1
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
2
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Li S, Sun R, Gong Y, Cui J, Sui W, Wu T, Liu R, Zhang M. Effects of dextran molecular weight on starch retrogradation and technological properties of Chinese steamed bread: Based on the rubber/glass transition. Int J Biol Macromol 2024; 270:131887. [PMID: 38688795 DOI: 10.1016/j.ijbiomac.2024.131887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
From the perspective of rubber/glass transition, this study clarified that the impact of dextran on retarding hardening behavior and slowing starch retrogradation of Chinese Steamed Bread (CSB) depended on its molecular weight and concentration level. Guggenheim-Anderson-de Boer (GAB) model was fitted to explore critical behavior changes in rubber/glass transition of CSB. Incorporation of high molecular weight dextran enhanced the elasticity of dough and porosity of CSB, reduced the aging and hardening degree of CSB at appropriate addition levels. CSB hardness showed a growing tendency during storage, while macromolecular dextran reduced the hardness and retrogradation degree by 22.87 % and 67.53 %. Dextran with high molecular weights lowered the glass transition temperature (Tg) and improved the moisture sorption and molecular mobility of CSB under various relative humidity (RHs) conditions by providing hydrophilic sites or intermolecular space to bind water molecules. Meanwhile, it reinforced the binding between denatured gluten and gelatinized starch. Both of them devoted to starch retrogradation inhibition and stable quality maintenance of CSB. CSB is suggested to maintain stable quality at room temperature with RHs ≤33 % to prevent rubber/glass transition. This work provided theoretical guidance for fractionation application of dextran to regulate the quality and extend the shelf-life of flour products.
Collapse
Affiliation(s)
- Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jiayi Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
4
|
Gao M, Hu Z, Yang Y, Jin Z, Jiao A. Effect of different molecular weight β-glucan hydrated with highland barley protein on the quality and in vitro starch digestibility of whole wheat bread. Int J Biol Macromol 2024; 268:131681. [PMID: 38643913 DOI: 10.1016/j.ijbiomac.2024.131681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and β-glucan. This study investigated the effects of β-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that β-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.
Collapse
Affiliation(s)
- Mengfei Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhongbo Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Zhang Y, Wang D, Zhang Z, Guan H, Zhang Y, Xu D, Xu X, Li D. Improvement on wheat bread quality by in situ produced dextran-A comprehensive review from the viewpoint of starch and gluten. Compr Rev Food Sci Food Saf 2024; 23:e13353. [PMID: 38660747 DOI: 10.1111/1541-4337.13353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
Deterioration of bread quality, characterized by the staling of bread crumb, the softening of bread crust and the loss of aroma, has caused a huge food waste and economic loss, which is a bottleneck restriction to the development of the breadmaking industry. Various bread improvers have been widely used to alleviate the issue. However, it is noteworthy that the sourdough technology has emerged as a pivotal factor in this regard. In sourdough, the metabolic breakdown of carbohydrates, proteins, and lipids leads to the production of exopolysaccharides, organic acids, aroma compounds, or prebiotics, which contributes to the preeminent ability of sourdough to enhance bread attributes. Moreover, sourdough exhibits a "green-label" feature, which satisfies the consumers' increasing demand for additive-free food products. In the past two decades, there has been a significant focus on sourdough with in situ produced dextran due to its exceptional performance. In this review, the behaviors of bread crucial compositions (i.e., starch and gluten) during dough mixing, proofing, baking and bread storing, as well as alterations induced by the acidic environment and the presence of dextran are systemically summarized. From the viewpoint of starch and gluten, results obtained confirm the synergistic amelioration on bread quality by the coadministration of acidity and dextran, and also highlight the central role of acidification. This review contributes to establishing a theoretical foundation for more effectively enhancing the quality of wheat breads through the application of in situ produced dextran.
