1
|
Criollo-Feijoo J, Salas-Gomez V, Cornejo F, Auras R, Salazar R. Cassava bagasse starch and oregano essential oil as a potential active food packaging material: A physicochemical, thermal, mechanical, antioxidant, and antimicrobial study. Heliyon 2024; 10:e36150. [PMID: 39253124 PMCID: PMC11382050 DOI: 10.1016/j.heliyon.2024.e36150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/11/2024] Open
Abstract
This research evaluates the use of cassava bagasse starch and oregano essential oil (OEO) in an active film. For comparison, films of cassava starch (CS) and cassava bagasse starch (BS) were prepared with OEO at 1, 2, and 3 %. Physical, thermal, mechanical, antioxidant, and antimicrobial properties were determined. BS films presented higher thickness, WVP, ΔE, modulus of elasticity, and maximum stress, but lower strain at break compared to CS films. Adding OEO into the films increased their thickness, moisture, solubility, WVP and strain at break. However, maximum stress, modulus of elasticity, and T dmax decreased. The CS films added with 3 % of OEO showed higher WVP (6.32 × 10-14 kg m/m2.s.Pa), intermediate solubility of 39 % and low maximum stress (0.19 MPa) while the BS film with 3 % of OEO presented 5.73 × 10-14 kg m/m2.s.Pa, 30 % and 0.39 MPa, respectively. The increase from 1 % to 3 % of OEO increased the total phenolic compound content and antioxidant activity of the films by 1.3-fold and 3.7-fold, respectively. The incorporation of 3 % OEO in the films inhibited the growth of S. aureus and E. coli. Therefore, BS and OEO films offer a promising solution as biodegradable active food packaging, providing a more sustainable alternative to traditional non-biodegradable plastic packaging.
Collapse
Affiliation(s)
- Juliana Criollo-Feijoo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Verónica Salas-Gomez
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Fabiola Cornejo
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824-1223, USA
| | - Rómulo Salazar
- Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador
| |
Collapse
|
2
|
Khan S, Abdo AAA, Shu Y, Zhang Z, Liang T. The Extraction and Impact of Essential Oils on Bioactive Films and Food Preservation, with Emphasis on Antioxidant and Antibacterial Activities-A Review. Foods 2023; 12:4169. [PMID: 38002226 PMCID: PMC10670266 DOI: 10.3390/foods12224169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Essential oils, consisting of volatile compounds, are derived from various plant parts and possess antibacterial and antioxidant properties. Certain essential oils are utilized for medicinal purposes and can serve as natural preservatives in food products, replacing synthetic ones. This review describes how essential oils can promote the performance of bioactive films and preserve food through their antioxidant and antibacterial properties. Further, this article emphasizes the antibacterial efficacy of essential oil composite films for food preservation and analyzes their manufacturing processes. These films could be an attractive delivery strategy for improving phenolic stability in foods and the shelf-life of consumable food items. Moreover, this article presents an overview of current knowledge of the extraction of essential oils, their effects on bioactive films and food preservation, as well as the benefits and drawbacks of using them to preserve food products.
Collapse
Affiliation(s)
- Sohail Khan
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Abdullah A. A. Abdo
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Department of Food Science and Technology, Faculty of Agriculture and Food Science, Ibb University, Ibb 70270, Yemen
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
| | - Tieqiang Liang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding 071000, China; (S.K.); (A.A.A.A.); (Y.S.)
- Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan 545000, China
| |
Collapse
|
3
|
Santos C, Ramos A, Luís Â, Amaral ME. Production and Characterization of k-Carrageenan Films Incorporating Cymbopogon winterianus Essential Oil as New Food Packaging Materials. Foods 2023; 12:foods12112169. [PMID: 37297414 DOI: 10.3390/foods12112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The global production of synthetic plastics from petroleum-based raw ingredients exceeds 150 million metric tons. The environment is threatened by tons of plastic waste, thus endangering wildlife and the public's health. These consequences increased the interest in biodegradable polymers as potential substitutes for traditional packaging materials. This study aimed to produce and characterize k-carrageenan films incorporating Cymbopogon winterianus essential oil, in which citronellal was determined to be the major compound (41.12%). This essential oil presented remarkable antioxidant activity, as measured through DPPH (IC50 = 0.06 ± 0.01%, v/v; AAI = 85.60 ± 13.42) and β-carotene bleaching (IC50 = 3.16 ± 0.48%, v/v) methods. The essential oil also showed antibacterial properties against Listeria monocytogenes LMG 16779 (diameter of inhibition zone = 31.67 ± 5.16 mm and MIC = 8 µL/mL), which were also observed when incorporated in the k-carrageenan films. Moreover, scanning electron microscopy showed the reduction of the biofilms of this bacterium, and even its inactivation, due to visible destruction and loss of integrity when the biofilms were created directly on the developed k-carrageenan films. This study also revealed the quorum sensing inhibition potential of Cymbopogon winterianus essential oil (diameter of violacein production inhibition = 10.93 ± 0.81 mm), where it could impede intercellular communication and, hence, lower violacein synthesis. The produced k-carrageenan films were transparent (>90%) and slightly hydrophobic (water contact angle > 90°). This work demonstrated the viability of using Cymbopogon winterianus essential oil to produce k-carrageenan bioactive films as new food packaging materials. Future work should focus on the scale-up production of these films.
