1
|
Dang M, Li W, You J, Xiong S, An Y. Perilla juice and ginger juice reduced warmed-over flavor (WOF) in surimi gels: Due to the inhibition of the formation of the WOF compounds and the masking of the WOF. Food Chem 2024; 454:139739. [PMID: 38820632 DOI: 10.1016/j.foodchem.2024.139739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
The effects and reasons of perilla juice (PJ) and ginger juice (GJ) on the reduction of "warmed-over flavor" (WOF) in surimi gels were revealed by detecting odor profiles and protein and lipid oxidation degrees of surimi gels, concentrations and odor activity values (OAVs) of WOF compounds. Adding PJ and GJ to surimi gels significantly reduced the WOF and improved the fish fragrance odor, but sodium ascorbate (SA) only weakened the WOF. The (E,E)-2,4-heptadienal's OAVs in the PJ and GJ groups were decreased by >50% compared with the control check (CK) and SA groups. Meanwhile, surimi gels added with PJ and GJ presented lower lipid and protein oxidation degrees. The verification test indicated that PJ and GJ's aroma had a masking effect on the WOF. In conclusion, PJ and GJ reduced the WOF in surimi gels by preventing WOF compounds' production and masking the WOF with their distinct aroma.
Collapse
Affiliation(s)
- Meiqi Dang
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Wenrong Li
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Juan You
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Shanbai Xiong
- College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China
| | - Yueqi An
- College of Health Science and Engineering, Hubei University, Wuhan, Hubei Province 430062, PR China; College of Food Science and Technology/National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
2
|
Gao C, Zhao M, Wang X, Wang J, Li C, Dong X, Liu Z, Zhou D. Plasma-activated water in combination with coconut exocarp flavonoids emerge as promising preservation technique for golden pompano: Impact of the treatment sequence. Food Chem 2024; 447:138981. [PMID: 38518613 DOI: 10.1016/j.foodchem.2024.138981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/24/2024]
Abstract
In the current study, the preservation effect of plasma-activated water (PAW), coconut exocarp flavonoids (CF) and their combination on golden pompano fillets during refrigerated storage was investigated with emphasize on the treating sequence. PAW effectively inactivated spoilage bacteria and inhibited total volatile basic nitrogen (TVB-N) increase, while boosted the TBARS and carbonyl values. PAW+CF exerted synergistic effect on extending the period before total bacterial count and TVB-N content reaching acceptance limit than PAW or CF alone (P < 0.05). In addition, their combined treatment effectively reduced fillets discoloration and texture deterioration. Simultaneously, lipid and protein oxidation were significantly inhibited, which was comparable to CF. It was indicated that the treatment sequence of PAW and CF profoundly impact the preservation effect. Specifically, prior CF marinating followed by PAW was more effective than the opposite sequence. Thus, combination of CF followed by PAW served as promising technique for fish fillets preservation.
Collapse
Affiliation(s)
- Chengyan Gao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Mantong Zhao
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Xinwen Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Jiamei Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zhongyuan Liu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China; Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China; Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou Key Laboratory of Deep Processing of Marine Food, Haikou 570228, China.
| | - Dayong Zhou
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Dai W, He S, Huang L, Lin S, Zhang M, Chi C, Chen H. Strategies to reduce fishy odor in aquatic products: Focusing on formation mechanism and mitigation means. Food Chem 2024; 444:138625. [PMID: 38325089 DOI: 10.1016/j.foodchem.2024.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/13/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Aquatic products, integral to human diets, often bear a distinct fishy odor that diminishes their appeal. Currently, the formation mechanisms of these odoriferous compounds are not fully understood, complicating their effective control. This review aims to provide a comprehensive overview of key fishy compounds, with a focus on their formation mechanisms and innovative methods for controlling fishy odors. Fishy odors in aquatic products arise not only from the surrounding environment but also from endogenous transformations due to lipid autoxidation, enzymatic reactions, degradation of trimethylamine oxide, and Strecker degradation. Methods such as sensory masking, adsorbent and biomaterial adsorption, nanoliposome encapsulation, heat treatment, vacuum treatment, chemical reactions, and biological metabolic transformations have been developed to control fishy odors. Investigating the formation mechanisms of fishy odors will provide solid foundational knowledge that can inspire creative approaches to controlling these unpleasant odors.
Collapse
Affiliation(s)
- Wanting Dai
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; College of Food, Nanchang University, Nanchang 330001, PR China; State Key Laboratory of Food Science and Resources, Nanchang 330001, PR China
| | - Shiying He
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Linshan Huang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Miao Zhang
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Chengdeng Chi
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China
| | - Huibin Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, PR China; Southern Institute of Oceanography, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
4
|
Liu X, Cai N, Cai Z, Li L, Ni H, Chen F. The effect of instant tea on the aroma of duck meat. Food Chem X 2024; 22:101401. [PMID: 38711775 PMCID: PMC11070817 DOI: 10.1016/j.fochx.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024] Open
Abstract
Tea products, such as instant tea, have been shown to improve the aroma of meat products. However, the mechanisms by which tea products enhance meat aroma have not been adequately explained. In this study, we analyzed the impact of instant tea on the aroma of duck meat. Our results showed that treatment with instant tea led to increases in floral, baked, and grassy notes while reducing fishy and fatty notes. Several alcohols, aldehydes, ketones, indole and dihydroactinidiolide exhibited significantly increased OAVs. Conversely, certain saturated aldehydes, unsaturated aldehydes and alcohols displayed significantly decreased OAVs. The enhanced floral, baked and grassy notes were attributed to volatile compounds present in instant tea. The reduction in fishy and fatty notes was linked to polyphenols in instant tea interacting with nonanal, undecanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-decenal, and 2,4-decadienal through hydrophobic interactions and electronic effects. This study enhances our understanding of how tea products improve meat aromas.
