lignans. Molecules 2019; 24:E300. [PMID: 30650623 PMCID: PMC6359405 DOI: 10.3390/molecules24020300] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 11/16/2022] Open
Abstract
Numerous oxidative transformations of lignan structures have been reported in the literature. In this paper we present an overview on the current findings in the field. The focus is put on transformations targeting a specific structure, a specific reaction, or an interconversion of the lignan skeleton. Oxidative transformations related to biosynthesis, antioxidant measurements, and total syntheses are mostly excluded. Non-metal mediated as well as metal mediated oxidations are reported, and mechanisms based on hydrogen abstractions, epoxidations, hydroxylations, and radical reactions are discussed for the transformation and interconversion of lignan structures. Enzymatic oxidations, photooxidation, and electrochemical oxidations are also briefly reported.
Collapse
Affiliation(s)
- Patrik A Runeberg
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland.
| | - Yury Brusentsev
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland.
| | - Sabine M K Rendon
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland.
| | - Patrik C Eklund
- Johan Gadolin Process Chemistry Center, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland.
| |
Collapse
|