Collapse
Affiliation(s)
- Catarina Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana Ramos
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Maria E Amaral
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
4
|
Cui C, Gao L, Dai L, Ji N, Qin Y, Shi R, Qiao Y, Xiong L, Sun Q. Hydrophobic Biopolymer-Based Films: Strategies, Properties, and Food Applications. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-023-09342-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Pedro S, Pereira L, Domingues F, Ramos A, Luís Â. Optimization of Whey Protein-Based Films Incorporating Foeniculum vulgare Mill. Essential Oil. J Funct Biomater 2023; 14:jfb14030121. [PMID: 36976045 PMCID: PMC10058524 DOI: 10.3390/jfb14030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Petroleum-based plastics used in food packaging are not biodegradable. They accumulate in the environment in large amounts, causing a decrease in soil fertility, jeopardizing marine habitats, and causing serious problems to human health. Whey protein has been studied for applications in food packaging, either because of its abundant availability or because it confers transparency, flexibility, and good barrier properties to packaging materials. Taking advantage of whey protein to produce new food packaging materials is a clear example of the so-called circular economy. The present work focuses on optimizing the formulation of whey protein concentrate-based films to enhance their general mechanical properties applying the Box-Behnken experimental design. Foeniculum vulgare Mill. (fennel) essential oil (EO) was incorporated into the optimized films, which were then further characterized. The incorporation of fennel EO in the films leads to a significant increase (p < 0.05) in peak elongation (from 14.03 to 31.61%) and tensile index (from 0.40 to 0.50 N.m/g). The optimized whey protein films were yellowish and very transparent (>90%). The results of the bioactive activities of the optimized films showed their ability to be applied as active materials for food packaging to improve the shelf-life of food products and also to prevent foodborne diseases associated with the growth of pathogenic microorganisms.
Collapse
Affiliation(s)
- Salomé Pedro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luísa Pereira
- CMA-UBI, Centre of Mathematics and Applications, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fernanda Domingues
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Chemistry Department, Sciences Faculty, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana Ramos
- Chemistry Department, Sciences Faculty, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
- FibEnTech-UBI, Fiber Materials and Environmental Technologies Research Unit, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ângelo Luís
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Chemistry Department, Sciences Faculty, University of Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
6
|
The influence of cupuaçu extract in the production of biofilms based on babassu coconut mesocarp. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04487-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Shi J, Wu R, Li Y, Ma L, Liu S, Liu R, Lu P. Antimicrobial food packaging composite films prepared from hemicellulose/polyvinyl alcohol/potassium cinnamate blends. Int J Biol Macromol 2022; 222:395-402. [PMID: 36176221 DOI: 10.1016/j.ijbiomac.2022.09.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
Hemicellulose and its derivatives have attracted extensive attention as packaging materials and various methods have been utilized to improve its film formation properties. To make use of the byproduct in dissolving pulp production, hemicellulose collected from waste water was modified by carboxymethylation and blended with polyvinyl alcohol (PVA) to prepare composite film by solution casting method. Potassium cinnamate (PC) was further incorporated to endow the film with antibacterial activity. The properties of the composite films were characterized. Due to the good compatibility and intermolecular interactions, the composite film exhibited moderate oxygen barrier property (3.64-12.21 cm3 μm m-2 d-1 KPa-1). The flexibility of the film was improved compared with pure PVA film although tensile strength was decreased. The film had good UV barrier properties and good antibacterial properties due to the introduction of PC. GAB model could be used to predict moisture sorption of the composite films. Moreover, the obtained film showed good performance in cherry tomato preservation. This work provided a prospective route for utilization of hemicellulose recovered from waste water for high value-added products.
Collapse
Affiliation(s)
- Jiahui Shi
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rina Wu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yanan Li
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Liyan Ma
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuai Liu
- Tianjin Key Laboratory of Pulp & Paper, School of light industry science and engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
8
|
Bilohan M, Ramos A, Domingues F, Luís Â. Production and characterization of pullulan/paper/zein laminates as active food packaging materials. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariya Bilohan
- Centro de Investigação em Ciências da Saúde (CICS‐UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200‐506 Covilhã Portugal
| | - Ana Ramos
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201‐001 Covilhã Portugal
- Materiais Fibrosos e Tecnologias Ambientais (FibEnTech), Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201‐001 Covilhã Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS‐UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200‐506 Covilhã Portugal
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201‐001 Covilhã Portugal
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS‐UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200‐506 Covilhã Portugal
- Laboratório de Fármaco‐Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200‐284 Covilhã Portugal
| |
Collapse
|
9
|
Jan R, Gani A, Masarat Dar M, Bhat NA. Bioactive characterization of ultrasonicated ginger (Zingiber officinale) and licorice (Glycyrrhiza Glabra) freeze dried extracts. ULTRASONICS SONOCHEMISTRY 2022; 88:106048. [PMID: 35724486 PMCID: PMC9218236 DOI: 10.1016/j.ultsonch.2022.106048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Ginger (Zingiber officinale) and Licorice (Glycyrrhiza glabra L.) are one of the most popular spices having a wide range of bioactive compounds that have varied biological and pharmacological properties. The study was aimed to extract polyphenols from Himalayan medicinal herbs ginger and licorice in different solvents using ultra-sonication technique. The extraction efficiency (EE) was determined, and the extracts were characterized for physical properties (particle size, colour values), total phenolics, flavonoids, antioxidant properties, and structural and morphological features. Ultra-sonicated ginger in aqueous phase had the highest EE of polyphenols (15.27%) as compared to other solvents. Similar trend was observed in licorice with EE of 30.52 % in aqueous phase followed by ethanol: water (50: 50), and methanol: water (50:50) with 28.52% and 26.39%, respectively. The preliminary screening showed the presence of tannins, phenolics, flavonoids, saponins and carbohydrates, steroids and alkaloids in all the extracts. The phenolic and flavonoid content of dried ginger was found higher in ethanolic extracts compared to fresh ones as revealed by HPLC. Similarly, for licorice, the ethanolic fractions had the highest polyphenolic content. The representative samples of ginger (ethanol: water 75:25 and ethylacetate: water 75:25) and licorice (ethanol: water 70:30 and methanol: water 50:50) were studied for FESEM and particle size. The results showed the agglomerated extract micro-particles with a diameter of 0.5-10 µm and increased particle size (ginger: 547 and 766 nm), and (licorice: 450 and 566 nm). The findings could be beneficial for the advancement of ginger and licorice processing, for the comprehension of these herbs as a source of natural antioxidants in different food formulations.