Collapse
Affiliation(s)
- Xieyuan Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ning Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Zhenzhen Cai
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Lijun Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Key Laboratory of Food Microbiology and Enzyme Engineering Technology of Fujian Province, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
- Xiamen Ocean Vocational College, Xiamen 361021, China
| | - Feng Chen
- Department of Food Science & Human Nutrition, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
5
|
Chen X, Lan W, Xie J. Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chem 2024; 440:138198. [PMID: 38128429 DOI: 10.1016/j.foodchem.2023.138198] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/23/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Natural antibacterials have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. In particular, natural phenolic compounds are secondary metabolites produced by plants for numerous functions including antimicrobial defence. Polyphenol has significant antimicrobial activity, but its antimicrobial properties are affected by the cell structure difference of bacteria, the concentration, type, and extraction method of polyphenol, and the treatment time of bacteria exposed to polyphenol. Therefore, this paper analyzed the antibacterial activity and mechanism of polyphenol as an antimicrobial agent. However, there remained significant considerations, including the interaction of polyphenols and food matrix, environmental temperature, and the effect of color and odor of some polyphenols on sensory properties of aquatic products, and the additive amount of polyphenols. On this basis, the application strategies of polyphenols as the antimicrobial agent in aquatic products preservation were reviewed.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
6
|
Lin M, Cui Y, Shi L, Li Z, Liu S, Liu Z, Weng W, Ren Z. Characteristics of hairtail surimi gels treated with myofibrillar protein-stabilized Pickering emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4251-4259. [PMID: 38311866 DOI: 10.1002/jsfa.13308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Hairtail (Trichiurus haumela) surimi exhibits poor gelation properties and a dark gray appearance, which hinder its utilization in high-quality surimi gel products. The effect of Pickering emulsions stabilized by myofibrillar proteins (MPE) on the gel properties of hairtail surimi has been unclear. In particular, the impact of MPE under NaCl and KCl treatments on the quality of hairtail surimi gels requires further elucidation. RESULTS Pickering emulsions stabilized by myofibrillar proteins and treated with NaCl or KCl (Na-MPE, K-MPE) were added to hairtail surimi in amounts of 10-70 g kg-1. The addition of 50 g kg-1 Na-MPE and K-MPE improved the gel strength, textural properties, whiteness, and water-holding capacity (WHC) of hairtail surimi. The relative content of β-turn and β-sheet in the surimi gels increased and the relative content of random coils and α-helix decreased with the addition of oil. The addition of Na-MPE and K-MPE did not affect the secondary structure of surimi gels but stimulated the gelation of hairtail surimi gels. Hairtail surimi containing K-MPE demonstrated similar performance in terms of hardness, microstructure, and WHC compared with the addition of Na-MPE. CONCLUSION The quality of hairtail surimi gels can be improved by the addition of Na-MPE or K-MPE. The K-MPE proved to be an effective option for enhancing the properties of hairtail surimi gels at 50 g kg-1 to replace Na-MPE. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Min Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yaqing Cui
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Beijing, China
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shuji Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian // Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province // Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
7
|
Karbsri W, Hamzeh A, Yongsawatdigul J. Changes in volatile compounds and lipid oxidation in various tissues of Nile tilapia (Oreochromis niloticus) during ice storage. J Food Sci 2024; 89:2261-2276. [PMID: 38433381 DOI: 10.1111/1750-3841.17013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Changes in the lipid oxidation and volatile compounds of a variety of tilapia tissues (Oreochromis niloticus) including the muscle, gills, and skin during ice storage were investigated by evaluating peroxide values (PVs), lipoxygenase (LOX) activity, fatty acid (FA) composition, and volatile substances. LOX activity and PV were determined in the gills, skin, and muscles throughout 9 days of storage in ascending order to the extended storage time. The highest level of LOX activity was found in the gills, whereas the highest PV was determined in the skin. FA content of all tissues decreased during the storage period. Oleic acid was the predominant monounsaturated fatty acid, whereas linoleic acid and docosahexaenoic acid were the main polyunsaturated fatty acids and omega-3 in all tissues. The fish gills were shown to have the highest level of volatile compounds followed by the skin and muscle, based on headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry. Principal component analysis indicated gradual changes in the volatile compound composition with increasing storage time. 2-Butanone and nonanal in the muscle, 6-methyl-2-heptanone and 2-nonenal in the gills, and 1-heptanol, and 1-nonanol in the skin were found to be the potential freshness indicators. In addition, hexanal could be a general potential marker for measuring the degree of lipid oxidation in all tissues. PRACTICAL APPLICATION: Understanding the volatile compound formation related to lipid oxidation within storage time at various tissues of tilapia could be critical to the side-stream processing to yield the desired quality.
Collapse
Affiliation(s)
- Wilaiwan Karbsri
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Ali Hamzeh
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
8
|
Du M, Yu W, Ding N, Jian M, Cheng Y, Gan J. Antioxidant, aroma, and sensory characteristics of Maillard reaction products from Urechis unicinctus hydrolysates: development of food flavorings. Front Nutr 2024; 11:1325886. [PMID: 38379540 PMCID: PMC10876865 DOI: 10.3389/fnut.2024.1325886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
To develop food flavorings with a delicious taste and an anti-oxidation effect, in this study, the glucose Maillard reaction was used for hydrolysates of Urechis unicinctus. The various biological activities of Maillard reaction products (MRPs) and their antioxidant capacity were evaluated. The results showed that the unique fishy odor substances of seafood in MRPs were reduced, indicating that the Maillard reaction improved the flavor of the hydrolysate of Urechis unicinctus. Meanwhile, MRPs exhibited more competitive radical scavenging activities compared to the hydrolysate. Moreover, MRPs demonstrated a considerable potential to protect against 2,2'-Azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stress in a cell model in vitro and in a zebrafish model in vivo. Finally, a novel food flavoring was produced with MRPs as raw material, while the sensory qualities were deemed acceptable. In consequence, during industrial production, MRPs of Urechis unicinctus hydrolysate act as a high-quality raw material for functional flavorings and provide an effective way for the utilization of marine resources.
Collapse
Affiliation(s)
- Mengdi Du
- College of Life Science, Yantai University, Yantai, Shandong, China
| | - Wei Yu
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ning Ding
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengqi Jian
- College of Life Science, Yantai University, Yantai, Shandong, China
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jing Gan
- College of Life Science, Yantai University, Yantai, Shandong, China
| |
Collapse
|
9
|
Liu X, Li H, He D, Wang P, Li Y, Wu K. Effect of cinnamon essential oil dietary supplementation on the growth, fatty acid composition, and meat quality of tilapia. J Food Sci 2023; 88:5266-5277. [PMID: 37876365 DOI: 10.1111/1750-3841.16756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 10/26/2023]
Abstract
This study was conducted to investigate the effects of dietary supplementation of 0%, 0.2%, 0.35%, and 0.5% cinnamon essential oil on growth performance, fatty acid, and fillet quality of tilapia (Oreochromis niloticus). The results of growth experiments showed that the weight gain rate linearly and quadratically increased with increasing cinnamon essential oil doses (p < 0.05). The results of fatty acids experiments showed that the addition of essential oil significantly decreased the saturated fatty acids levels from 36.67% to 30.82% and increased the polyunsaturated fatty acids (PUFA) levels from 24.55% to 46.89%; especially, the n - 3 PUFA of 0.5% essential oil treatment showed the highest levels. Moreover, the n - 6 PUFA of 0.2% essential oil treatment were increased from 22.17% to 32.99%. The results of fillet quality experiments showed that the hardness and cohesiveness were linearly and quadratically increased with the increasing essential oil doses on days 4 and 7, respectively. The b* values linearly and quadratically decreased as the doses increased on day 7 (p < 0.05). The total volatile basic nitrogen levels were quadratically decreased with increasing cinnamon essential oil doses on day 7 (p < 0.05). In general, it can be concluded that cinnamon essential oil presented positive effects on the growth, nutritive values, and meat quality in tilapia.
Collapse
Affiliation(s)
- Xiaoli Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Huiyi Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Dong He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Yuteng Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Kegang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Fan JC, Liu GH, Wang K, Xie C, Kang ZL. Effects of Potassium Bicarbonate on Gel, Antioxidant and Water Distribution of Reduced-Phosphate Silver Carp Surimi Batter under Cold Storage. Gels 2023; 9:836. [PMID: 37888409 PMCID: PMC10606452 DOI: 10.3390/gels9100836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
The changes in storage loss, water distribution status, gel characteristics, thiobarbituric acid reactive substances (TBARSs), total volatile basic nitrogen, and total plate count of cooked reduced-phosphate silver carp surimi batter during cold storage at 4 °C were investigated. The storage loss, content of free water, pH, hardness, TBARSs, total volatile basic nitrogen value, and total plate count of all cooked silver carp surimi batters significantly increased (p < 0.05) with an increase in cold storage time. Meanwhile, the content of immobilized water, whiteness, springiness, and cohesiveness significantly decreased (p < 0.05). At the same cold storage time, the sample of cooked reduced-phosphate silver carp surimi batter had lower water mobility, darker color, and better texture characteristics than the cooked silver carp surimi batter without potassium bicarbonate; however, the values of TBARSs, total volatile basic nitrogen, and total plate count were not significantly different (p > 0.05). This meant that there was no difference between potassium bicarbonate and sodium tripolyphosphate in antioxidant and antibacterial activity during the cold storage of silver carp surimi batter. To summarize, the use of potassium bicarbonate instead of sodium tripolyphosphate could produce cooked reduced-phosphate silver carp surimi batter with better water-holding capacity and gel characteristics during cold storage.
