1
|
Xie W, Tang C, Zhang Y, Fan W, Qin J, Xiao H, Guo S, Tang Z. Effect of stigmasterol and polyglycerol polyricinoleate concentrations on the preparation and properties of rapeseed oil-based gel emulsions. Food Chem X 2024; 23:101636. [PMID: 39113734 PMCID: PMC11304884 DOI: 10.1016/j.fochx.2024.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/29/2024] [Accepted: 07/06/2024] [Indexed: 08/10/2024] Open
Abstract
Emulsion gels mimic the rheological properties of solid and semi-solid fats, offering a viable solution to replace conventional fats in low-fat food formulations. In this study, gel emulsions stabilized with stigmasterol (ST) and polyglycerol polyricinoleate (PGPR) complexes were prepared. Initially, we examined the effect of the ST/PGPR complex on the mechanism of gel emulsion stabilization. Our findings revealed that the gel emulsion formulated with 3% PGPR and ST exhibited a robust structure, effectively stabilizing the entire system and ensuring uniform distribution, and increasing ST concentration led to greater stability of the gel emulsion system. Stability assessments demonstrated that gel emulsions containing 3% PGPR and varying ST concentrations exhibited remarkable thermal stability and effectively delayed oil oxidation. These results underscore the high stability of gel emulsions stabilized with the ST/PGPR complex, highlighting their potential as a margarine substitute.
Collapse
Affiliation(s)
- Wenjie Xie
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Caili Tang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Yu Zhang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Wei Fan
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Jingping Qin
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shiyin Guo
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Engineering Technology Research Center for Rapeseed Oil Nutrition Health and Deep Development, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
3
|
Tsupko P, Sagiri SS, Samateh M, Satapathy S, John G. Self-assembled Trehalose Amphiphiles as Molecular Gels: A Unique Formulation to Wax-free Cosmetics. J SURFACTANTS DETERG 2023; 26:369-385. [PMID: 37252108 PMCID: PMC10211368 DOI: 10.1002/jsde.12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 02/12/2023]
Abstract
Trehalose has been used as an emollient and antioxidant in cosmetics. However, we aimed to explore trehalose amphiphiles as oil structuring agents for the preparation of gel-based lip balms as part of wax-free cosmetics. This article describes the synthesis of trehalose fatty acyl amphiphiles and their corresponding oleogel-based lip balms. Trehalose dialkanoates were synthesized by esterifying the two primary hydroxyls of trehalose with fatty acids (C4-C12) using a facile, regioselective lipase catalysis. The gelation potential of as-synthesized amphiphiles was evaluated in organic solvents and vegetable oils. Stable oleogels were subjected to X-ray diffraction (XRD), thermal (DSC), and rheological studies and further used for the preparation of lip balms. Trehalose dioctanoate (Tr8), trehalose didecanoate (Tr10) were found to be super gelators as their minimum gelation concentration is ≤ 0.2 wt%. XRD studies revealed their hexagonal columnar molecular packing while forming the fibrillar networks. Rheometry proved that the fatty acyl chain length of amphiphiles can influence the strength and flow properties of oleogels. Further rheometry (at 25 °C, 37 °C, and 50 °C) and DSC studies have validated that Tr8- and Tr10-based oleogels are stable for commercial applications. Tr8- and Tr10-based olive oil oleogels were used for the preparation of lip balms. The preliminary results suggested that the cumulative effect of trehalose's emolliency and vegetable oil gelling nature can be achieved with trehalose amphiphiles, specifically, Tr8 and Tr10. This study has also demonstrated that Tr8- and Tr10-based lip balms can be used as an alternative to beeswax and plant wax lip balms, indicating their huge potential to succeed as a new paradigm to formulate wax-free cosmetics.