Collapse
Affiliation(s)
- Yao Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Research Program of Materials Science and Engineering, School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhihong Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huanan Guan
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yanjie Zhang
- Postdoctoral Programme of Juxiangyuan Health Food (Zhongshan) Co., Ltd., Zhongshan, China
| | - Dan Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Gong Y, Sui W, Wang H, Wang Y, Li S, Cui J, Xie R, Liu R, Wu T, Zhang M. In-depth understanding of the effects of different molecular weight pullulan interacting with protein and starch on dough structure and application properties. Int J Biol Macromol 2024; 268:131556. [PMID: 38631579 DOI: 10.1016/j.ijbiomac.2024.131556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
This work clarified the positive effects of pullulan on dough structure and application properties varied with its molecular weight. Pullulan with different molecular weights were introduced into dough system to explore their intervention effects on structural and technological properties of dough as well as physical and digestion properties of biscuits. Results showed that HPL (pullulan with molecule weight of 100- 300 kDa) could increase the intermolecular collisions, prompt the protein aggregation and limit the water migration in dough system, resulting in an integrate, continuous and dense network structure of the gel with strengthened elasticity and weakened extensibility, which caused an increase in biscuit thickness, hardness and crispness. On the contrary, LPL (pullulan with molecule weight of 3- 100 kDa) could go against the formation of stable and elastic dough through breaking down cross-linkage between protein and starch so as to provide biscuits with decreased hardness and crispness during baking. Both HPL and LPL delayed starch pasting and retrogradation process while HPL had the stronger retarding effect on starch digestibility of biscuits than LPL. These findings dedicated to a better understanding of pullulan function in dough system and provide suggestions for fractionation applications of pullulan in food field.
Collapse
Affiliation(s)
- Ying Gong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Huiting Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Jiayi Cui
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Ruijia Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China; China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, PR China.
| |
Collapse
|
7
|
Dada MA, Bello FA, Omobulejo FO, Olukunle FE. Nutritional quality and physicochemical properties of biscuit from composite flour of wheat, African yam bean and tigernut. Heliyon 2023; 9:e22477. [PMID: 38034758 PMCID: PMC10687072 DOI: 10.1016/j.heliyon.2023.e22477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
This study investigated the effect of the supplementation of wheat flour with flour blends of African yam bean (AYB) and tigernut for the production of biscuits and evaluated the sensory characteristics. The composite flours were of ratio 70:25:5 (TWB), 70:20:10 (ATW), 70:15:15 (BTT) for wheat: AYB: tigernut, respectively, while 100 % wheat flour served as control (WTY). The composite flour samples were analyzed for proximate, functional and pasting properties. The physical and chemical properties and sensory attributes of the developed biscuits were carried out. The moisture, protein, fat, ash, crude fiber, carbohydrate, and energy contents of the composite flour ranged from 6.63 to 8.13 %, 11.22-18.36 %, 13.27-19.15 %, 0.98-0.99 %, 3.96-7.43 %, 59.97-62.55 % and 400.89 to 410.40 Kcal/100g, respectively. The results showed that protein fat, ash and crude fiber of the biscuit were improved. The water and oil absorption capacity of composite flour was low while the pasting properties of the composite flour blends reduced as the AYB flour increased. All the composite flour blend biscuit samples possessed high essential nutrients and antioxidant potential. All the biscuits samples were accepted by the panelists, however, sample BTT (70 % wheat flour+15 % AYB flour+ 15 % tigernut flour) was most accepted in appearance, aroma, taste, crispness and overall acceptability. Therefore, biscuits from the flour blends of wheat, AYB and tigernut could be nutritionally beneficial and good for adults.
Collapse
Affiliation(s)
- Mopelola A. Dada
- Department of Food Science and Technology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Florence A. Bello
- Department of Food Science and Technology, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Franca O. Omobulejo
- Department of Food Science and Technology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Funmilayo E. Olukunle
- Department of Food Science and Technology, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
8
|
Du Y, Dai Z, Hong T, Bi Q, Fan H, Xu X, Xu D. Effect of sourdough on the quality of whole wheat fresh noodles fermented with exopolysaccharide lactic acid bacteria. Food Res Int 2023; 172:113108. [PMID: 37689876 DOI: 10.1016/j.foodres.2023.113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
In this study, the impact of exopolysaccharides (EPS)-positive strain Weissella cibaria (W. cibaria) fermented sourdough on the quality of whole wheat fresh noodles (WWNs) and its improvement mechanisms were studied. The optimal fermentation conditions were found to be 30% sucrose content, fermented at 25 °C for 12 h, which yielded the highest EPS, 28.06 g/kg, in the W. cibaria fermented sourdough with sucrose (DW+). During storage, the sourdough reduced polyphenol oxidase activities and delayed the browning rate of noodles. The DW+ increased the hardness by 11.98% from 2184.99 to 2446.83 g, and the adhesiveness increased by 19.60%, i.e., from 72.01 to 86.13 g∙s of the noodles. The EPS mitigated acidification of sourdough, prevented the disaggregation of glutenin macropolymers (GMP), and increased sourdough elastic modulus. In addition, scanning electron microscope and confocal laser scanning microscopy of noodles containing EPS sourdough also demonstrated the uniform distribution of gluten proteins. The starch granules were also closely embedded in the gluten network. Thus, the present work indicated that the EPS produced sourdough delayed browning and improved the WWNs texture, indicating its potential to enhance the quality of whole grain noodles.