Collapse
Affiliation(s)
- Romee Jan
- Laboratory of Functional Foods and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Adil Gani
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, United States.
| | - Mohd Masarat Dar
- Laboratory of Functional Foods and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Naseer Ahmad Bhat
- Laboratory of Functional Foods and Nutraceuticals, Department of Food Science and Technology, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
10
|
Moeini A, Pedram P, Fattahi E, Cerruti P, Santagata G. Edible Polymers and Secondary Bioactive Compounds for Food Packaging Applications: Antimicrobial, Mechanical, and Gas Barrier Properties. Polymers (Basel) 2022; 14:2395. [PMID: 35745971 PMCID: PMC9229000 DOI: 10.3390/polym14122395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Edible polymers such as polysaccharides, proteins, and lipids are biodegradable and biocompatible materials applied as a thin layer to the surface of food or inside the package. They enhance food quality by prolonging its shelf-life and avoiding the deterioration phenomena caused by oxidation, humidity, and microbial activity. In order to improve the biopolymer performance, antimicrobial agents and plasticizers are also included in the formulation of the main compounds utilized for edible coating packages. Secondary natural compounds (SC) are molecules not essential for growth produced by some plants, fungi, and microorganisms. SC derived from plants and fungi have attracted much attention in the food packaging industry because of their natural antimicrobial and antioxidant activities and their effect on the biofilm's mechanical properties. The antimicrobial and antioxidant activities inhibit pathogenic microorganism growth and protect food from oxidation. Furthermore, based on the biopolymer and SC used in the formulation, their specific mass ratio, the peculiar physical interaction occurring between their functional groups, and the experimental procedure adopted for edible coating preparation, the final properties as mechanical resistance and gas barrier properties can be opportunely modulated. This review summarizes the investigations on the antimicrobial, mechanical, and barrier properties of the secondary natural compounds employed in edible biopolymer-based systems used for food packaging materials.
Collapse
Affiliation(s)
- Arash Moeini
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Parisa Pedram
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Ehsan Fattahi
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany; (P.P.); (E.F.)
| | - Pierfrancesco Cerruti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; (P.C.); (G.S.)
| |
Collapse
|
11
|
Mojoodi M, Nourani M. Mung bean protein films incorporated with cumin essential oil: development and characterization. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Biodegradable films based on mung bean protein (1, 3 and 5%) incorporated with cumin essential oil (EO) (0, 0.25 and 0.5 ml/g protein) were developed. Adding cumin oil and increasing the protein content enhanced the thickness, tensile strength and yellowness. Films incorporated with EO exhibited less water vapor permeability and water solubility, as compared to the control films. A higher antioxidant activity was also obtained by increasing the EO and protein ratios. Films with higher levels of protein displayed lower thermal stability with a lower degradation temperature, as suggested by thermo-gravimetric analyses. In addition, the incorporation of EO reduced thermal stability, as confirmed by the higher weight loss and lower degradation temperature. Furthermore, mung bean protein films containing 0.5 ml cumin oil/g protein had suitable physical characteristics, antioxidant activities, water barrier properties and thermal stability; thus, they can be used as appropriate biodegradable packaging materials for food preservation.
Collapse
Affiliation(s)
- Majid Mojoodi
- Department of Food Science and Technology , Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan , Iran
| | - Moloud Nourani
- Department of Food Science and Technology , Isfahan (Khorasgan) Branch, Islamic Azad University , Isfahan , Iran
| |
Collapse
|
12
|
Qian S, Yu Y, Ma J, Diao E, Ye S, Gao J, Liu Y, Hu W. Evaluation of a novel phosphorylated corn straw xylan for enhancement of thermal stability, crystallinity and functional activity. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shiquan Qian
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Yuting Yu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jing Ma
- School of Life Sciences Anhui Agricultural University Hefei 230036 China
| | - Enjie Diao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Shijia Ye
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Jiamin Gao
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Ying Liu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| | - Weicheng Hu
- Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze Lake Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection Jiangsu Key Laboratory for Food Safety and Nutrition Function Evaluation Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
13
|
Chaudhary V, Thakur N, Kajla P, Thakur S, Punia S. Application of Encapsulation Technology in Edible Films: Carrier of Bioactive Compounds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.734921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nutraceuticals, functional foods, immunity boosters, microcapsules, nanoemulsions, edible packaging, and safe food are the new progressive terms, adopted to describe the food industry. Also, the rising awareness among the consumers regarding these has created an opportunity for the food manufacturers and scientists worldwide to use food as a delivery vehicle. Packaging performs a very imminent role in the food supply chain as well as it is a consequential part of the process of food manufacturing. Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc. and other consumable constituents extracted from various non-conventional sources like microorganisms are used alone or imbibed together. These edible packaging are indispensable and are meant to be consumed with the food. This shift in paradigm from traditional food packaging to edible, environment friendly, delivery vehicles for bioactive compounds have opened new avenues for the packaging industry. Bioactive compounds imbibed in food systems are gradually degenerated, or may change their properties due to internal or external factors like oxidation reactions, or they may react with each other thus reducing their bioavailability and ultimately may result in unacceptable color or flavor. A combination of novel edible food-packaging material and innovative technologies can serve as an excellent medium to control the bioavailability of these compounds in food matrices. One promising technology for overcoming the aforesaid problems is encapsulation. It can be used as a method for entrapment of desirable flavors, probiotics, or other additives in order to apprehend the impediments of the conventional edible packaging. This review explains the concept of encapsulation by exploring various encapsulating materials and their potential role in augmenting the performance of edible coatings/films. The techniques, characteristics, applications, scope, and thrust areas for research in encapsulation are discussed in detail with focus on development of sustainable edible packaging.
