1
|
Azizpour N, Partovi R, Azizkhani M, Abdulkhani A, Babaei A, Panahi Z, Samakkhah SA. Films of polylactic acid with graphene oxide-zinc oxide hybrid and Mentha longifolia essential oil: Effects on quality of refrigerated chicken fillet. Int J Food Microbiol 2025; 426:110893. [PMID: 39299061 DOI: 10.1016/j.ijfoodmicro.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/19/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
This study was conducted to investigate the morphological, thermal, mechanical, FTIR, physicochemical (thickness, humidity, solubility in water and water vapor permeability) and antimicrobial properties of polylactic acid film (PLA) containing hybrid graphene oxide‑zinc oxide (GO-ZnO: 1.5 % w/v) and Mentha longifolia essential oil (ML:1 % v/v) on chicken fillet kept in the refrigerator. The studied groups were microbially (total count of mesophilic aerobic bacteria, psychrotrophic bacteria, Enterobacteriaceae, Staphylococcus aureus, and lactic acid bacteria), chemically (pH, TVB-N) and sensory (color, odor, and taste) evaluated at 8-day interval (0, 2, 5 and 8). In the examination of the morphological characteristics, the PLA film had a smooth and uniform surface and the addition of ML essential oil created a discontinuous structure and the addition of GO-ZnO led to the production of a denser and more homogeneous film. The presence of GO-ZnO increased the thickness, decreased moisture content and solubility in water, and added ML essential oil increased moisture content and decreased solubility in water (p˂0.05). The results of the mechanical evaluation showed that the addition of ML essential oil and GO-ZnO reduced elongation at break and tensile strength (p˂0.05). The addition of ML essential oil increased the thermal resistance and the addition of GO-ZnO decreased the thermal resistance compared to the film containing ML essential oil. The antimicrobial effect of films containing ML essential oil was confirmed in this study (p˂0.05). The addition of GO-ZnO did not change the count of any of the microbial groups. TVB-N showed that groups containing ML essential oil had lower levels of volatile nitrogenous bases than the control group (p˂0.05). Sensory evaluation of the studied groups showed that chicken fillets packed with films containing ML essential oil had the highest score in terms of color, smell and taste. The results of the present study showed that PLA film containing GO-ZnO and ML essential oil can be used to increase the shelf life and maintain the sensory characteristics of chicken fillets, and it can be used as a suitable packaging to increase the shelf life of food products.
Collapse
Affiliation(s)
- Nasim Azizpour
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran.
| | - Maryam Azizkhani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Zahra Panahi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Shohre Alian Samakkhah
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
2
|
Mali SN, Pandey A. Development of curcumin integrated smart pH indicator, antibacterial, and antioxidant waste derived Artocarpus lakoocha starch-based packaging film. Int J Biol Macromol 2024; 275:133827. [PMID: 39084983 DOI: 10.1016/j.ijbiomac.2024.133827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024]
Abstract
Monitoring of food freshness is considered one of the crucial challenges for both customers/consumers and the food industries. In this study, we developed a curcumin-based starch film (F1) for pH-sensitive intelligent food packaging application. The starch was obtained from waste seeds of Artocarpus lakoocha (NS-MJF). The native starch underwent various physical and chemical modifications to yield modified starches (S1 [Autoclave heat treated], S2 [osmotic-pressure treated], S3 [citric acid treated]). The native starch was then used further for the formation of curcumin (2.5 % w/w)-based film (F1). We had analyzed these starches for solubility, colour analysis, biodegradability, oil absorption capacity, and moisture content, etc. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed favourable microstructures. The addition of curcumin to the starch enhanced the contact angle and elongation at the break of the resulting films. Antioxidant and antimicrobial assays, along with real-time freshness monitoring of chicken fillets, were also conducted. Thus, our findings may contribute to the optimization of pH-responsive biopolymer-based films for intelligent poultry packaging, promising advancements in food preservation and safety.