Collapse
Affiliation(s)
- Jing-Chao Fan
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Guang-Hui Liu
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Kai Wang
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Chun Xie
- School of Pharmacy, Shangqiu Medical College, Shangqiu 476100, China; (G.-H.L.); (K.W.); (C.X.)
| | - Zhuang-Li Kang
- College of Tourism and Culinary, Yangzhou University, Yangzhou 225127, China;
| |
Collapse
|
11
|
Khodanazary A, Mohammadzadeh B. Effect of alginate-gallic acid coating on freshness and flavor properties of Mackerel (Scomberomorus commerson) fillets under refrigerated storage. Int J Biol Macromol 2023; 249:125999. [PMID: 37499710 DOI: 10.1016/j.ijbiomac.2023.125999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
This study investigates the effect of sodium alginate-gallic acid (ALG-GAL) coating on mackerel's flavor compounds and quality properties during cold storage at 4 °C for 12 days. To this end, freshness quality indicators, including biogenic amines (BAs), volatile organic compounds (VOCs), ATP-related compounds, K value, total viable counts (TVC), thiobarbituric acid (TBA), and sensory assessment, were measured. During storage, eight BAs, i.e., histamine (HIS), tyramine (TYR), putrescine (PUT), cadaverine (CAD), 2-phenylethylamine (2-PHE), agimation, spermine (SPM), and spermidine (SPD) were identified in control and treated samples. The biogenic amine index (BAI) for control samples was 56.25 at the time of sensory rejection (day 6). BAI for samples coated with ALG-GAL did not exceed 20 mg/100 g at the time of sensory rejection (day 12). The fillets treated with the ALG alone or incorporated with GAL possessed a different trend in the retardation of VOCs, including aldehydes, ketones, alcohols, and hydrocarbons. Seven key flavors VOCs, including 3-methylbutanal, phenylacetaldehyde, E-2-hexanal, 1-hexanol, 1-octen-3-ol, 2,3 pentanedione, and hydroxyl-2-butanone, were identified in control and coated samples. Samples coated with ALG and GAL were of significantly higher quality (p < 0.05) throughout storage, which could result in lower Inosine (HxR) concentrations and K values. The results of TVC showed that use ALG-GAL had lower bacterial counts compared to control (p < 0.05). The ALG-GAL-coated samples retarded the increase in the contents of TBA during storage. In addition, significant differences in sensory scores between ALG and ALG-GAL were observed (p < 0.05). In this study, aldehydes and hypoxanthine (Hx) were the main compounds in the formation of off-flavor. These results revealed that ALG coating combined with GAL improved the quality of refrigerated mackerel fillets by decreasing off-flavor compounds and TVC population.
Collapse
Affiliation(s)
- Ainaz Khodanazary
- Department of Fisheries, Faculty of Marine Natural Resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran; Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Behrooz Mohammadzadeh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
12
|
Ling L, Liu Y, Zhang X, Aziz T, Shahzad M, Sameeh MY, Wang Y, Cai C, Zhu Y. Effect of Flammulina velutipes polysaccharides on the physicochemical properties of catfish surimi and myofibrillar protein oxidation during frozen storage. Front Nutr 2023; 10:1268580. [PMID: 37818336 PMCID: PMC10561388 DOI: 10.3389/fnut.2023.1268580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
This study investigated the effect of Flammulina velutipes polysaccharides (FVPs) on the myofibrillar protein (MP) oxidation protein and physicochemical properties of catfish surimi during 75 days of frozen storage at -18°C. FVP was added to surimi at 1%, 1.5%, and 2%, respectively; the degree of MP oxidation and the physicochemical properties of the surimi were investigated, and the microstructure of the surimi was observed by scanning electron microscopy (SEM). The results showed that the carbonyl content and the thiobarbituric acid reactive substances (TBARS) in the FVP groups were lower than those in the CK group (the blank surimi). In comparison, the total sulfhydryl content, solubility, and Ca2+-ATPase activity were higher than those in the CK group after 75 days of storage. The addition of FVP significantly increased the water-holding capacity (WHC), gel strength, elastic modulus (G'), and loss modulus (G") of surimi, and made the gel of surimi have stronger continuity and a denser structure. Therefore, FVP has a better cryoprotective effect on surimi. It improves the quality of surimi, decreases MP oxidation, and reduces lipid and water loss during frozen storage. The anti-freezing effect of FVP added at 2% was similar to that of commercial protectants (4% sucrose and 4% sorbitol).
Collapse
Affiliation(s)
- Liang Ling
- Shanxi Institute for Functional Food, Shanxi Agricultural University, Taiyuan, China
| | - Ying Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Xin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Tariq Aziz
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahzad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Manal Y. Sameeh
- Chemistry Department, Faculty of Applied Sciences, Al-Leith University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ying Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| | - Chunbo Cai
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, China
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
13
|
Liu D, Du L, Huang Q, Zhou M, Xiong G, Li C, Qiao Y, Wu W. Effects of ultrasound treatment on muscle structure, volatile compounds, and small molecule metabolites of salted Culter alburnus fish. ULTRASONICS SONOCHEMISTRY 2023; 97:106440. [PMID: 37230026 DOI: 10.1016/j.ultsonch.2023.106440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
This study investigated the effects of ultrasound treatment on the quality of salted Culter alburnus fish. The results showed that with the increasing ultrasound power, the structural degradation of muscle fibers was intensified, and the conformation of myofibrillar protein was significantly changed. The high-power ultrasound treatment group (300 W) had relatively higher thiobarbiturate reactive substance content (0.37 mg malondialdehyde eq/kg) and peroxidation value (0.63 mmol/kg). A total of 66 volatile compounds were identified with obvious differences among groups. The 200 W ultrasound group exhibited fewer fishy substances (Hexanal, 1-Pentene-3-ol, and 1-Octane-3-ol). Compared with control group, ultrasound groups (200, 300 W) contained more umami taste-related amino peptides such as γ-Glu-Met, γ-Glu-Ala, and Asn-pro. In the ultrasound treatment group, L-isoleucine and L-methionine, which may be used as flavor precursors, were significantly down-regulated, while carbohydrates and its metabolites were up-regulated. Amino acid, carbohydrate, and FA (fatty acyls) metabolism products in salted fish were enriched by ultrasound treatment, and those products might ultimately be related to the taste and flavor of salted fish.
Collapse
Affiliation(s)
- Dongyin Liu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Liu Du
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Qi Huang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Mingzhu Zhou
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Chuan Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
14
|
Zhao N, Zhang X, Zhang Z, Guo X, Ma R, Meng Y, Li Y. Effects of ellagic acid and ε-polylysine hydrochloride on the content of biogenic amines, volatile compounds and quality of salmon slices during chilled storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
This study aimed to investigate effects of ellagic acid (EA) and ε-polylysine hydrochloride (ε-PL) on biogenic amines (BAs), volatile compounds and quality of salmon slices stored at 4 °C. The results showed that EA and ε-PL attenuated the production of BAs, retarded the increase of TVC, TVB-N and TBARS. Additionally, water mobility, texture properties of salmon slices were also stabilized by the EA and ε-PL. Volatile compounds including aldehydes, alcohols and hydrocarbons were identified and spoilage-related compounds reduced by the EA and ε-PL, which was related to the inhibition of bacterial, TVB-N and TBA growth by EA and ε-PL. The content of phencthylamine, putrescine, cadaverine, histamine and tyramine in EA-s-PL groups reduced by 46.53%, 54.1%, 26.42%, 31.98% and 45.37% compared to the control group at the end of storage, respectively. Therefore, EA and ε-PL can be applied for inhibiting the increase of BAs and delaying quality deterioration of salmon slices.