Collapse
Affiliation(s)
- Polina Tsupko
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Sai Sateesh Sagiri
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - Malick Samateh
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| | - Sitakanta Satapathy
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
| | - George John
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031
- Doctoral Program in Chemistry, The City University of New York, Graduate Center, New York, NY 10016
| |
Collapse
|
4
|
Penagos IA, Murillo Moreno JS, Dewettinck K, Van Bockstaele F. Carnauba Wax and Beeswax as Structuring Agents for Water-in-Oleogel Emulsions without Added Emulsifiers. Foods 2023; 12:foods12091850. [PMID: 37174387 PMCID: PMC10178762 DOI: 10.3390/foods12091850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
This research aims to explore the potential of waxes as ingredients in the formulation of food-grade water-in-oleogel emulsions without added emulsifiers. The effects of the wax type, wax concentration and water concentration were tested on systems containing exclusively water, sunflower oil, and wax. Beeswax and carnauba wax were used in the formulation of water-in-oleogel emulsions with 20%, 30% and 40% w/w of water. For the continuous phase, three different levels of wax were used, namely 50%, 100%, and 150% of the critical gelling concentration. More specifically, carnauba wax emulsions were prepared at 2.5%, 5.0% and 7.5% of wax, while concentrations of 0.75%, 1.5% and 2.25% of wax were utilized for the beeswax experiments. Samples were assessed over time regarding stability, rheology and microstructure (polarized light microscopy, cryo-scanning electron microscopy and confocal scanning laser microscopy). Our findings suggest that, if present in sufficient concentration, carnauba wax and beeswax can stabilize emulsions in the absence of additional added emulsifiers. The resulting systems were inherently different based on the wax used, as crystal morphology and droplet configurations are determined by wax type. The yield strain was dictated by the nature of the wax, while the complex modulus was mostly influenced by the wax concentration. To test the scaling-up potential, systems were crystallized in a pilot-scale scraped surface heat exchanger, resulting in notably smaller crystal sizes, reduced rigidity and a storage stability of over one year. These findings represent a starting point for the formulation of scalable water-in-oleogel emulsions without added emulsifiers.
Collapse
Affiliation(s)
- Ivana A Penagos
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Juan Sebastian Murillo Moreno
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Koen Dewettinck
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Vandemoortele Centre 'Lipid Science and Technology', Food Structure and Function Research Group (FSF), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Ma Q, Wang C, Lu Y, Liu Y, Lv X, Zhou S, Gong J. Water Droplets Tailored as Wax Crystal Carriers to Mitigate Wax Deposition of Emulsion. ACS OMEGA 2023; 8:7546-7554. [PMID: 36872979 PMCID: PMC9979368 DOI: 10.1021/acsomega.2c06809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
This study explores how the micro-distribution change of wax crystals from the continuous oil phase to the oil-water interface mitigates the macro wax deposition of an emulsion. Two types of interfacial actions between wax crystals and water droplets, interfacial adsorption and interfacial crystallization, which were induced by two different emulsifiers, sorbitan monooleate (Span 80) and sorbitan monostearate (Span 60), respectively, were detected by differential scanning calorimetry and microscopy observation. The wax interfacial crystallization promoted by Span 60 resulted in the wax being nucleated directly at the oil-water interface prior to the continuous oil phase, conferring the nascent wax crystals and water droplets to be combined as coupled particles. The utilization of the wax interfacial crystallization behavior to hinder wax deposition of an emulsion was further explored. When the coupled wax crystal-water droplet particles were formed during the wax deposition process, water droplets acted as wax crystal carriers, entraining these nascent wax crystals to disperse in the emulsion, which significantly reduced the amount of wax crystals available to form the network of the deposit. In addition, this change also led to the basic structural units in the wax deposit evolving from wax crystal clusters/networks to water droplet flocs. The study elucidates that through adjusting the dispersion of wax crystals from the oil phase to the oil-water interface, water droplets could act as a functional component to tailor the properties of the emulsion or resolve related flow and deposition problems in pipeline transportation.
Collapse
Affiliation(s)
- Qianli Ma
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chuanshuo Wang
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yingda Lu
- Hildebrand
Department of Petroleum & Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yang Liu
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaofang Lv
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
- Institute
of Petroleum Engineering Technology, Sinopec
Northwest Oil Field Company, Urumqi, Xinjiang 830011, China
| | - Shidong Zhou
- Jiangsu
Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Gong
- National
Engineering Laboratory for Pipeline Safety, MOE Key Laboratory of
Petroleum Engineering, and Beijing Key Laboratory of Urban Oil and
Gas Distribution Technology, China University
of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
6
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
7
|
Puşcaş A, Mureşan V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022; 8:749. [PMID: 36421571 PMCID: PMC9689311 DOI: 10.3390/gels8110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Shellac wax-based oleogel emulsions were studied with a three level two factorial design in order to find an optimal formulation for a spread formulation. Rheological, textural, colorimetry, and stability analysis were conducted to assess the performance of oleogel emulsions. FTIR spectra were also compared. The similarities between the samples were studied using cluster analysis. Analysis of variance (ANOVA) demonstrates that (i) the texture is influenced by the wax concentration, (ii) the rheology and stability by both the considered numeric factors (wax and water concentration) and their interaction, and (iii) the color by both factors. The emulsions containing 7% (m/m) shellac oleogels behaved like the strongest systems, (G′ & GLVR > 30,000 Pa) and exhibited the highest value of the G′-G″ cross-over. The lowest oil binding capacity (OBC) was 99.88% for the sample with 3% (m/m) shellac and 20% (m/m) water. The whiteness index (Windex) varied between 58.12 and 78.50. The optimization process indicated that a formulation based on 4.29% (m/m) shellac wax and 24.13% (m/m) water was suitable as a low-fat spread.