Collapse
|
14
|
Luís Â, Domingues F. Screening of the Potential Bioactivities of Pennyroyal ( Mentha pulegium L.) Essential Oil. Antibiotics (Basel) 2021; 10:antibiotics10101266. [PMID: 34680848 PMCID: PMC8532685 DOI: 10.3390/antibiotics10101266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Increasing resistance of pathogens towards conventional antibiotics presents a major threat to public health because it reduces the effectiveness of antibiotic treatment. Mentha pulegium L., also known as pennyroyal, is an aromatic herb that belongs to the family Lamiaceae. Its essential oil has been traditionally used in medicine, aromatherapy, and cosmetics. The purpose of this work was to study the chemical composition of a pennyroyal essential oil and to evaluate their bioactivities, specifically, antioxidant, antimicrobial, anti-quorum sensing, and anti-inflammatory. A special focus was given to the antibacterial activity of the essential oil against Acinetobacter baumannii. The chemical composition of the essential oil was studied by GC-MS/GC-FID. The DPPH free radical scavenging assay and the β-carotene/linoleic acid system were used to evaluate the antioxidant properties. The antimicrobial and anti-quorum sensing activities were evaluated by disk diffusion assays and complemented with optical microscopy observations. The results showed that pulegone was the major compound (88.64%) of the pennyroyal essential oil. Regarding the antimicrobial activity, the action against Acinetobacter baumannii stands out, which, together with the capacity of the essential oil to inhibit the quorum sensing mechanisms, may suggest the use of the pennyroyal essential oil to further develop surface disinfectants for hospitals.
Collapse
Affiliation(s)
- Ângelo Luís
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Pharmaco-Toxicology Laboratory, UBIMedical, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence:
| | - Fernanda Domingues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Chemistry Department, Sciences Faculty, University da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
15
|
Zhang B, Liu Y, Wang H, Liu W, Cheong KL, Teng B. Characterization of seaweed polysaccharide-based bilayer films containing essential oils with antibacterial activity. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Bahrami A, Fattahi R. Biodegradable carboxymethyl cellulose-polyvinyl alcohol composite incorporated with Glycyrrhiza Glabra L. essential oil: Physicochemical and antibacterial features. Food Sci Nutr 2021; 9:4974-4985. [PMID: 34532009 PMCID: PMC8441511 DOI: 10.1002/fsn3.2449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/04/2021] [Accepted: 06/19/2021] [Indexed: 01/26/2023] Open
Abstract
Glycyrrhiza glabra L. root essential oil (GGEO) has well-known antimicrobial and therapeutic features. In this study, a new antimicrobial carboxymethyl cellulose-polyvinyl alcohol (CMC-PVA) binary film was developed using GGEO as an active compound. The effects of various concentrations of GGEO (0.25%, 0.50%, and 0.75%) were scrutinized on the physicochemical and antibacterial properties of composites. It was discovered that GGEO significantly reduced the composite ultimate tensile strength from 17.01 to 3.86 MPa. Further, by increasing the concentration of GGEO to 0.75%, the water vapor permeability and moisture content increased to 13.61 × 10-9 g/m s-1 Pa-1 and 41.06%, respectively. The results indicated that the active films possessed good inhibitory effects against the gram-positive bacteria (L. monocytogenes and Staphylococcus aureus) and were less powerful against gram-negative bacteria (Escherichia coli and S. typhimurium). Finally, the results highlighted that GGEO can act as an excellent antimicrobial agent in combination with CMC-PVA composite.
Collapse
Affiliation(s)
- Arash Bahrami
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Reza Fattahi
- Department of Food Science and TechnologyFaculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
17
|
Vasconcelos L, de Souza M, de Oliveira J, Silva Filho E, Silva A, Mazzetto SE, Pereira ES, Oliveira RL, Bezerra L. Elaboration and Characterization of Bioactive Films Obtained from the Incorporation of Cashew Nut Shell Liquid into a Matrix of Sodium Alginate. Antioxidants (Basel) 2021; 10:1378. [PMID: 34573010 PMCID: PMC8467002 DOI: 10.3390/antiox10091378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to obtain and characterize sodium alginate-based biopolymer films with the addition of cashew nut shell liquid (CNSL). The study employed a completely randomized design, including 0%, 0.5%, 1%, and 1.5% inclusion of CNSL. Uniform formation of the films was observed, and the addition of CNSL provided better thermal resistance than did the treatment without inclusion, while the addition of CNSL reduced the homogeneity of the microstructure, especially for the 1.5% inclusion level. The permeability of the film increased as the level of CNSL increased, especially in response to the concentrations of 1% and 1.5%, and no significant difference in permeability was observed between these treatments. The tensile strength decreased proportionally as a function of the addition of CNSL, as its inclusion increased the elasticity and elongation of the films. In addition, the films with CNSL demonstrated strong antioxidant activity and discrete antimicrobial activity, and ecotoxicity analysis showed that the levels of CNSL tested and the films produced were nontoxic. Thus, these films are promising and self-sustainable alternatives for the agrifood industry.