Collapse
Affiliation(s)
- Yake Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Zhen Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Tingting Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Qing Bi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Haoran Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, PR China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China
| | - Dan Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, PR China.
| |
Collapse
|
9
|
Hu H, Zhou XY, Wang YS, Zhang YX, Zhou WH, Zhang L. Effects of particle size on the structure, cooking quality and anthocyanin diffusion of purple sweet potato noodles. Food Chem X 2023; 18:100672. [PMID: 37091512 PMCID: PMC10114142 DOI: 10.1016/j.fochx.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The effects of different particle sizes of purple sweet potato flour (PSPF) on the structure and quality of noodles and the diffusion kinetics of anthocyanins during cooking were studied. As the particle size of the PSPF decreased (from 269 to 66 μm), the adverse effects of the addition of PSPF on the quality of noodles were reduced. The smaller particle size of PSPF was beneficial for the secondary structure orderliness and the tighter microstructure of PSP noodles. The diffusion of anthocyanins in noodles to the soup during cooking could be fitted well with Fick's second law, and diffusion coefficients were in the range of 8.3248-14.0893 × 10-9 m2/s. The noodles with 15% 66 μm PSPF showed the best cooking properties, the highest sensory score, the highest anthocyanin retention ability and a compact and orderly microstructure. Thus, they could be considered as noodles rich in anthocyanins for commercial application.
Collapse
|
10
|
dongdong X, xing L, yingqi S, shuncheng R. Effect of different producing methods on physicochemical and fermentation properties of refrigerated dough. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
11
|
Wang S, Chen S, Ding L, Zhang Y, He J, Li B. Impact of Konjac Glucomannan with Different Molecular Weight on Retrogradation Properties of Pea Starch. Gels 2022; 8:gels8100651. [PMID: 36286152 PMCID: PMC9601848 DOI: 10.3390/gels8100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
The impact of konjac glucomannan (KGM) with different molecular weight (Mw) on the retrogradation properties of pea starch, such as color, viscoelasticity, gel strength, water holding capacity (WHC), moisture distribution and crystallinity, was investigated. At the same time as the Mw of KGM decreased, the lightness, elastic modulus, gel strength, water freedom and crystallinity of pea starch showed an increasing trend, whereas the viscosity modulus and WHC showed a decreasing trend. At one day of storage, compared with single pea starch, KGM with low Mw made gel strength increase from 40 g to 45 g, WHC decrease from 82% to 65% and crystallinity increase from 21.3% to 24.0%. Therefore, KGM with low Mw could promote retrogradation of pea starch in the short-term. At 7 days or even 14 days of storage, KGM with medium-high Mw had smaller indices than those of pure pea starch, including the lightness, storage modulus, gel strength, water freedom and crystallinity. This indicated that KGM with medium-high Mw could inhibit the long-term retrogradation of starch. The larger the Mw of KGM, the more noticeable the inhibition effect.