Collapse
Affiliation(s)
- Nan Zhao
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xinyuan Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Zian Zhang
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| | - Xiaohua Guo
- Shandong Meijia Group Co., Ltd , Rizhao , Shandong 276815 , China
| | - Rui Ma
- Qinghai University , Xining 810016 , China
| | | | - Yingchang Li
- College of Food Science and Technology , Bohai University, Food Safety Key Laboratory of Liaoning Province, National & Local Joint Engineering Research Center for Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products , Jinzhou 121013 , China
| |
Collapse
|
15
|
The impact of marine and terrestrial based extracts on the freshness quality of modified atmosphere packed sea bass fillets. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
16
|
Effects of ethanol pretreatment on osteogenic activity and off-flavors in blue mussel (Mytilus edulis L.) enzymatic hydrolysates. Food Res Int 2023; 167:112701. [PMID: 37087266 DOI: 10.1016/j.foodres.2023.112701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Aquatic protein hydrolysates have many biological activities, but the off-flavor seriously decreases their commercial acceptability. Therefore, it is important to invest in finding an effective deodorization of aquatic hydrolysates that do not affect activities. In this study, ethanol pretreatment of mussel was applied to establish a new method to deodorize the blue mussel (Mytilus edulis L.) hydrolysates. LC-MS and GC-MS analysis results showed that 87.34% of fatty acids, 83.94% of aldehydes, most volatile flavor compounds including aldehydes, ketones, alcohols, acids, and hydrocarbons were decreased after ethanol pretreatment. Besides, it was found that the enzymatic hydrolysates of mussel with or without ethanol pretreatment showed high osteogenic activity, which induced an increase of 33.65 ± 4.36% and 31.77 ± 5.45% in MC3T3-E1 cell growth. These results suggest that ethanol pretreatment has beneficial potential for improving the flavor aspects of blue mussel peptides which may have the potential to stimulate bone regeneration and formation.
Collapse
|
17
|
Three Phenolic Extracts Regulate the Physicochemical Properties and Microbial Community of Refrigerated Channel Catfish Fillets during Storage. Foods 2023; 12:foods12040765. [PMID: 36832840 PMCID: PMC9956086 DOI: 10.3390/foods12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
It has been demonstrated that polyphenols have the potential to extend the shelf life of fish products. Thus, the effects of phenolic extracts from grape seed (GSE), lotus seedpod (LSPC), and lotus root (LRPE) were investigated in this study, focusing on the physicochemical changes and bacterial community of refrigerated channel catfish fillets during storage at 4 °C, using ascorbic acid (AA) as reference. As a result, GSE, LSPC, LRPE and AA inhibit the reproduction of microbials in catfish fillets during storage. According to the microbial community analysis, the addition of polyphenols significantly reduced the relative abundance of Proteobacterial in the early stage and changed the distribution of the microbial community in the later stage of storage. After 11 days of storage, the increase in total volatile base nitrogen (TVB-N) in fish was significantly reduced by 25.85%, 25.70%, 22.41%, and 39.31% in the GSE, LSPC, LRPE, and AA groups, respectively, compared to the control group (CK). Moreover, the lipid oxidation of samples was suppressed, in which thiobarbituric acid-reactive substances (TBARS) decreased by 28.77% in the GSE group, compared with the CK. The centrifugal loss, LF-NMR, and MRI results proved that GSE significantly delayed the loss of water and the increase in immobilized water flowability in catfish fillets. The polyphenol-treated samples also showed less decrease in shear force and muscle fiber damage in histology, compared to the CK. Therefore, the dietary polyphenols including GSE, LSPC, and LRPE could be developed as natural antioxidants to protect the quality and to extend the shelf life of freshwater fish.
Collapse
|
18
|
Bioactive Compounds from Fruits as Preservatives. Foods 2023; 12:foods12020343. [PMID: 36673435 PMCID: PMC9857965 DOI: 10.3390/foods12020343] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
The use of additives with preservative effects is a common practice in the food industry. Although their use is regulated, natural alternatives have gained more attention among researchers and professionals in the food industry in order to supply processed foods with a clean label. Fruits are essential components in a healthy diet and have also been associated with improved health status and a lower risk of developing diseases. This review aims to provide an overview of the main bioactive compounds (polyphenols, betalain, and terpenes) naturally found in fruits, their antioxidant and antimicrobial activity in vitro, and their preservative effect in different foods. Many extracts obtained from the skin (apple, grape, jabuticaba, orange, and pomegranate, for instance), pulp (such as red pitaya), and seeds (guarana, grape, and jabuticaba) of fruits are of great value due to the presence of multiple compounds (punicalagin, catechin, gallic acid, limonene, β-pinene, or γ-terpinene, for instance). In terms of antioxidant activity, some fruits that stand out are date, jabuticaba, grape, and olive, which interact with different radicals and show different mechanisms of action in vitro. Antimicrobial activity is observed for natural extracts and essential oils (especially from citrus fruits) that limit the growth of many microorganisms (Bacillus subtilis, Escherichia coli, Penicillium digitatum, and Pseodomonas aeruginosa, for instance). Studies in foods have revealed that the use of extracts or essential oils as free or encapsulated forms or incorporated into films and coatings can inhibit microbial growth, slow oxidative reactions, reduce the accumulation of degradative products, and also preserve sensory attributes, especially with films and coatings. Future studies could focus on the advances of extracts and essential oils to align their use with the development of healthier foods (especially for meat products) and explore the inhibition of spoilage microorganisms in dairy products, for instance.
Collapse
|
19
|
Javadifard M, Khodanazary A, Hosseini SM. The effects of chitosan-nanoclay nanocomposite coatings incorporated with gallic acid on the shelf life of rainbow trout during storage in the refrigerator. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Zhou C, Li C, Cui H, Lin L. Metabolomics insights into the potential of encapsulated essential oils as multifunctional food additives. Crit Rev Food Sci Nutr 2022; 64:5143-5160. [PMID: 36454059 DOI: 10.1080/10408398.2022.2151974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Growing consumer concern about foodborne disease outbreaks and health risks associated with chemical additives has propelled the usage of essential oils (EOs) as novel food additives, but are limited by instability. In this regard, a series of EOs nano/micro-capsules have been widely used to enhance their stability and improve food quality. However, classical food quality assessment methods are insufficient to fully characterize the effects of encapsulated EOs on food properties, including physical, biochemical, organoleptic, and microbial changes. Recently, the rapid development of high-throughput sequencing is accelerating the application of metabolomics in food safety and quality analysis. This review seeks to present the most recent achievements in the application of non-targeted metabolomics to identify and quantify the overall metabolite profile associated with food quality, which can guide the development of emerging food preservation technologies. The scientific findings confirm that metabolomics opens up exciting prospects for biomarker screening in food preservation and contributes to an in-depth understanding of the mechanisms of action (MoA) of EOs. Future research should focus on constructing food quality assessment criteria based on multi-omics technologies, which will drive the standardization and commercialization of EOs for food industry applications.
Collapse
Affiliation(s)
- Changqian Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, China
| |
Collapse
|
21
|
Pogorzelska-Nowicka E, Górska-Horczyczak E, Hanula M, Marcinkowska-Lesiak M, Pogorzelski G, Wierzbicka A, Półtorak A. Sage extracts obtained with cold plasma improves beef quality. Meat Sci 2022; 194:108988. [PMID: 36150322 DOI: 10.1016/j.meatsci.2022.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
The aim of the study was to verify the effect of sage extracts obtained using cold plasma on the quality of ground beef. Patties with a different content of sage extracts (0.05% and 0.075%) obtained either by conventional extraction (S0.05, S.0.075) or with cold plasma assistance (SP0.05, SP0.075) were packed under a modified atmosphere (80%O2) and stored in cold conditions for 8 days. Sage extracts addition had no impact on pH, weight loss, colour, content of each myoglobin form, texture, aroma and overall acceptability of raw meat measured on the last storage day (P < 0.05). However, lipid oxidation was inhibited the most in meat with the highest share of sage extract obtained using cold plasma (P < 0.05). This group was also characterized by the highest amount of n-3 fatty acids at the end of storage (P < 0.05). Moreover, the addition of sage at 0.075% prevented hexanal formation in samples. Thus, cold plasma extracts may be introduced in the meat industry.