Collapse
Affiliation(s)
- Larruama Vasconcelos
- Department of Animal Science, Animal Health and Science Graduate, Federal University of Campina Grande, Avenida Universitária, s/n-Jatobá, Patos 58708110, Brazil; (J.d.O.); (A.S.)
| | - Marthyna de Souza
- Department of Animal Science, Animal Health and Science Graduate, Federal University of Campina Grande, Avenida Universitária, s/n-Jatobá, Patos 58708110, Brazil; (J.d.O.); (A.S.)
| | - Juliana de Oliveira
- Department of Animal Science, Animal Health and Science Graduate, Federal University of Campina Grande, Avenida Universitária, s/n-Jatobá, Patos 58708110, Brazil; (J.d.O.); (A.S.)
| | - Edson Silva Filho
- Department of Animal Science, Federal University of Piaui, Ininga, s/n, Teresina 64049550, Brazil;
| | - André Silva
- Department of Animal Science, Animal Health and Science Graduate, Federal University of Campina Grande, Avenida Universitária, s/n-Jatobá, Patos 58708110, Brazil; (J.d.O.); (A.S.)
| | - Selma Elaine Mazzetto
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Contorno Street, Fortaleza 60451970, Brazil;
| | - Elzânia Sales Pereira
- Department of Animal Science, Federal University of Ceará, Av. Mister Hull, Fortaleza 60356000, Brazil;
| | - Ronaldo Lopes Oliveira
- Department of Animal Science, Federal University of Bahia, Av. Adhemar de Barros, 500, Ondina, Salvador 40170110, Brazil;
| | - Leilson Bezerra
- Department of Animal Science, Animal Health and Science Graduate, Federal University of Campina Grande, Avenida Universitária, s/n-Jatobá, Patos 58708110, Brazil; (J.d.O.); (A.S.)
| |
Collapse
|
18
|
Singh TP, Agrawal RK, Mendiratta S, Chauhan G. Preparation and characterization of licorice root extract infused bio-composite film and their application on storage stability of chhana balls-a Sandesh like product. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Molecular modification, structural characterization, and biological activity of xylans. Carbohydr Polym 2021; 269:118248. [PMID: 34294285 DOI: 10.1016/j.carbpol.2021.118248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/17/2022]
Abstract
The differences in the source and structure of xylans make them have various biological activities. However, due to their inherent structural limitations, the various biological activities of xylans are far lower than those of commercial drugs. Currently, several types of molecular modification methods have been developed to address these limitations, and many derivatives with specific biological activity have been obtained. Further research on structural characteristics, structure-activity relationship and mechanism of action is of great significance for the development of xylan derivatives. Therefore, the major molecular modification methods of xylans are introduced in this paper, and the primary structure and conformation characteristics of xylans and their derivatives are summarized. In addition, the biological activity and structure-activity relationship of the modified xylans are also discussed.
Collapse
|
20
|
Salgado PR, Di Giorgio L, Musso YS, Mauri AN. Recent Developments in Smart Food Packaging Focused on Biobased and Biodegradable Polymers. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.630393] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Food packaging has a crucial function in the modern food industry. New food packaging technologies seek to meet consumers and industrial's demands. Changes related to food production, sale practices and consumers' lifestyles, along with environmental awareness and the advance in new areas of knowledge (such as nanotechnology or biotechnology), act as driving forces to develop smart packages that can extend food shelf-life, keeping and supervising their innocuousness and quality and also taking care of the environment. This review describes the main concepts and types of active and intelligent food packaging, focusing on recent progress and new trends using biodegradable and biobased polymers. Numerous studies show the great possibilities of these materials. Future research needs to focus on some important aspects such as possibilities to scale-up, costs, regulatory aspects, and consumers' acceptance, to make these systems commercially viable.
Collapse
|
21
|
Luís Â, Ramos A, Domingues F. Pullulan-Apple Fiber Biocomposite Films: Optical, Mechanical, Barrier, Antioxidant and Antibacterial Properties. Polymers (Basel) 2021; 13:870. [PMID: 33799881 PMCID: PMC7999801 DOI: 10.3390/polym13060870] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
More than 150 million tons of synthetic plastics are produced worldwide from petrochemical-based materials, many of these plastics being used to produce single-use consumer products like food packaging. The main goal of this work was to research the production and characterization of pullulan-apple fiber biocomposite films as a new food packaging material. The optical, mechanical, and barrier properties of the developed biocomposite films were evaluated. Furthermore, the antioxidant and antibacterial activities of the biocomposite films were additionally studied. The results show that the Tensile Index and Elastic Modulus of the pullulan-apple fiber films were significantly higher (p-value < 0.05) when compared to the pullulan films. Regarding the water vapor permeability, no significant differences (p-value < 0.05) were observed in water vapor transmission rate (WVTR) when the apple fiber was incorporated into the biocomposite films. A significant increase (p-value < 0.05) of water contact angle in both sides of the films was observed when the apple fiber was incorporated into pullulan, indicating an increase in the hydrophobicity of the developed biocomposite films. It is worth noting the hydrophobicity of the (rough) upper side of the pullulan-apple fiber films, which present a water contact angle of 109.75°. It was possible to verify the microbial growth inhibition around the pullulan-apple fiber films for all the tested bacteria.