Collapse
Affiliation(s)
- Suraj N Mali
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India; School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai 400706, India.
| | - Anima Pandey
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Jharkhand 835215, India
| |
Collapse
|
3
|
Elsherief MF, Devecioglu D, Saleh MN, Karbancioglu-Guler F, Capanoglu E. Chitosan/alginate/pectin biopolymer-based Nanoemulsions for improving the shelf life of refrigerated chicken breast. Int J Biol Macromol 2024; 264:130213. [PMID: 38365158 DOI: 10.1016/j.ijbiomac.2024.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
This study investigated the use of nanoemulsions and various polymer coatings to enhance the quality and shelf life of chicken breast. This comprehensive study explored the antibacterial activity of essential oils (EOs) against Escherichia coli and Staphylococcus aureus, as well as the characterization of nanoemulsions (Nes) and nanoemulsion-based coatings. The antimicrobial potential of EOs, such as cinnamon, tea tree, jojoba, thyme, and black cumin seed oil, was evaluated against microorganisms, and thyme oil exhibited the highest inhibitory effect, followed by cinnamon and tea tree oil by disk diffusion analysis. The MIC and MBC values of EOs were found between 0.16-2.5 mg/mL and 0.16-5 mg/mL, respectively, while thyme EO resulted in the lowest values showing its antimicrobial potential. Then, the essential oil nanoemulsions (EONe) and their coatings, formulated with thyme oil, alginate, chitosan, and pectin, were successfully characterized. Optical microscope observations confirmed the uniform distribution of droplets in all (EONe), while particle size analysis demonstrated multimodal droplet size distributions. The EONe-chitosan coating showed the highest efficacy in reducing cooking loss, while the EONe-chitosan, EONe-alginate, and EONe-pectin coatings displayed promising outcomes in preserving color stability. Microbial analysis revealed the significant inhibitory effects of the EONe-chitosan coating against mesophilic bacteria, psychrophilic bacteria, and yeasts, leading to an extended shelf life of chicken breast. These results suggest the potential application of thyme oil and NE-based coatings in various industries for antimicrobial activity and quality preservation.
Collapse
Affiliation(s)
- Mai F Elsherief
- Animal Health Research Institute, Agricultural Research Center, Giza, Egypt; Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Dilara Devecioglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Mohamed N Saleh
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye; Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Funda Karbancioglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Türkiye.
| |
Collapse
|
4
|
Cheng J, Velez FJ, Singh P, Cui L. Fabrication, characterization, and application of pea protein-based edible film enhanced by oregano essential oil (OEO) micro- or nano-emulsion. Curr Res Food Sci 2024; 8:100705. [PMID: 38435279 PMCID: PMC10907380 DOI: 10.1016/j.crfs.2024.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024] Open
Abstract
Pea protein isolate (PPI)-based active films were prepared by incorporating 0.5 %, 1.0 %, or 2.0 % of oregano essential oil (OEO), either in the form of micro-emulsion (MOEO) or nano-emulsion (NOEO). The particle size and polydispersity index of OEO droplets were 2755.00 nm and 0.63 for MOEO, and 256.30 nm and 0.20 for NOEO. The surface and cross-sectional SEM results revealed the presence of holes and internal pores within the film upon the addition of OEO. The molecular interaction between PPI and OEO was confirmed by FTIR. The addition of OEO significantly increased film thickness, decreased water contact angle, and imparted a more yellow color. At a low concentration (0.5 %), the addition of OEO significantly improved the water vapor barrier and mechanical properties of the film. However, at higher concentrations, these film properties were significantly weakened. Additionally, the film antimicrobial properties were assessed after OEO addition. In vitro inhibition zone results indicated that a 2.0 % addition of OEO significantly suppressed the growth of three Salmonella strains [Salmonella Typhimurium (ATCC14028), Salmonella Infantis 94-1, and Salmonella Enteritidis PT-30]. Application of pea protein-based film with 2.0 % OEO on chicken breast demonstrated significant reduction in microbial count. Our results further showed that reducing the particle size of OEO from micrometer-scale to nanometer-scale in the PPI film matrix did not significantly alter film properties or antimicrobial activities. The study demonstrated that the antibacterial film based on pea protein and OEO is an innovative food packing material for prohibiting bacteria growth on poultry products.