Collapse
Affiliation(s)
- Ewelina Pogorzelska-Nowicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland.
| | - Elżbieta Górska-Horczyczak
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| | - Monika Hanula
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| | - Monika Marcinkowska-Lesiak
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| | - Grzegorz Pogorzelski
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| | - Agnieszka Wierzbicka
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| | - Andrzej Półtorak
- Institute of Human Nutrition Sciences, Department of Technique and Food Product Development, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159 c street, 02-776 Warsaw, Poland
| |
Collapse
|
22
|
Luo J, Yu Q, Han G, Zhang X, Shi H, Cao H. Identification of off-flavor compounds and deodorizing of cattle by-products. J Food Biochem 2022; 46:e14443. [PMID: 36169339 DOI: 10.1111/jfbc.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 01/14/2023]
Abstract
An unnatural flavor in a food or drink product caused by the presence of undesirable compounds due to contamination or deterioration is called off-flavor. This study determined the characteristics of cattle by-products off-flavor (heart, liver, lung, rumen, and intestine). We identified 25, 34, 26, 22, and 26 volatile compounds from the heart, liver, lung, rumen, and intestine, respectively, in the bovine via headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). Based on the relative odor activity value (ROAV ≥ 1), 16 volatile compounds were labeled as characteristic off-flavor by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The compounds involved in the characteristic off-flavor in bovine heart were E,E-2,4-nonadienal, E,E-2,4-decadien-1-al, hexanal, (E)-2-octenal, and decyl aldehyde. In the bovine liver, the off-flavor compounds were 1-nonanol, ethyl hexanoate, 2-octanone, and dodecyl aldehyde and in bovine lung 3-heptylacrolein was the off-flavor compound. In bovine rumen, heptaldehyde, octanal, p-cresol, and 1-nonanal were off-flavor compounds, and lastly, 1-octen-3-ol and E-2-nonenal were off-flavor compounds with bovine intestine. The cattle by-products were deodorized by shallot-ginger extract masking, baker's yeast fermentation, active dry yeast + β-cyclodextrin (β-CD) composite, and ultrasound + chitosan composite. The above 16 labeled characteristic compounds decreased in concentration. The ultrasound + chitosan composite method showed a significantly better effect than the other methods (p < .05). The aim of this study was to determine the characteristic flavor information of cattle by-products and provide idea on how to improve the flavor by various deodorization methods. PRACTICAL APPLICATIONS: This study investigated the volatile flavor compounds of cattle by-products from five organs (heart, liver, lung, rumen, and intestine) by headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). The 16 volatile compounds were labeled as the major characteristic off-flavor compounds by relative odor activity values and principal component analysis. Four different deodorization methods were adopted, and among them, ultrasound + chitosan composite method showed best results. This study has provided useful information about the characteristic off-flavor compounds and suggests how to improve the flavor of cattle by-products through various deodorization methods.
Collapse
Affiliation(s)
- Jin Luo
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | | | | | - Hongmei Shi
- Gansu Province Gannan Animal Husbandry Veterinary Workstation, Gannan, China
| | - Hui Cao
- Shanxi Qinbao Animal Husbandry Development Co., Baoji, China
| |
Collapse
|
23
|
Insights into lipid oxidation and free fatty acid profiles to the development of volatile organic compounds in traditional fermented golden pomfret based on multivariate analysis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Sun L, Lv J, Liu Y, Zang M, Li P, Wang D, Zhu Y, Xu W. Effects of combined carnosine and ultra-high pressure on the inhibition of fishy off-odor of snakehead fillets and the possible mechanism. Food Chem 2022; 395:133615. [DOI: 10.1016/j.foodchem.2022.133615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 11/04/2022]
|
25
|
Chaari M, Elhadef K, Akermi S, Ben Akacha B, Fourati M, Chakchouk Mtibaa A, Ennouri M, Sarkar T, Shariati MA, Rebezov M, Abdelkafi S, Mellouli L, Smaoui S. Novel Active Food Packaging Films Based on Gelatin-Sodium Alginate Containing Beetroot Peel Extract. Antioxidants (Basel) 2022; 11:2095. [PMID: 36358468 PMCID: PMC9686688 DOI: 10.3390/antiox11112095] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Currently, the exploration of natural colorants from vegetal waste has gained particular attention. Furthermore, incorporation of these natural sources into biopolymers is an encouraging environmentally friendly approach to establishing active films with biological activities for food packaging. The present study developed bioactive antioxidant films based on gelatin-sodium alginate (NaAlg) incorporated with aqueous beetroot peel extract (BPE). Firstly, the effects of combining gelatin-NaAlg and BPE at 0.25, 0.5, and 1% on the mechanical, physical, antioxidant, and antibacterial properties of the films were analyzed. With increasing BPE, mechanico-physical properties and antioxidant and anti-foodborne pathogen capacities were enhanced. Likewise, when added to gelatin-NaAlg films, BPE remarkably increased the instrumental color properties. Moreover, during 14 days of storage at 4 °C, the impact of gelatin-NaAlg coating impregnated with BPE on microbial and chemical oxidation and on the sensory characteristics of beef meat samples was periodically assessed. Interestingly, by the end of the storage, BPE at 1% limited the microbial deterioration, enhanced the instrumental color, delayed chemical oxidation, and improved sensory traits. By practicing chemometrics tools (principal component analysis and heat maps), all data provided valuable information for categorizing all samples regarding microbiological and oxidative properties, sensory features, and instrumental color. Our findings revealed the ability of gelatin-NaAlg with BPE as an antioxidant to be employed as food packaging for meat preservation.
Collapse
Affiliation(s)
- Moufida Chaari
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Khaoula Elhadef
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Sarra Akermi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Boutheina Ben Akacha
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, Sfax 3018, Tunisia
| | - Mariam Fourati
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Ahlem Chakchouk Mtibaa
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Monia Ennouri
- Olive Tree Institute, University of Sfax, Sfax 3018, Tunisia
- Valuation, Security and Food Analysis Laboratory, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, Bengal State Council of Technical Education, Government of West Bengal, Malda 732102, West Bengal, India
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
| | - Maksim Rebezov
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127550 Moscow, Russia
- Department of Scientific Research, V. M. Gorbatov Federal Research, Center for Food Systems, 26 Talalikhin St., 109316 Moscow, Russia
| | - Slim Abdelkafi
- Laboratory of Enzymatic Engineering and Microbiology, Algae Biotechnology Unit, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax 3038, Tunisia
| | - Lotfi Mellouli
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax 3018, Tunisia
| |
Collapse
|
26
|
The Impact of Thyme, Rosemary and Basil Extracts on the Chemical, Sensory and Microbiological Quality of Vacuumed Packed Mackerel Balls. Foods 2022; 11:foods11182845. [PMID: 36140971 PMCID: PMC9498479 DOI: 10.3390/foods11182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The effect of natural extracts (0.05%) and vacuum packaging on the sensory, chemical, and microbiological quality of mackerel balls were evaluated at refrigerated (4 ± 2 °C) storage. Natural extracts thyme (38.13 mg GAE/g), rosemary (81.85 mg GAE/g) and basil (21.08 mg GAE/g) were evaluated. Natural extracts imparted stability to lipids (TBA, FFA, and PV), and the ability was further improved by vacuum packaging. Biochemical changes (TVB-N, pH) and microbiological quality (total viable count) were also retained. Control samples packed under vacuum were found to cross over acceptable limits on day 28. Based on sensory quality evaluation, samples treated with rosemary and thyme extracts showed superior sensory quality over control, whilebasil-treated samples were not found acceptable at day 28. Consequently, the inclusion of thyme and rosemary extracts exhibits preservative quality when combined with vacuum packaging, retaining biochemical, microbial, and sensory quality.