Collapse
Affiliation(s)
- Ângelo Luís
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Pharmaco-Toxicology Laboratory, UBIMedical, University of Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana Ramos
- Chemistry Department, Sciences Faculty, University da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
- Fiber Materials and Environmental Technologies Research Unit (FibEnTech), University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fernanda Domingues
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal;
- Chemistry Department, Sciences Faculty, University da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
22
|
Fattahi R, Seyedain-Ardabili M. A comparative study on the effect of homogenization conditions on the properties of the film-forming emulsions and the resultant films. Food Chem 2021; 352:129319. [PMID: 33691215 DOI: 10.1016/j.foodchem.2021.129319] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Emulsions based on licorice essential oil (LEO) were prepared under different homogenization conditions (ultra-homogenization (U1) or U1 together with sonication (U2)). The obtained emulsions were incorporated into the carboxymethyl cellulose (CMC) film. The results showed that U2 caused significant changes in the size and the surface charge of the emulsions. Remarkable differences in the microstructure were observed between the U1 and the U2 emulsion-based films as revealed by SEM and AFM. Both emulsions reduced the rigidity and increased the flexibility of the films. The film made from the CMC alone had a water vapor permeability (WVP) of 2.66 × 10-9 g m-1 s-1 Pa-1, while the CMC film made from U2 emulsion had a WVP of 1.87 × 10-9 g m-1 s-1 Pa-1. Also, the film containing 0.0125% U1-LEO exhibited antibacterial activity on gram-positive bacteria only while the film containing 0.0125% U2-LEO demonstrated antibacterial activity on both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Reza Fattahi
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran.
| | - Mojan Seyedain-Ardabili
- Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University, P. O. Box 14115-336, Tehran, Iran
| |
Collapse
|
23
|
Chen W, Ma S, Wang Q, McClements DJ, Liu X, Ngai T, Liu F. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit Rev Food Sci Nutr 2021; 62:5029-5055. [PMID: 33554629 DOI: 10.1080/10408398.2021.1881435] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biodegradable films constructed from food ingredients are being developed for food coating and packaging applications to create more sustainable and environmentally friendly alternatives to plastics and other synthetic film-forming materials. In particular, there is a focus on the creation of active packaging materials from natural ingredients, especially plant-based ones. The film matrix is typically constructed from film-forming food components, such as proteins, polysaccharides and lipids. These matrices can be fortified with active ingredients, such as antioxidants and antimicrobials, so as to enhance their functional properties. Edible active films must be carefully designed to have the required optical, mechanical, barrier, and preservative properties needed for commercial applications. This review focuses on the fabrication, properties, and functional performance of edible films constructed from natural active ingredients. It provides an overview of the type of active ingredients that can be used, how they interact with the film matrix, how they migrate through the films, and how they are released. It also discusses the potential application of these active films for food preservation. Finally, future trends are highlighted and areas where further research are required are discussed.
Collapse
Affiliation(s)
- Wenzhang Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Shaobo Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Qiankun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, PR China.,Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
24
|
Agarwal S, Hoque M, Bandara N, Pal K, Sarkar P. Synthesis and characterization of tamarind kernel powder-based antimicrobial edible films loaded with geraniol. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Gonçalves J, Luís Â, Gradillas A, García A, Restolho J, Fernández N, Domingues F, Gallardo E, Duarte AP. Ayahuasca Beverages: Phytochemical Analysis and Biological Properties. Antibiotics (Basel) 2020; 9:antibiotics9110731. [PMID: 33114334 PMCID: PMC7690887 DOI: 10.3390/antibiotics9110731] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Ayahuasca is a psychoactive beverage, originally consumed by indigenous Amazon tribes, of which consumption has been increasing worldwide. The aim of this study was to evaluate the phytochemical profile, as well as the antioxidant, anti-inflammatory and antimicrobial properties of decoctions of four individual plants, a commercial mixture and four mixtures of two individual plants used in the Ayahuasca preparation. For this purpose, a phytochemical characterization was performed, determining the content of flavonoids, total phenolic compounds, and analyzing the phenolic profile. Besides, 48 secondary metabolites were investigated by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS) and their concentration estimated with real standards when present. The antioxidant activity was evaluated by both the β-carotene bleaching test and DPPH free radical scavenging assay, and the anti-inflammatory activity was determined by a protein denaturation method. Finally, the antimicrobial properties were evaluated using the disc diffusion assay, resazurin microtiter method, anti-quorum sensing and anti-biofilm activity assays. The obtained results showed that, in general, the samples have a high content of phenolic compounds and flavonoids with noticeable differences, reflecting on remarkable antioxidant and anti-inflammatory activities. Significant antimicrobial properties were also observed, with emphasis on the effect of B. caapi and P. harmala on planktonic and biofilm cells of A. baumannii, inhibiting both the biofilm formation and the production of violacein pigment.
Collapse
Affiliation(s)
- Joana Gonçalves
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: (Â.L.); (E.G.); Tel.: +351-275-329-002/3 (Â.L.); +351-275-329-002/3 (E.G.)
| | - Ana Gradillas
- CEMBIO, Center for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain; (A.G.); (A.G.)
| | - Antonia García
- CEMBIO, Center for Metabolomics and Bioanalysis, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Campus Monteprincipe, Boadilla del Monte, 28668 Madrid, Spain; (A.G.); (A.G.)
| | - José Restolho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
| | - Nicolás Fernández
- Cátedra de Toxicología y Química Legal, Laboratorio de Asesoramiento Toxicológico Analítico (CENATOXA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina;
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: (Â.L.); (E.G.); Tel.: +351-275-329-002/3 (Â.L.); +351-275-329-002/3 (E.G.)
| | - Ana Paula Duarte
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.G.); (J.R.); (F.D.); (A.P.D.)