Collapse
Affiliation(s)
- Jingjing Cheng
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Frank J. Velez
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Prashant Singh
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Leqi Cui
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
5
|
Safari R, Yaghoubi M, Marcinkowska‐Lesiak M, Paya H, Sun X, Rastgoo A, Rafiee M, Alirezalu K. The effects of double gelatin containing chitosan nanoparticles-calcium alginate coatings on the stability of chicken breast meat. Food Sci Nutr 2023; 11:7673-7685. [PMID: 38107100 PMCID: PMC10724606 DOI: 10.1002/fsn3.3686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of gelatin coatings (2% and 4%) containing chitosan nanoparticles (ChNPs; 1% and 2%), in combination with calcium-alginate coatings (CA; 2%), on quality attributes and shelf life of chicken breast meat were evaluated at 4°C for 12 days. The results indicated that double-active gelatin-calcium alginate coatings had significant (p < .05) effects on moisture and protein content. Incorporation of ChNPs into double gelatin-CA coatings led to significant reduction (p < .05) in TBARS, pH, and TVB-N values at the end of storage. The counts of total viable count (TVC), coliforms, yeasts, and molds were significantly (p < .05) lower in all coated samples, particularly in treated samples by 4% gelatin containing 2% ChNPs + 2% CA coatings (6.85, 6.78, and 5.91 log CFU/g, respectively, compared with 8.35, 8.76, and 7.71 log CFU/g in control) at the end of keeping time. The results of sensory attributes showed that the coated samples had higher overall acceptability scores compared with the untreated samples. A synergistic relationship between the concentrations of gelatin and ChNPs was observed in maintaining the quality characteristics of meat samples during storage. Therefore, this study aims to evaluate the performance of double gelatin coating containing ChNPs in combination with CA coating in the storage quality improvement of chicken breast meat stored for 12 days at 4 °C to develop novel and practical coatings for meat and meat products.
Collapse
Affiliation(s)
- Rashid Safari
- Department of Animal Science, Ahar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Monika Marcinkowska‐Lesiak
- Department of Technique and Food Development, Institute of Human Nutrition SciencesWarsaw University of Life SciencesWarsawPoland
| | - Hamid Paya
- Department of Animal Science, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Xiaohong Sun
- Department of Plant, Food, and Environmental Sciences, Faculty of AgricultureDalhousie UniversityTruroNova ScotiaCanada
| | - Anahita Rastgoo
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| | - Mirmehdi Rafiee
- Department of Food Science and Technology, Faculty of AgricultureAzad University of KhoyKhoyIran
| | - Kazem Alirezalu
- Department of Food Science and Technology, Faculty of AgricultureUniversity of TabrizTabrizIran
| |
Collapse
|
6
|
Zabidi N'A, Zainal NN, Tawakkal ISMA, Mohd Basri MS, Ariffin SH, Naim MN. Effect of thymol on properties of bionanocomposites from poly (lactic acid)/poly (butylene succinate)/nanofibrillated cellulose for food packaging application. Int J Biol Macromol 2023; 251:126212. [PMID: 37567533 DOI: 10.1016/j.ijbiomac.2023.126212] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
The present study developed the formulation of active bionanocomposites films endowed with the abilities of high biodegradability and antimicrobials for active packaging applications. The aim of this work was to prepare poly (lactic acid)/poly (butylene succinate) (PLA/PBS) blended films reinforced with different concentrations of nanofibrillated cellulose (NFC) and 9 % of thymol essential oil (EO) using the casting method. The active films were further evaluated through Fourier transform infrared spectroscopy (FTIR); as well as mechanical, physical, water vapour permeability (WVP), thermal analysis (TGA), biodegradation, morphological, and antimicrobial (% reduction of bacteria) testing. The tensile strength (TS) of PLA/PBS blend films increased by 12 % with the incorporation of 2 wt% of NFC. The PLA/PBS/NFC with 9 % thymol EO has a good water barrier performance with its tensile strength, elongation at break, and tensile modulus was 13.2 MPa, 13.1 %, and 513 MPa respectively. The presence of NFC promoted the disintegration of PLA/PBS films by 70.5 %. These films promoted the antibacterial activity against S. aureus and E. coli. The study demonstrates that the developed films improved the qualities of chicken fillets and have great potential to be used as active bionanocomposites in food packaging applications.