Collapse
|
27
|
Huang P, Wang Z, Feng X, Kan J. Promotion of fishy odor release by phenolic compounds through interactions with myofibrillar protein. Food Chem 2022; 387:132852. [DOI: 10.1016/j.foodchem.2022.132852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 12/16/2022]
|
28
|
Yan H, Jiao L, Fang C, Benjakul S, Zhang B. Chemical and LC–MS-based lipidomics analyses revealed changes in lipid profiles in hairtail (Trichiurus haumela) muscle during chilled storage. Food Res Int 2022; 159:111600. [DOI: 10.1016/j.foodres.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
29
|
Effect of CO 2 on the spoilage potential of Shewanella putrefaciens target to flavour compounds. Food Chem 2022; 397:133748. [PMID: 35905618 DOI: 10.1016/j.foodchem.2022.133748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
To investigate the regulation mechanism of CO2 (0% CO2, 20% CO2, 60% CO2, and 100% CO2) on the spoilage potential of S. putrefaciens target to flavour compounds, the metabolic activity of S. putrefaciens and the changes in flavour compounds extracted from inoculated large yellow croakers were evaluated. Results showed that CO2 significantly reduced biofilm formation capacity and suppressed synthesis of intracellular adenosine triphosphate (ATP). The production of unpleasant flavour compounds, such as total volatile basic nitrogen (TVB-N), trimethylamine (TMA), inosine (HxR), hypoxanthine (Hx), histidine, lysine, histamine, putrescine, 1-octen-3-ol, hexanal and benzaldehyde, was inhibited by CO2. The hydrolysis and oxidation of lipid in CO2-treated samples were alleviated and unsaturated fatty acids (UFAs) were in a higher percentage. In summary, CO2 efficiently reduced the spoilage potential of S. putrefaciens and contributed to better flavour quality of samples during 4 °C storage. A more effective inhibition by 100% CO2 was observed.
Collapse
|
30
|
Yu J, Guo M, Liu G, Zhang J, Fan N, Li X, Sun Y, Yuan J, Huang R. Lycium barbarum polysaccharide inhibits lipid
oxidation and protein degradation in Tan sheep meatballs during frozen
storage. Food Sci Anim Resour 2022; 42:580-592. [PMID: 35855275 PMCID: PMC9289809 DOI: 10.5851/kosfa.2022.e23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to evaluate the effectiveness of Lycium barbarum polysaccharide (LBP) on lipid oxidation and protein degradation in Tan sheep meatballs during the frozen period. The meatballs were treated with LBP at 0.01%, 0.02%, and 0.03% and stored at –18±1°C for 0, 3, 6, 9, and 12 weeks. The effects of LBP treatment were investigated using the contents of total volatile basic nitrogen (TVB-N), texture profile (TP), thiobarbituric acid reactive substances (TBARS), colour, and pH values, compared with 0.02% butylated hydroxytoluene treatment and the blank control. The results showed that LBP treatment significantly decreased TBARS content compared with the control, which confirmed LBP to be a highly effective component in preventing lipid oxidation of Tan sheep meatballs during frozen storage, and protein degradation in Tan sheep meatballs had a significant inhibition effect because of TVB-N value reduction. In addition, the colour, TP and pH values of meatballs treated with LBP were improved dramatically. To further determine the quality changes of the blank control and all treated groups during storage, the comprehensive score evaluation equation based on principal component analysis was obtained: Y=0.51632Y1+0.29589Y2 (cumulative contribution rate=81.221%), and the 0.02% LBP-treated group had a higher comprehensive score than the other groups, and the quality of LBP-treated meatballs was better as well. In summary, LBP may reduce or inhibit lipid oxidation and protein degradation, and enhance overall quality and shelf-life in prepared meat products.
Collapse
Affiliation(s)
- Jiangyong Yu
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Wuzhong Grain and Oil Product Quality Inspection Station, Wuzhong Food and Strategic Reserves Administration, Wuzhong 751100, Ningxia, China
| | - Mei Guo
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Corresponding author: Guishan Liu, School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China, Tel: +86-13519502762, E-mail:
| | - Jingjing Zhang
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Naiyun Fan
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Xiaorui Li
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yourui Sun
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Jiangtao Yuan
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Rui Huang
- School of Food & Wine, Ningxia University, Yinchuan 750021, Ningxia, China
- Wuzhong Grain and Oil Product Quality Inspection Station, Wuzhong Food and Strategic Reserves Administration, Wuzhong 751100, Ningxia, China
| |
Collapse
|
31
|
Lan W, Sun Y, Liu S, Guan Y, Zhu S, Xie J. Effects of ultrasound-assisted chitosan grafted caffeic acid coating on the quality and microbial composition of pompano during ice storage. ULTRASONICS SONOCHEMISTRY 2022; 86:106032. [PMID: 35617884 PMCID: PMC9130226 DOI: 10.1016/j.ultsonch.2022.106032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 05/27/2023]
Abstract
The effects of ultrasound-assisted chitosan grafted caffeic acid coating on the quality and microbial composition of fresh pompano (Trachinotus ovatus) fillets during ice storage for 24 days were evaluated. Samples were treated by distilled water (CK), ultrasound (US), chitosan grafted caffeic acid coating (G), and chitosan grafted caffeic acid coating with ultrasound-assisted (USG). Results showed that samples treated with USG could inhibit the formation of corrupt substances such as TVB-N, TBA, biogenic amines (BAs), hypoxanthine (Hx), and hypoxanthine riboside (HxR) when compared to the CK group.The results of high-throughput sequencing technology observed that the major bacteria genus of fresh samples was Acinetobacter.The diversity of bacterial communities at the initial stage was more diverse than that at the end of stage. With the extension of storage time, the USG treatment could maintain the microbial diversity. The dominant microbiota was Shewanella and Brochothrix in the CK group after 24 days of storage. In addition, Brochothrix in treated groups was effectively decreased. The microbial communities of samples in all treatments were changed during storage. At the end of storage, there was a significant difference in bacterial composition between the CK and treated samples, indicating that the treatment can effectively inhibit the growth of microorganisms, especially spoilage microorganisms, and reduce the quality deterioration caused by bacteria.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Yuqing Sun
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuan Guan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Shengyun Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
32
|
Fu L, Du L, Sun Y, Fan X, Zhou C, He J, Pan D. Effect of Lentinan on Lipid Oxidation and Quality Change in Goose Meatballs during Cold Storage. Foods 2022; 11:foods11071055. [PMID: 35407142 PMCID: PMC8997726 DOI: 10.3390/foods11071055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of different concentrations of lentinan (LNT) (0, 0.5, 1, 2 and 4%) on the oxidation characteristics and physicochemical properties of goose meatballs were investigated during different cold storage (4 °C) stages (3, 7 and 12 days). After adding LNT, the thiobarbituric acid reactive substances (TBARS) and total volatile base nitrogen (TVB-N) of goose meatballs significantly decreased compared to the LNT-free sample during cold storage, which indicated that LNT can inhibit the fat oxidation and the release of nitrogenous substances. Meanwhile, the presence of LNT makes microstructure of the goose meatball samples become denser during the whole storage time. The headspace solid phase microextraction gas chromatography-mass spectrometry (SPME-GC-MC) results showed that the proportion of aldehydes in the 4% LNT group reached 0 during storage, suggesting that high LNT concentration inhibits the formation of oxidized products in meat products. The sensory evaluation showed that the addition of LNT improved the color, appearance, flavor, and overall acceptance of goose meatballs, and the 2% LNT group had the highest score in overall acceptance. In summary, the addition of LNT could delay lipid oxidation and improve the quality of goose meatballs during cold storage.