Collapse
Affiliation(s)
- Shishuai Wang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
- Correspondence: ; Tel.: +86-027-84791393
| | - Shuo Chen
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Lidong Ding
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Ying Zhang
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Jiaxin He
- College of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Understanding the influence of in situ produced dextran on wheat dough baking performance: Maturograph, biaxial extension, and dynamic mechanical thermal analysis. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Effects of a commercial peptidase on rheology, microstructure, gluten properties of wheat dough and bread quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Pulivarthi MK, Selladurai M, Nkurikiye E, Li Y, Siliveru K. Significance of milling methods on brown teff flour, dough, and bread properties. J Texture Stud 2022; 53:478-489. [PMID: 35192195 DOI: 10.1111/jtxs.12669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/28/2022]
Abstract
Teff (Eragrostis tef) has gained wide popularity of late mainly attributed to its gluten-free nature catering the needs of gluten sensitive population. The higher water absorption capacity and gelling properties of teff flour promote its food applications, especially in the baking sector. The nutritional and sensorial properties of teff flour have been studied by incorporating with wheat flour at different proportions, but no study has reported the impact of various milling methods on the rheological and bread-making properties of teff flour. In this regard, the present study is envisaged to assess the physical, rheological and bread-making properties of teff flour acquired over roller, hammer and pin milling. Among the milling methods, the distribution of particles was more uniform in case of roller mill, while finer particles were obtained for the pin milled flour fractions with 60% of the sample falling below 90 μm. It was observed that the protein, crude fiber and crude fat contents for all the flours were on par with each other irrespective of the milling method. Whereas, the pasting properties varied significantly between the flours obtained from different milling methods. It was observed that the pin milled flour bread was superior in quality owing to its higher loaf volume (331.67 cm3 ) with lower hardness value (5.99 N). The present study indicates the fact that, pin mill could be more suitable for milling brown teff grains owing to the better pasting and bread making properties. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Manoj Kumar Pulivarthi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Manivannan Selladurai
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Eric Nkurikiye
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Sun L, Sun X, Du Y, Fang Y, Yang W, Hu Q, Pei F. Effect of the starch structure fermented by Lactobacillus plantarum LB-1 and yeast on rheological and thermomechanical characteristics of dough. Food Chem 2022; 369:130877. [PMID: 34455327 DOI: 10.1016/j.foodchem.2021.130877] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/04/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
This study focused on exploring the structural variations of starch co-fermented by Lactobacillus plantarum LB-1 and yeast (Saccharomyces cerevisiae), and the relationship between fermented starch structure and dough characteristics. Co-fermentation resulted in the increased short chain content and crystallinity (32.07%) of starch with lower molecular weight. A higher content of fingerprint A-chains of amylopectin and fingerprint B-chains of α, β-limited dextrin in the co-fermented starch endowed dough with excellent anti-retrogradation ability. Moreover, the co-fermented starch with higher swelling power (9.44 g/g) and solubility (20.40%) had a rough and irregular structure and many gaps in the appearance, which were conducive to binding water, thus promoting high dough elasticity and strength. These results extended the knowledge of starch structure-property relationship under the microbial activities, which may be beneficial to promote better flour products.
Collapse
Affiliation(s)
- Lei Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Yifei Du
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Wenjian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Qiuhui Hu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China
| | - Fei Pei
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Centre for Modern Grain Circulation and Safety, Nanjing 210023, People's Republic of China.
| |
Collapse
|
16
|
Ma M, Mu T, Sun H, Zhou L. Evaluation of texture, retrogradation enthalpy, water mobility, and anti-staling effects of enzymes and hydrocolloids in potato steamed bread. Food Chem 2021; 368:130686. [PMID: 34399176 DOI: 10.1016/j.foodchem.2021.130686] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022]
Abstract
The functionalities of hydrocolloids and enzymes in texture, retrogradation enthalpy, water mobility and distribution, and anti-staling effects of potato steamed bread stored for 0, 24, and 48 h at 25 °C were investigated. Four kinds of hydrocolloids, including carrageenan, xanthan gum, arabic gum, sodium alginate, and one kind of enzyme (xylanase) showed little effects on the hardness reduction and springiness retention of potato steamed bread during storage, while the presence of α-amylase and lipase could slow down its staling rate. Potato steamed bread with combination of α-amylase (20 mg/kg) and lipase (40 mg/kg) exhibited the lowest hardness, with a significant reduction of 44.20%, besides improving the specific volume, L*, and overall acceptability in sensory evaluation. The addition of α-amylase and lipase could decrease the retrogradation enthalpy and bound water, and increase the mobility of mobile water. These findings shed efficient methods to retard staling of potato steamed bread.