Collapse
Affiliation(s)
- Nurul 'Afifah Zabidi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Najiha Zainal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Intan Syafinaz Mohamed Amin Tawakkal
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Salahuddin Mohd Basri
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siti Hajar Ariffin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Halal Services, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Nazli Naim
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
7
|
Nasution H, Harahap H, Julianti E, Safitri A, Jaafar M. Smart Packaging Based on Polylactic Acid: The Effects of Antibacterial and Antioxidant Agents from Natural Extracts on Physical-Mechanical Properties, Colony Reduction, Perishable Food Shelf Life, and Future Prospective. Polymers (Basel) 2023; 15:4103. [PMID: 37896347 PMCID: PMC10611019 DOI: 10.3390/polym15204103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Changes in consumer lifestyles have raised awareness of a variety of food options and packaging technologies. Active and smart packaging is an innovative technology that serves to enhance the safety and quality of food products like fruit, vegetables, fish, and meat. Smart packaging, as a subset of this technology, entails the integration of additives into packaging materials, thereby facilitating the preservation or extension of product quality and shelf life. This technological approach stimulates a heightened demand for safer food products with a prolonged shelf life. Active packaging predominantly relies on the utilization of natural active substances. Therefore, the combination of active substances has a significant impact on the characteristics of active packaging, particularly on polymeric blends like polylactic acid (PLA) as a matrix. Therefore, this review will summarize how the addition of natural active agents influences the performance of smart packaging through systematic analysis, providing new insights into the types of active agents on physical-mechanical properties, colony reduction, and its application in foods. Through their integration, the market for active and smart packaging systems is expected to have a bright future.
Collapse
Affiliation(s)
- Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Hamidah Harahap
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Elisa Julianti
- Department of Food and Science Technology, Faculty of Agriculture, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia;
| | - Aida Safitri
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Padang Bulan, Kec. Medan Baru, Medan 20155, Sumatera Utara, Indonesia; (H.H.); (A.S.)
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| |
Collapse
|
8
|
Radhalakshmi V, Raman M, Joy MR. Development of active packaging film based on poly (lactic acid) incorporated with Piper betel leaf ethanolic extract and its application in the shelf-life extension of tuna meat. Int J Biol Macromol 2023; 246:125751. [PMID: 37429339 DOI: 10.1016/j.ijbiomac.2023.125751] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Active packaging films based on poly (lactic acid) (PLA) were developed by adding different concentrations (5 wt% and 10 wt%) of betel leaf (Piper betel) ethanolic extract (BLEE). The extract showed excellent antioxidant (80.2 %) and antimicrobial properties (18.05 and 16.05 mm against S. aureus and E. coli respectively). The films' structural, functional, and mechanical attributes were studied, along with their potential for extending the shelf life of tuna meat. The water solubility and water permeability were reduced with the incorporation of BLEE; while the tensile strength showed an inverse relationship with the concentration, 214.5 kg/cm2 (5 wt%), and to 307.6 kg/cm2 (10 wt%). The lipid oxidation in PLA-BLEE-packed tuna meat stored under refrigeration (7 days) showed a significant reduction, which could be attributed to the phenolic migration from the films. The new PLA-BLEE films with significant antibacterial and film attributes could be used in food packaging and to extend the shelf life of commodities that have been packaged.