Collapse
Affiliation(s)
- Li Fu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Lihui Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Xiankang Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; (L.F.); (L.D.); (Y.S.); (X.F.); (C.Z.); (J.H.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315832, China
- Correspondence: ; Tel.: +86-574-8760-9573
| |
Collapse
|
33
|
Lan W, Yang X, Chen M, Xie J. Oregano Essential Oil-Pectin Edible Films on Shelf-Life Extension of Large Yellow Croaker ( Pseudosciaena crocea) Fillet during Iced Storage. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2048157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, Jiangsu, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, Jiangsu, China
| | - Xin Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, Jiangsu, China
| | - Mengling Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, Jiangsu, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, Jiangsu, China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, Jiangsu, China
| |
Collapse
|
34
|
Huang P, Wang Z, Shi Y, Zhang R, Feng X, Kan J. Deodorizing effects of rosemary extract on silver carp (Hypophthalmichthys molitrix) and determination of its deodorizing components. J Food Sci 2022; 87:636-650. [PMID: 35040134 DOI: 10.1111/1750-3841.16023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/21/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Abstract
Fishy odor in fish products severely influences both eating quality and commercial acceptability, and natural plant extracts, particularly spices, have recently become popular for the removal of fishy odor. This study aimed to explore the potential of rosemary extract for the deodorization of silver carp (Hypophthalmichthys molitrix), as well as to identify the deodorizing components in rosemary extract. Results showed that all of the spice extracts used in this study (ginger, garlic, angelica dahurica, fennel, rosemary, nutmeg, white cardamom, cinnamon, star anise, and bay leaf) significantly reduced the fishy odor value of silver carp, among which rosemary extract was most effective, decreasing the fishy odor value by about 58%. Gas chromatography-mass spectrometry analysis and sensory evaluation showed that the fishy odor value and concentrations of the fishy odor-active compounds were significantly reduced by the application of rosemary extract. However, the lower the total phenolic content of rosemary extract, the poorer the deodorizing effects against silver carp, suggesting that the deodorizing effect was primarily driven by polyphenols. Fourteen phenolic compounds were measured in rosemary extract, and three individual phenolic compounds (rosmarinic acid [RA], carnosic acid [CA], and carnosol [CS]) were chosen for deodorizing experiment. Sensory detection results and changes of contents of volatile showed that these three phenolic compounds are effective at removing the fishy odor. These results suggest that polyphenols are the main deodorizing components, and RA, CA, and CS are the main deodorizing active compounds in rosemary extract. PRACTICAL APPLICATION: The results of this study may provide a new way to determine the deodorizing components of spice extracts. Moreover, it can provide guidance for further research in investigating the deodorizing mechanism of sipce extracts.
Collapse
Affiliation(s)
- Pimiao Huang
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| | - Zhirong Wang
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| | - Yue Shi
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| | - Rui Zhang
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| | - Xiya Feng
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| | - Jianquan Kan
- College of Food Science, Southwest University, Beibei, Chongqing, People's Republic of China.,Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing, People's Republic of China.,Laboratory of Quality & Safety Risk Assessment for Agro-products on Storage and Preservation (Chongqing), Ministry of Agriculture, Chongqing, People's Republic of China
| |
Collapse
|
35
|
The influence of chitosan-carboxymethyl celloluse composite and bi-layer film and coatings on flavor quality and volatile profile of Asian sea bass during storage at refrigerator. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01104-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Phetsang H, Panpipat W, Panya A, Phonsatta N, Cheong L, Chaijan M. Chemical characteristics and volatile compounds profiles in different muscle part of the farmed hybrid catfish (
Clarias macrocephalus
×
Clarias gariepinus
). Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hatairad Phetsang
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Worawan Panpipat
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| | - Atikorn Panya
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park Phaholyothin Rd. Khlong Nueng Pathumthani 12120 Thailand
| | - Natthaporn Phonsatta
- Food Biotechnology Research Team Functional Ingredients and Food Innovation Research Group National Centre for Genetic Engineering and Biotechnology (BIOTEC) 113 Thailand Science Park Phaholyothin Rd. Khlong Nueng Pathumthani 12120 Thailand
| | - Ling‐Zhi Cheong
- Zhejiang‐Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition College of Food and Pharmaceutical Science Ningbo University Ningbo 315211 China
| | - Manat Chaijan
- Food Technology and Innovation Research Centre of Excellence School of Agricultural Technology and Food Industry Walailak University Nakhon Si Thammarat 80160 Thailand
| |
Collapse
|
37
|
Wang D, Zhou F, Lai D, Zhang Y, Hu J, Lin S. Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2021; 78:105715. [PMID: 34391163 PMCID: PMC8374498 DOI: 10.1016/j.ultsonch.2021.105715] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/01/2023]
Abstract
Shrimp surimi is widely acknowledged as a value-added shrimp product due to its delicious taste, rich flavor, and nutrition. However, the refrigerated shrimp surimi is prone to deterioration due to rapid microbial growth during storage. The present study sought to assess the effects of curcumin-mediated sono/photodynamic treatment on bacterial spoilage and shrimp surimi quality stored at 4 °C. The total viable count (TVC), microbiota composition, and quality parameters, including the total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substance (TBARs), and pH were investigated. The results showed that the spoilage bacteria in shrimp surimi rapidly increased with a surge on day 2 during refrigeration storage. The Psychrobacter and Brochothrix were identified as the Specific Spoilage Organisms (SSOs), which were also positively correlated with TVB-N and TBARs. The results further elucidated that the sono/photodynamic treatment could significantly inhibit the growth of SSOs on the surface and interior of shrimp surimi and delay shrimp surimi quality deterioration. In conclusion, the sono/photodynamic treatment as a non-thermal sterilization method could be a reliable and potential method for inactivating spoilage microorganisms and preserving shrimp surimi quality.
Collapse
Affiliation(s)
- Dehua Wang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danning Lai
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, Fujian, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen 361100, Fujian, China.
| |
Collapse
|
38
|
Zhang X, Lan W, Xie J. Combined citric acid and rosemary extract to maintain the quality of chilled Pacific white shrimp (
Litopenaeus vannamei
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
39
|
Hu L, Ying Y, Zhang H, Liu J, Chen X, Shen N, Li Y, Hu Y. Advantages of liquid nitrogen freezing in long‐term frozen preservation of hairtail (
Trichiurus haumela
): Enzyme activity, protein structure, and tissue structure. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lingping Hu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Yubin Ying
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Hongwei Zhang
- Technology Center of Qingdao Customs District Qingdao China
| | - Jialin Liu
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Xin Chen
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Ni Shen
- College of Biosystems Engineering and Food Science, National‐Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing Fuli Institute of Food Science, Zhejiang University Hangzhou China
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| | - Yujin Li
- College of Food Science and Engineering Ocean University of China Qingdao China
- Sanya Ocean Institute, Ocean University of China Sanya Hainan China
| | - Yaqin Hu
- College of Food Science and Technology Hainan Tropical Ocean University Sanya China
| |
Collapse
|
40
|
Wang Z, He Z, Zhang D, Li H. Antioxidant activity of purslane extract and its inhibitory effect on the lipid and protein oxidation of rabbit meat patties during chilled storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1953-1962. [PMID: 32918299 DOI: 10.1002/jsfa.10811] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Currently, synthetic antioxidants have been widely used to retard lipid and protein oxidation in the meat industry. However, consumers have concerns about these synthetic antioxidants because of their potential toxicological effects. Accordingly, natural antioxidants can be used as a result of their health safety compared to synthetic antioxidants. The present research aimed to assess the protective effects of purslane (Portulaca oleracea L.) extract (PE) against lipid and protein oxidation under chilled storage for 12 days. Rabbit meat patties were divided into five experimental groups: control (without extract), butylated hydroxytoluene BHT (with 0.02% BHT, w/w) and the different concentrations of PE (0.1%, 0.3% and 0.5%, w/w) added to rabbit meat patty labeled as 0.1% PE, 0.3% PE and 0.5% PE groups, respectively. 1,1-Diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, lipid oxidation and protein oxidation were determined, and kinetic models were employed. RESULTS PE showed the strongest DPPH and ABTS radical scavenging activity, and the half maximal inhibitory concentrations (i.e. IC50 ) of DPPH and ABTS radicals were 5.112 ± 0.384 and 12.607 ± 2.130 μg mL-1 , respectively. Samples that were treated with PE showed low lipid and protein oxidation. Furthermore, the results of kinetic models indicated that PE could reduce the rates of lipid and protein oxidation. CONCLUSION PE showed a preservative effect with respect exerting a protective effect against lipid and protein oxidation under chilled storage conditions. Our findings demonstrate the strong potential of PE as a natural antioxidant in meat and meat products. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zefu Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Zhifei He
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Food, Chongqing, China
| | - Dong Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Hongjun Li
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Engineering Research Center of Regional Food, Chongqing, China
| |
Collapse
|
41
|
Chitosan coating incorporated with grape seed extract and Origanum vulgare essential oil: an active packaging for turkey meat preservation. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00867-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
42
|
Novel insight into physicochemical and flavor formation in naturally fermented tilapia sausage based on microbial metabolic network. Food Res Int 2021; 141:110122. [PMID: 33641989 DOI: 10.1016/j.foodres.2021.110122] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022]
Abstract
The quality and flavor formation in fermented fish sausages are based on the complex metabolism of microbial community. In this study, the dynamic changes of physicochemical characteristics, volatile compounds, and microbial communities in the naturally fermented tilapia sausage were studied during the fermentation process. The main physical indexes (gel strength, whiteness, and hardness), dominant flavor free amino acids (glycine, alanine, and glutamic acid) and characteristic volatile flavor compounds (hexanal, heptanal, octanal, benzaldehyde, (E)-2-octenal, 4-ethylbenzaldehyde, (E)-2-heptenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 2-pentylfuran, and 2-ethyl-furan) were significantly enhanced after fermentation, and were positively correlated with Lactococcus, Pediococcus, Enterococcus, and Lactobacillus. The microbial metabolic network showed that Lactococcus, Pediococcus, and Enterococcus played a significant role in the formation of physicochemical and flavor characteristics, while the accumulation of biogenic amines might result from the metabolism of Enterococcus, Enterobacter, and Citrobacter. Isolation of lactic acid bacteria in Lactococcus and Pediococcus might be suitable to improve the fermented tilapia sausage. Microbial metabolic network has revealed the physicochemical and flavor formation of tilapia sausage and can provide guidance for future research on screening of starters.