Collapse
Affiliation(s)
- Andreea Puşcaş
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| | - Vlad Mureşan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Habibi A, Kasapis S, Truong T. Effect of hydrogel particle size embedded into oleogels on the physico-functional properties of hydrogel-in-oleogel (bigels). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions. Food Chem 2022; 372:131305. [PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022]
Abstract
High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
Collapse
Affiliation(s)
- Yingwei Liu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43300 Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou 510632, China
| |
Collapse
|
10
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
11
|
Pinto TC, Martins AJ, Pastrana L, Pereira MC, Cerqueira MA. Oleogel-Based Systems for the Delivery of Bioactive Compounds in Foods. Gels 2021; 7:gels7030086. [PMID: 34287270 PMCID: PMC8293095 DOI: 10.3390/gels7030086] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 01/29/2023] Open
Abstract
Oleogels are semi-solid materials containing a large fraction of liquid oil entrapped in a network of structuring molecules. In the food industry, these formulations can be used to mimic fats and to deliver bioactive compounds. In the last decade, there has been increasing interest in these structures, not only from a scientific point of view, i.e., studying new molecules, methodologies for gelification, and new structures, but also from a technological point of view, with researchers and companies exploring these structures as a way to overcome certain challenges and/or create new and innovative products. One of the exciting applications of oleogels is the delivery of functional molecules, where the incorporation of oil-soluble functional compounds can be explored not only at the macroscale but also at micro- and nanoscales, resulting in different release behaviors and also different applications. This review presents and discusses the most recent works on the development, production, characterization, and applications of oleogels and other oleogel-based systems to deliver functional molecules in foods.
Collapse
Affiliation(s)
- Tiago C. Pinto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Artur J. Martins
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Lorenzo Pastrana
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
| | - Maria C. Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; (T.C.P.); (M.C.P.)
| | - Miguel A. Cerqueira
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (A.J.M.); (L.P.)
- Correspondence:
| |
Collapse
|
12
|
García-González DO, Yánez-Soto B, Dibildox-Alvarado E, Ornelas-Paz JDJ, Pérez-Martínez JD. The effect of interfacial interactions on the rheology of water in oil emulsions oleogelled by candelilla wax and saturated triacylglycerols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Silva TJ, Barrera-Arellano D, Ribeiro APB. Oleogel-based emulsions: Concepts, structuring agents, and applications in food. J Food Sci 2021; 86:2785-2801. [PMID: 34160057 DOI: 10.1111/1750-3841.15788] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/23/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
This review discusses the application of oleogel technology in emulsified systems. In these systems of mimetic fats, water-in-oil or oil-in-water emulsions can be obtained, but, here, we cover emulsions with an oil continuous phase in detail. Depending on the percentage of water added to the oleogels, systems with different textures and rheological properties can be developed. These properties are affected by the characteristics and concentration of the added components and emulsion preparation methods. In addition, some gelators exhibit interfacial properties, resulting in more stable emulsions than those of conventional emulsions. Oleogel-based emulsion are differentiated by continuous and dispersed phases and the structuring/emulsification components. Crucially, these emulsions could be applied by the food industry for preparing, for example, meat products and margarines, as well as by the cosmetics industry. We present the different processes of emulsion elaboration, the main gelators used, the influence of the water content on the structuring of water-in-oleogel emulsions, and the structuring mechanisms (Pickering, network, and combined Pickering and network stabilization). Finally, we highlight the applications of these systems as alternatives for reducing processed food lipid content and saturated fat levels.
Collapse
Affiliation(s)
- Thais J Silva
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Daniel Barrera-Arellano
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Paula B Ribeiro
- Laboratory of Oils and Fats, Department of Food Technology, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Wijarnprecha K, de Vries A, Sonwai S, Rousseau D. Water-in-Oleogel Emulsions—From Structure Design to Functionality. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2020.566445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of water-in-oleogel (W/Og) emulsions is highlighted, with focus placed on the key properties dictating the structuring ability of both the continuous oleogelled and dispersed phases present. The gelling ability of oleogelators is distinguished by the formation of crystalline structures, polymeric strands, or tubules. Once a dispersed aqueous phase is introduced, droplet stabilization may occur via oleogelator adsorption onto the surface of the dispersed droplets, the formation of a continuous gel network, or a combination of both. Surface-active species (added or endogenous) are also required for effective W/Og aqueous phase dispersion and stabilization. Processing conditions, namely temperature-time-shear regimes, are also discussed given their important role on dispersed droplet and oleogel network formation. The effects of many factors on W/Og emulsion formation, rheology, and stability remain virtually unknown, particularly the role of dispersed droplet size, gelation, and clustering as well as the applicability of the active filler concept to foods. This review explores some of these factors and briefly mentions possible applications of W/Og emulsions.
Collapse
|