Collapse
Affiliation(s)
- V Radhalakshmi
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India
| | - Maya Raman
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India.
| | - Minnu Rose Joy
- Department of Food Science and Technology, Faculty of Ocean Science and Technology (FOST), Kerala University of Fisheries and Ocean Studies (KUFOS), Panangad, Kochi, Kerala, India
| |
Collapse
|
9
|
A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J Food Prot 2023; 86:100025. [PMID: 36916569 DOI: 10.1016/j.jfp.2022.100025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
As essential oils (EOs) possess GRAS status, there is a strong interest in their application to food preservation. Trends in the food industry suggest consumers are drawn to environmentally friendly alternatives and less synthetic chemical preservatives. Although the use of EOs has increased over the years, adverse effects have limited their use. This review aims to address the regulatory standards for EO usage in food, techniques for delivery of EOs, essential oils commonly used to control pathogens and molds, and advances with new active compounds that overcome sensory effects for meat products, fresh fruits and vegetables, fruit and vegetable juices, seafood, dairy products, and other products. This review will show adverse sensory effects can be overcome in various products by the use of edible coatings containing encapsulated EOs to facilitate the controlled release of EOs. Depending on the method of cooking, the food product has been shown to mask flavors associated with EOs. In addition, using active packaging materials can decrease the diffusion rate of the EOs, thus controlling undesirable flavor characteristics while still preserving or prolonging the shelf life of food. The use of encapsulation in packaging film can control the release of volatile or active ingredients. Further, use of EOs in the vapor phase allows for contact indirectly, and use of nanoemulsion, coating, and film wrap allows for the controlled release of the EOs. Research has also shown that combining EOs can prevent adverse sensory effects. Essential oils continue to serve as a very beneficial way of controlling undesirable microorganisms in food systems.
Collapse
|
10
|
Khanjari A, Esmaeili H, Hamedi M. Shelf life extension of minced squab using poly-lactic acid films containing Cinnamomum verum essential oil. Int J Food Microbiol 2023; 385:109982. [DOI: 10.1016/j.ijfoodmicro.2022.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
11
|
SABOW AZAD, ABDULLA NAZIM, MUSTAFA HOZAN, ABUBAKAR AHMED. Quality characteristics and shelf-life of meat of quail birds-fed diets supplemented with grape pomace. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i11.127196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This investigation aims to determine the effect of grape pomace supplementation on quail meat’s quality and shelf life. Growing 121-day-old quail males were separated into groups of 30 birds each (3 replicates of 10 birds each). For 42 days, the quails were fed a diet enriched with 0, 2.5, 5, or 10 g/kg of grape pomace (control group and experimental groups). After the feeding session, ten quails were chosen randomly and slaughtered humanely to test the meat quality. Except for redness, which showed a lower value for experimental groups compared to the control group, neither the physicochemical characteristics nor the eating quality of breast meat varied significantly across treatments. The experimental groups also produced alterations in the fatty acid profile, with an increase in polyunsaturated fatty acids mainly due to an increase in linoleic acid concentration. The addition of grape pomace reduced lipid oxidation in meat at 1 and 5 days post-mortem. On post-mortem day 5, the control group meat had more bacteria than the experimental group meat. Overall, supplementation with grape pomace significantly improved the fatty acid profile and showed the capacity to extend shelf life.