- Laboratório de Fármaco-Toxicologia, UBI Medical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| |
Collapse
|
26
|
Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging Applications. Antibiotics (Basel) 2020; 9:antibiotics9100681. [PMID: 33049951 PMCID: PMC7601153 DOI: 10.3390/antibiotics9100681] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Active packaging is designed to control the development of decay- and disease-causing microorganisms and is emerging as a promising technology for extending shelf-life, maintaining food safety, reducing waste, and minimizing the risks for foodborne diseases. The goal of this work was to develop and characterize bioactive pullulan-based films, containing rockrose (Cistus ladanifer) essential oil. Among other abundant compounds (camphene, bornyl acetate and trans-pinocarveol), α-pinene was identified as the major compound of rockrose essential oil (39.25%). The essential oil presented stronger antibacterial activity against Gram-positive than against Gram-negative bacteria. The antioxidant results indicate the potential of the developed films to be used to package foods susceptible to oxidation and rancification, thus improving their shelf-life. Also, this study reflects the potential of rockrose essential oil, free or incorporated in pullulan, as a promising quorum sensing inhibitor, since it was able to interrupt intercellular communication, inhibiting violacein production. Electronic microscopy images showed the antibiofilm activity of the films with rockrose essential oil that were able to influence bacterial adhesion, which may be explained by the differences in the surface free energy of the films, as also determined.
Collapse
|
27
|
Xylan-Derived Light Conversion Nanocomposite Film. Polymers (Basel) 2020; 12:polym12081779. [PMID: 32784908 PMCID: PMC7464716 DOI: 10.3390/polym12081779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
A new type of sustainable light conversion nanocomposite film was fabricated by using carboxymethyl xylan as matrix and xylan-derived carbon dots (CDs) as both light conversion regents and nano reinforcements. The results demonstrate that CDs can not only significantly enhance the mechanical strength of the nanocomposite film because of chemical reaction between CDs and carboxymethyl xylan, but also impart the film with excellent optical properties. With 1.92 wt% CDs, the tensile strength and elastic modulus of the film are increased by 114.3% and 90.7%, respectively. Moreover, the film has typical excitation and emission spectra, enabling the efficient absorption of UV and the conversion of UV to blue light. This xylan-derived light conversion nanocomposite film is expected to be used in agricultural planting and food packaging.
Collapse
|
28
|
Luís Â, Gallardo E, Ramos A, Domingues F. Design and Characterization of Bioactive Bilayer Films: Release Kinetics of Isopropyl Palmitate. Antibiotics (Basel) 2020; 9:antibiotics9080443. [PMID: 32722329 PMCID: PMC7459774 DOI: 10.3390/antibiotics9080443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/28/2022] Open
Abstract
Active packaging incorporating antioxidants and antimicrobials is creating a niche in the market and becoming increasingly important. The main goal of this work was the design of bioactive bilayer films (zein/pullulan) incorporating licorice essential oil. The bilayer films were fully characterized in terms of their chemical, physical, barrier, antioxidant, and antimicrobial properties. Furthermore, the release kinetics of isopropyl palmitate, the major compound of the licorice essential oil, was evaluated by HPLC-DAD (high-performance liquid chromatography coupled to diode-array detector). Scanning Electron Microscopy (SEM) micrographs of cross-sections of the bilayer films clearly show the two layers of the films. Besides presenting the capacity to scavenge free radicals and to inhibit the lipid peroxidation, the developed bilayer films were also able to inhibit the growth of known foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The release kinetics profile of isopropyl palmitate from bilayer films incorporating licorice essential oil demonstrated that in 50% ethanol at room temperature, the release was more effective, suggesting that the bilayer films will be more efficient if applied to package semi-fatty food.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-002
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana Ramos
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
- Materiais Fibrosos e Tecnologias Ambientais (FibEnTech), Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (E.G.); (F.D.)
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal;
| |
Collapse
|
29
|
Amalraj A, Haponiuk JT, Thomas S, Gopi S. Preparation, characterization and antimicrobial activity of polyvinyl alcohol/gum arabic/chitosan composite films incorporated with black pepper essential oil and ginger essential oil. Int J Biol Macromol 2020; 151:366-375. [PMID: 32084477 DOI: 10.1016/j.ijbiomac.2020.02.176] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/06/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022]
Abstract
Natural materials have attracted increasing attention in wound dressing and food packaging process, which could overcome the serious environmental issues caused by conventional synthetic materials. Essential oils (EOs) such as black pepper essential oil (BPEO) and ginger essential oil (GEO) have extensively been reported for their nutritional and biomedical properties. In this study, biocomposite films based on polyvinyl alcohol (PVA), gum arabic (GA) and chitosan (CS) incorporated with BPEO and GEO were fabricated by solvent casting method. FTIR, XRD, SEM and DSC were performed with mechanical and antimicrobial properties of PVA/GA/CS films with and without BPEO and GEO. The BPEO-PVA/GA/CS film showed heterogeneous rough surface with cavities containing entrapment of BPEO droplets, whereas, the GEO-PVA/GA/CS film showed heterogeneous rough surface with coarseness due to the incorporation of respective EOs. The BPEO and GEO incorporated PVA/GA/CS films were considerable resistant to breakage and flexible with improved heat stability. The BPEO and GEO incorporated PVA/GA/CS films were significantly inhibited the growth of Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. The obtained results have demonstrated that both BPEO and GEO incorporated PVA/GA/CS films are promising alternatives to wound dressing and food packaging materials.
Collapse
Affiliation(s)
- Augustine Amalraj
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India; Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland
| | - Józef T Haponiuk
- Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, School of Chemical Sciences, Mahatma Gandhi University, Priyadarshini Hills P. O. Kottayam, Kerala 686 560, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs (P) Ltd, Kolenchery, Cochin 682 311, Kerala, India; Chemical Faculty, Gdansk University of Technology, Gdańsk, Poland.
| |
Collapse
|
30
|
Chitosan Film with Citrus limonia Essential Oil: Physical and Morphological Properties and Antibacterial Activity. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4020018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The development of active packaging for food preservation is attracting increased attention due to serious environmental problems caused by synthetic and conventional materials. In the present study, the physical, chemical, optical, microstructural, and antibacterial properties of chitosan films with Citrus limonia essential oil (CEO) were investigated. The incorporation >0.75% of CEO increased the thickness of the films. The incorporation >0.25% of CEO reduced the moisture content and the water vapor permeability of the chitosan films. The biodegradability of the films over ten days ranged from 55.46–62.65% and was not affected by the addition of CEO. All films showed good UV light barrier properties, and the incorporation of the CEO caused a decrease in the visible light transmission rate values. The addition of CEO changed the color of the bioactive films significantly, remain darker and yellowish. The bioactive films showed antibacterial activity against Staphylococcus aureus, but not against Escherichia coli. The films showed a heterogeneous microstructure with oil droplets retained in the continuous polysaccharide network. The results showed that chitosan films with CEO are promising as an active packaging material for food preservation.