Collapse
|
43
|
Chang L, Lin S, Zou B, Zheng X, Zhang S, Tang Y. Effect of Frying Conditions on Self-Heating Fried Spanish Mackerel Quality Attributes and Flavor Characteristics. Foods 2021; 10:foods10010098. [PMID: 33466563 PMCID: PMC7824904 DOI: 10.3390/foods10010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated the effects of different frying conditions on the quality characteristics of fried Spanish mackerel (Scaberulous niphonius) to address the food quality degradation of self-heating fish products after frying, sterilization, and reheating. Furthermore, the effect of different moisture contents (65%, 60%, 55%, and 50%) of fried Spanish mackerel on texture, color, and microstructure after sterilization and self-heating were examined. The flavor fingerprints of different frying temperatures (140 °C, 160 °C, 180 °C, and 200 °C) coupled with the optimal moisture content were identified; furthermore, volatile organic compounds (VOCs) were studied using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) with principal component analysis (PCA). The results indicated that the shear force value significantly increased, while the hardness and chewiness significantly decreased simultaneously with decreasing moisture content. Samples containing 65% moisture content showed the highest L*, a*, and W values, while their b* value was the lowest, and the most clearly visible fibrous veins with tiny cracks could be observed in them. Samples fried at 160 °C and 65% moisture content exhibited the richest VOCs, with a greasy or fried aroma. Based on the PCA, there were significant differences in the sample VOCs under different frying conditions. In summary, among all treatments, frying at 160 °C with 65% moisture content resulted in the highest food quality of fish filets. The results of this study could provide a theoretical basis for improving the food quality of self-heated fish products.
Collapse
Affiliation(s)
- Lili Chang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Songyi Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Bowen Zou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
| | - Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
| | - Simin Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; (L.C.); (S.L.); (B.Z.); (X.Z.); (S.Z.)
- National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China
- Correspondence: or ; Tel.: +86-157-5403-8132
| |
Collapse
|
44
|
Odukoya JO, Kayitesi E, Mphahlele MP, Tata CM, Njinkoue JM, Gouado I, Ikhile MI, Ndinteh DT. Effect of processing methods on the volatile components of
Ethmalosa fimbriata
using a two‐dimensional gas chromatography‐time‐of‐flight mass spectrometry (GC × GC‐TOF‐MS) technique. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Johnson Oluwaseun Odukoya
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
- Department of Chemistry The Federal University of Technology Akure Nigeria
| | - Eugénie Kayitesi
- Department of Food and Consumer Science University of Pretoria Pretoria South Africa
| | | | - Charlotte Mungho Tata
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| | - Jean Michel Njinkoue
- Laboratory of Food Sciences and Nutrition Faculty of Sciences University of Douala Douala Cameroon
| | - Inocent Gouado
- Laboratory of Food Sciences and Nutrition Faculty of Sciences University of Douala Douala Cameroon
| | | | - Derek Tantoh Ndinteh
- Department of Chemical Sciences University of Johannesburg Johannesburg South Africa
| |
Collapse
|
45
|
Damerau A, Kakko T, Tian Y, Tuomasjukka S, Sandell M, Hopia A, Yang B. Effect of supercritical CO2 plant extract and berry press cakes on stability and consumer acceptance of frozen Baltic herring (Clupea harengus membras) mince. Food Chem 2020; 332:127385. [DOI: 10.1016/j.foodchem.2020.127385] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023]
|
46
|
Effects of chitosan and sodium alginate active coatings containing ε-polysine on qualities of cultured pufferfish (Takifugu obscurus) during cold storage. Int J Biol Macromol 2020; 160:418-428. [DOI: 10.1016/j.ijbiomac.2020.05.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
|
47
|
Dou X, Wang YQ, Wu YY, Hu X, Yang SL, Li CS, Cen JW. Analysis and evaluation of nutritional components in liver of large yellow croaker ( Pseudosciaena crocea). CYTA - JOURNAL OF FOOD 2020. [DOI: 10.1080/19476337.2020.1800824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xin Dou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
- Key Lab of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Guangzhou, Guangdong Province, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yue Qi Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Yan Yan Wu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Xiao Hu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Shao Ling Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Chun Sheng Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| | - Jian Wei Cen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
48
|
Shi S, Kong B, Wang Y, Liu Q, Xia X. Comparison of the quality of beef jerky processed by traditional and modern drying methods from different districts in Inner Mongolia. Meat Sci 2020; 163:108080. [DOI: 10.1016/j.meatsci.2020.108080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
|
49
|
Xie W, Huang Y, Xiang Y, Xiong S, Manyande A, Du H. Insights into the Binding Mechanism of Polyphenols and Fish Myofibrillar Proteins Explored Using Multi-spectroscopic Methods. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02439-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Zhang X, Xie J. The differential effects of endogenous cathepsin and microorganisms on changes in the texture and flavor substances of grouper ( Epinephelus coioides) fillets. RSC Adv 2020; 10:10764-10775. [PMID: 35492946 PMCID: PMC9050448 DOI: 10.1039/d0ra01028f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Grouper is an important seafood species in China and has high economic value. However, the edible value of grouper is seriously affected by deterioration in the texture and flavor during refrigeration. The purpose of this study was to investigate the effects of endogenous cathepsin and microorganisms on texture softening and flavor changes in refrigerated grouper fillets. Iodoacetic acid and ProClin 300 were used to inhibit endogenous protease activity and microbial growth separately. Iodoacetic acid can inhibit the activity of cathepsin B, L, and calpain. Moreover, iodoacetic acid does not significantly affect the growth of microorganisms. The total amounts of bacteria and Pseudomonas spp. in the samples treated with ProClin 300 were less than 2 log CFU g-1 and 1 log CFU g-1 on the 18th day, and the activity of protease was not significantly affected. On the 6th day, the hardness of the iodoacetic acid treatment group decreased by 8%, while the ProClin 300 treatment group decreased by 28%, and changes in the free amino acids and volatile substances significantly exceeded those of the iodoacetic acid treatment group, indicating that endogenous protease was the main factor in the texture deterioration. A first-order exponential decay model indicated that cathepsin L was the most important protease for reducing the hardness of grouper fillets, and changes in the content of free amino acids and volatile substances indicated that microorganisms played a more important role in the deterioration of flavor substances compared to that played by endogenous protease.
Collapse
Affiliation(s)
- Xicai Zhang
- College of Food Science & Technology, Shanghai Ocean University Shanghai 201306 China +86 2161900391
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai 201306 China
- Jingchu University of Technology Jingmen 448000 China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University Shanghai 201306 China +86 2161900391
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai 201306 China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai 201306 China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University Shanghai 201306 China
| |
Collapse
|