Collapse
|
12
|
Karthik C, Caroline DG, Pandi Prabha S. Nanochitosan augmented with essential oils and extracts as an edible antimicrobial coating for the shelf life extension of fresh produce: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Development of polylactic acid based functional films reinforced with ginger essential oil and curcumin for food packaging applications. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Alirezalu K, Moazami‐Goodarzi AH, Roufegarinejad L, Yaghoubi M, Lorenzo JM. Combined effects of calcium-alginate coating and Artemisia fragrance essential oil on chicken breast meat quality. Food Sci Nutr 2022; 10:2505-2515. [PMID: 35959270 PMCID: PMC9361436 DOI: 10.1002/fsn3.2856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 01/10/2023] Open
Abstract
The objective of the present study was to evaluate the effects of calcium-alginate (CA) containing Artemisia fragrance essential oils (AFEOs) as a potential antioxidant and antimicrobial coating on quality attributes and shelf life of chicken meat throughout keeping period (4°C). Five treatments were produced as follows: T1 (distilled water as control), T2 (2% CA), T3 (2% CA +500 ppm AFEOs), T4 (2% CA +1000 ppm AFEOs), and T5 (2% CA +1500 ppm AFEOs). The chicken meats packaged in polyethylene bags at atmospheric condition and physicochemical, microbiological, and organoleptic properties were assessed at days 1, 4, 8, and 12. There was no remarkable difference in proximate composition (moisture, ash, protein, and fat) of meat samples by treating with CA or AFEOs. The results revealed that CA +AFEOs coating reduced significantly the pH, total volatile base nitrogen (TVB-N), and thiobarbituric acid reactive substances (TBARS) values and also displayed higher contents of the total phenolic content (TPC) and redness value when compared with control. According to results, 2% CA +1500 ppm AFEOs reduced 58.3 (mg MDA (malondialdehyde)/kg) and 0.63 (mg/100 g) of TBARS and TVB-N values when compared to control, respectively. The microbiological count showed that CA +AFEOs had a significantly higher inhibitory impact on the total viable count (TVC), coliforms, molds and yeasts. At day 12, 6.89 Log CFU (colony-forming units)/g was recorded for TVC in 2% CA +1500 ppm AFEOs, which was the lowest overall. This treatment also displayed the reduction of 2.97 Log CFU/g in coliforms and 3.3 Log CFU/g in molds and yeasts in comparison with uncoated samples. The outcomes of pH, TBARS, TPC, color values, microbiological count, and organoleptic properties suggested 2% CA +1500 ppm AFEOs as an efficient coating for quality stability and improving the shelf life of chicken breast meat without negative impact on organoleptic properties.
Collapse
Affiliation(s)
- Kazem Alirezalu
- Department of Food Science and TechnologyAhar Faculty of Agriculture and Natural ResourcesUniversity of TabrizTabrizIran
| | | | - Leila Roufegarinejad
- Department of Food Science and TechnologyTabriz BranchIslamic Azad UniversityTabrizIran
| | - Milad Yaghoubi
- Department of Food Science and TechnologyFaculty of AgricultureUniversity of TabrizTabrizIran
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de GaliciaParque Tecnológico de GaliciaOurenseSpain
- Área de Tecnología de los AlimentosFacultad de Ciencias de OurenseUniversidad de VigoOurenseSpain
| |
Collapse
|
15
|
Chacha JS, Ofoedu CE, Xiao K. Essential
Oil‐Based
Active
Polymer‐Based
Packaging System: A Review on its Effect on the Antimicrobial, Antioxidant, and Sensory Properties of Beef and Chicken Meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James S. Chacha
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Agroprocessing School of Engineering and Technology Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu Morogoro Tanzania
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
- Department of Food Science and Technology, School of Engineering and Engineering Technology Federal University of Technology Imo State Owerri Nigeria
| | - Kaijun Xiao
- School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China
| |
Collapse
|
16
|
Synthesis and characterization of poly(lactic acid)/clove essential oil/alkali-treated halloysite nanotubes composite films for food packaging applications. Int J Biol Macromol 2022; 216:927-939. [DOI: 10.1016/j.ijbiomac.2022.07.209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/25/2022]
|
17
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Characterization of active and pH-sensitive poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) films containing essential oils and anthocyanin for food packaging application. Int J Biol Macromol 2022; 212:220-231. [PMID: 35597382 DOI: 10.1016/j.ijbiomac.2022.05.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 02/02/2023]
Abstract
Active and pH-sensitive films of poly(lactic acid) (PLA)/nanofibrillated cellulose (NFC) have been fabricated and tested. The PLA and PLA/NFC films with 1.5% NFC were prepared via solvent casting method, with different loadings of essential oil (EO), including thymol and curry, being added at 5, 10, and 15%. The fixed content of anthocyanin powder (1%) was incorporated into the films as a pH indicator. The active PLA and PLA/NFC films were characterised on their physical, mechanical, thermal, and biodegradation properties. The addition of NFC reduced the tensile strength but increased the flexibility of films due to the plasticizing effect of EOs. The PLA/EO and PLA/NFC/EO films containing curry demonstrated a slightly higher strength than the films with thymol. The flexibility of films was increased at higher loading of EO regardless of the types of EO. The thermal profile demonstrated that the neat PLA film had a higher maximum degradation temperature than the active PLA/EO and PLA/NFC/EO films. The active PLA/EO and PLA/NFC/EO films containing anthocyanin successfully changed its colour in pH 2.0 and 14.0. The PLA/NFC films with thymol and anthocyanin formulation could inhibit fungus growth better in the cherry tomato sample than the PLA/NFC films with curry and anthocyanin.