Collapse
Affiliation(s)
- Mengmei Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| | - Taihua Mu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Hongnan Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| | - Liang Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China
| |
Collapse
|
17
|
Song J, Zong J, Ma C, Chen S, Li H, Zhang D. Microparticle prepared by chitosan coating on the extruded mixture of corn starch, resveratrol, and α-amylase controlled the resveratrol release. Int J Biol Macromol 2021; 185:773-781. [PMID: 34186124 DOI: 10.1016/j.ijbiomac.2021.06.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Microcapsule was developed by chitosan coating on the microparticle which was prepared by smashing the extruded mixture of corn starch, resveratrol, and α-amylase. In the preparation process, the low-temperature extrusion and α-amylase were employed to overcome the disadvantages of low gelatinization, dissolution, and poor hydration of extruded starch. Chitosan-coating retarded starch aging, improved the stability of microcapsules, delayed the release of resveratrol. Considering the bioactive functions of chitosan, microcapsules also obtained the functions of chitosan by chitosan coating. The chitosan coating and α-amylase addition improved the release ratio of resveratrol. CESRA (chitosan solution (2%) coating on the extruded mixture of corn starch, resveratrol, and α-amylase) released 86.8% resveratrol at 25 °C in six days chasing, and 85.3% resveratrol at 37 °C in 48 h chasing. Chitosan coating slightly improved the free radical scavenging activity of ABTS+. The particle size variation, SEM, XRD, and FT-IR were also employed to investigate the variation of morphology, crystal structure, and chemical composition.
Collapse
Affiliation(s)
- Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China
| | - Jinhuan Zong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong Province, China.
| |
Collapse
|
18
|
GERARDO-RODRÍGUEZ JE, RAMÍREZ-WONG B, TORRES-CHÁVEZ PI, LEDESMA-OSUNA AI, CARVAJAL-MILLÁN E, LÓPEZ-CERVANTES J, SILVAS-GARCÍA MI. Effect of part-baking time, freezing rate and storage time on part-baked bread quality. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Cao Y, Jiang L, Suo W, Deng Y, Zhang M, Dong S, Guo P, Chen S, Li H. Influence of emulsifiers and enzymes on dough rheological properties and quality characteristics of steamed bread enriched with potato pulp. Food Chem 2021; 360:130015. [PMID: 33993072 DOI: 10.1016/j.foodchem.2021.130015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
The aim of this study was to evaluate whether processing characteristics of steamed bread enriched with potato pulp could be improved through the addition of different emulsifiers (soy lecithin-Soy L, sodium stearoyl lactate and diacetyl tartaric esters of monoglyceride) and enzymes (glucose oxidase-GOX and transglutaminase). Results showed that separate addition of each emulsifier at 1% concentration or each enzyme at 1.5 U/g could increase the viscoelasticity and strength of potato pulp dough due to enhancement of gluten network. Fermentation properties of dough showed that Soy L and GOX significantly (P < 0.05) increased the maximum dough height and the gas retention capacity during fermentation which promoting dough expansion. Moreover, Soy L and GOX increased specific volume and improved crumb structure and softness of steamed bread, which were consistent with the results of sensory analysis. In conclusion, Soy L and GOX could be used as improvers of potato pulp steamed bread.
Collapse
Affiliation(s)
- Yanfei Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Min Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Shuang Dong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Peng Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong 255000, China.