Collapse
|
31
|
Mendes J, Norcino L, Martins H, Manrich A, Otoni C, Carvalho E, Piccoli R, Oliveira J, Pinheiro A, Mattoso L. Correlating emulsion characteristics with the properties of active starch films loaded with lemongrass essential oil. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105428] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Cheng M, Wang J, Zhang R, Kong R, Lu W, Wang X. Characterization and application of the microencapsulated carvacrol/sodium alginate films as food packaging materials. Int J Biol Macromol 2019; 141:259-267. [PMID: 31465805 DOI: 10.1016/j.ijbiomac.2019.08.215] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/09/2019] [Accepted: 08/25/2019] [Indexed: 01/07/2023]
Abstract
The carvacrol (CAR) was microencapsulated by β-cyclodextrin (βCD). To extend the shelf-life of white mushrooms against Trichoderma sp., the microencapsulated CAR (βCD-CARM)/sodium alginate (SA) films were prepared and characterized. The antifungal, physical, and mechanical properties of the films were investigated in this study. The results showed that the βCD-CARM with a core-to-wall ratio of 1:10 had better encapsulation efficiency and antifungal activity against Trichoderma sp., which was isolated from postharvest white mushrooms stored at 4 °C. The optimum concentration of βCD-CARM against Trichoderma sp. in vitro was 15 g/L. The water resistance, mechanical properties, light barrier property and heat aging of the film were enhanced after adding βCD-CARM. The films with 30 g/L βCD-CARM could efficiently against Trichoderma sp. The performance of βCD-CARM/SA films was confirmed to control the release of CAR for enhanced antifungal activity. Besides, the βCD-CARM/SA films increased the activities of active free-radical scavenging enzymes to alleviate oxidative damage and delay senescence of the postharvest white mushrooms.
Collapse
Affiliation(s)
- Meng Cheng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Juan Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Rongfei Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Ruiqi Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenqian Lu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
33
|
Luís Â, Domingues F, Ramos A. Production of Hydrophobic Zein-Based Films Bioinspired by The Lotus Leaf Surface: Characterization and Bioactive Properties. Microorganisms 2019; 7:microorganisms7080267. [PMID: 31426406 PMCID: PMC6723050 DOI: 10.3390/microorganisms7080267] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022] Open
Abstract
Hydrophobic zein-based functional films incorporating licorice essential oil were successfully developed as new alternative materials for food packaging. The lotus-leaf negative template was obtained using polydimethylsiloxane (PDMS). The complex surface patterns of the lotus leaves were transferred onto the surface of the zein-based films with high fidelity (positive replica), which validates the proposed proof-of-concept. The films were prepared by casting method and fully characterized by Scanning Electron Microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The grammage, thickness, contact angle, mechanical, optical and barrier properties of the films were measured, together with the evaluation of their biodegradability, antioxidant and antibacterial activities against common foodborne pathogens (Enterococcus faecalis and Listeria monocytogenes). The zein-based films with the incorporation of licorice essential oil presented the typical rugosities of the lotus leaf making the surfaces very hydrophobic (water contact angle of 112.50°). In addition to having antioxidant and antibacterial properties, the films also shown to be biodegradable, making them a strong alternative to the traditional plastics used in food packaging.
Collapse
Affiliation(s)
- Ângelo Luís
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Fernanda Domingues
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Ana Ramos
- Departamento de Química, Faculdade de Ciências, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
- Materiais Fibrosos e Tecnologias Ambientais (FibEnTech), Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal.
| |
Collapse
|
34
|
do Evangelho JA, da Silva Dannenberg G, Biduski B, El Halal SLM, Kringel DH, Gularte MA, Fiorentini AM, da Rosa Zavareze E. Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydr Polym 2019; 222:114981. [PMID: 31320073 DOI: 10.1016/j.carbpol.2019.114981] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
Abstract
The incorporation of antimicrobial compounds into natural polymers can promote increased shelf life and ensure food safety. The aim of this study was to evaluate the antibacterial activity, morphological, optical, mechanical, and barrier properties of corn starch films containing orange (Citrus sinensis var. Valencia) essential oil (OEO). The corn starch films were prepared using the casting method. OEO and the corn starch films incorporated with OEO showed higher antibacterial activity against Staphylococcus aureus and Listeria monocytogenes. The addition of OEO to the films increased the morphological heterogeneity and contributed to the reduction of the tensile strength and elongation of the films, and it increased the moisture content, water solubility, and water vapor permeability. The water vapor permeability and partial or total solubility of a film in water prior to consumption of a product are of interest when the film is used as food coating or for encapsulation of specific molecules.
Collapse
Affiliation(s)
- Jarine Amaral do Evangelho
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Guilherme da Silva Dannenberg
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Barbara Biduski
- University of Passo Fundo (UPF), Faculty of Agronomy and Veterinary Medicine, Brazil.
| | - Shanise Lisie Mello El Halal
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Dianini Hüttner Kringel
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Marcia Arocha Gularte
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Angela Maria Fiorentini
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Rio Grande do Sul, Pelotas, RS 96010-900, Brazil.
| |
Collapse
|