| |
Collapse
|
20
|
Taglieri I, Macaluso M, Bianchi A, Sanmartin C, Quartacci MF, Zinnai A, Venturi F. Overcoming bread quality decay concerns: main issues for bread shelf life as a function of biological leavening agents and different extra ingredients used in formulation. A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1732-1743. [PMID: 32914410 DOI: 10.1002/jsfa.10816] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
As is widely accepted, the quality decay of freshly baked bread that affects product shelf life is the result of a complex multifactorial process that involves physical staling, together with microbiological, chemical and sensorial spoilage. In this context, this paper provides a critical review of the recent literature about the main factors affecting shelf life of bread during post-baking. An overview of the recent findings about the mechanism of bread staling is firstly provided. Afterwards, the effect on staling induced by baker's yeasts and sourdough as well as by the extra ingredients commonly utilized for bread fortification is also addressed and discussed. As inclusion/exclusion criteria, only papers dealing with wheat bread and not with long-life bread or gluten-free bakery products are taken into consideration. Despite recent developments in international scientific literature, the whole mechanism that induces bread staling is far from being completely understood and the best analytical methods to be adopted to measure and/or describe in depth this process appear still debated. In this topic, the effects induced on bread shelf life by the use of biological leavening agents (baker's yeasts and sourdough) as well as by some extra ingredients included in the bread recipe have been individuated as two key issues to be addressed and discussed in terms of their influence on the kinetics of bread staling. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Mike Frank Quartacci
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Fonseca LM, Souza EJD, Radünz M, Gandra EA, Zavareze EDR, Dias ARG. Suitability of starch/carvacrol nanofibers as biopreservatives for minimizing the fungal spoilage of bread. Carbohydr Polym 2021; 252:117166. [PMID: 33183617 DOI: 10.1016/j.carbpol.2020.117166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022]
Abstract
The objective of this study was to evaluate the in vitro susceptibility of fungi to starch/carvacrol nanofibers produced by electrospinning. The nanofibers were incorporated into bread dough or used in the development of active packages to minimize bread spoilage. In agar diffusion and micro-atmosphere assays, the nanofibers with 30 % or 40 % carvacrol presented inhibition zones with low growth and were effective inhibiting both the fungi evaluated in this work. The MICs for nanofibers with 30 % carvacrol were 0.098 and 9.8 mg/mL against Penicillium sp. and Aspergillus flavus, respectively; for the 40 % nanofibers, the MIC was 19.6 mg/mL against Aspergillus flavus. As for MFC, only the 30 % nanofibers exerted fungicidal effect. The treatments administered directly to the bread dough had low colony-forming unit. For bioactive packages, nonwovens with 30 % carvacrol were effective in preventing bread spoilage. Thus, nanofibers are a good alternative to chemical additives or bioactive packages in food industry.
Collapse
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | | | - Marjana Radünz
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Eliezer Avila Gandra
- Center of Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, 96010-900, Pelotas, RS, Brazil.
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
22
|
Guo L, Xu D, Fang F, Jin Z, Xu X. Effect of glutathione on wheat dough properties and bread quality. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Study on structure-function of starch by asymmetrical flow field-flow fractionation coupled with multiple detectors: A review. Carbohydr Polym 2019; 226:115330. [DOI: 10.1016/j.carbpol.2019.115330] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
|
24
|
Wang H, Xia X, Yu H, Zhao X, Zhong X, Li Q, Tang J, Zhao Y. Effect of liquid fermentation on bread fortified with Lycium ruthenicum: A quality attribute and in vitro digestibility study. Food Chem 2019; 299:125131. [PMID: 31288159 DOI: 10.1016/j.foodchem.2019.125131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/20/2022]
Abstract
The aim of this study was to research the effect of yeast fermentation on the polyphenol content of Lycium ruthenicum (LR) to guide the production of bread with a lower digestibility. Liquid fermentation from 0 to 2 h significantly increased the phenolic, flavonoid and anthocyanin content of LR, while further liquid fermentation from 2 to 16 h had little additional effect. The addition of LR without prior liquid fermentation impaired the bread quality, while a prior liquid fermentation for at least 2 h improved the bread quality. The bread digestibility was decreased after adding LR, and it was further reduced with the extended liquid fermentation time. The results of this study indicate that adding LR with prior liquid fermentation to the dough during bread making could result in a higher quality and a lower digestibility.
Collapse
Affiliation(s)
- Hua Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Xia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongzhu Yu
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhao
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Xue Zhong
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China
| | - Qian Li
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Jintian Tang
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China.
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
25
|
Roles of dextran, weak acidification and their combination in the quality of wheat bread. Food Chem 2019; 286:197-203. [DOI: 10.1016/j.foodchem.2019.01.196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 11/19/2022]
|
26
|
Díaz‐Montes E, Castro‐Muñoz R. Metabolites recovery from fermentation broths via pressure‐driven membrane processes. ASIA-PAC J CHEM ENG 2019. [DOI: 10.1002/apj.2332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Elsa Díaz‐Montes
- Laboratorio de Biotecnología AlimentariaUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (UPIBI‐IPN) Av. Acueducto s/n Col. Barrio La Laguna, Ticomán CP 07340 México City México
| | - Roberto Castro‐Muñoz
- Department of Inorganic TechnologyUniversity of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic
- Tecnológico de Monterrey, Campus Toluca Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista 50110 Toluca de Lerdo México
| |
Collapse
|
27
|
Hundschell CS, Wagemans AM. Rheology of common uncharged exopolysaccharides for food applications. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|