Collapse
|
19
|
Almeida-Couto JMFDE, Ressutte JB, Cardozo-Filho L, Cabral VF. Current extraction methods and potential use of essential oils for quality and safety assurance of foods. AN ACAD BRAS CIENC 2022; 94:e20191270. [PMID: 35544845 DOI: 10.1590/0001-3765202220191270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/28/2020] [Indexed: 11/21/2022] Open
Abstract
Essential oils (EOs) or vegetable oils have become the focus of several studies because of their interesting bioactive properties. Their application has been successfully explored in active packaging, edible coatings, and as natural flavoring to extend the shelf life of various types of food products. In addition, alternative methods of extraction of EOs (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction and supercritical fluid extraction) have been shown to be more attractive than traditional methods since they present better efficiency, shorter extraction times and do not use toxic solvents. This review paper provides a concise and critical view of extraction methods of EOs and their application in food products. The researchers involved in the studies approached in this review were motivated mainly by concern about food quality. Here, we recognize and discuss the major advances and technologies recently used to enable shelf life extension of food products.
Collapse
Affiliation(s)
- Jéssica M F DE Almeida-Couto
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Jéssica B Ressutte
- Universidade Estadual de Londrina/UEL, Departamento de Ciência e Tecnologia de Alimentos/UEL, Rodovia Celso Garcia Cid, 86057970 Londrina, PR, Brazil
| | - Lúcio Cardozo-Filho
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia Química, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| | - Vladimir F Cabral
- Universidade Estadual de Maringá/UEM, Departamento de Engenharia de Alimentos, Av. Colombo nº 5.790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
20
|
Nano-biocomposite based color sensors: Investigation of structure, function, and applications in intelligent food packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100789] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
HOJATOLESLAMI M, AHARI H, LARIJANI K, SHARIFAN A. Preservation effect of Lippia citriodora and Laurus nobilis nanoemulsions incorporated with polylactic acid composite film for rainbow trout fillet packaging. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
22
|
Hematizad I, Khanjari A, Basti AA, Karabagias IK, Noori N, Ghadami F, Gholami F, Teimourifard R. In vitro antibacterial activity of gelatin-nanochitosan films incorporated with Zataria multiflora Boiss essential oil and its influence on microbial, chemical, and sensorial properties of chicken breast meat during refrigerated storage. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
24
|
Fierascu RC, Fierascu I, Baroi AM, Ortan A. Selected Aspects Related to Medicinal and Aromatic Plants as Alternative Sources of Bioactive Compounds. Int J Mol Sci 2021; 22:1521. [PMID: 33546333 PMCID: PMC7913593 DOI: 10.3390/ijms22041521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/03/2023] Open
Abstract
Natural compounds obtained from different medicinal and aromatic plants have gained respect as alternative treatments to synthetic drugs, as well as raw materials for different applications (cosmetic, food and feed industries, environment protection, and many others). Based on a literature survey on dedicated databases, the aim of the present work is to be a critical discussion of aspects regarding classical extraction versus modern extraction techniques; possibilities to scale up (advantages and disadvantages of different extraction methods usually applied and the influence of extraction parameters); and different medicinal and aromatic plants' different applications (medical and industrial applications, as well as the potential use in nanotechnology). As nowadays, research studies are directed toward the development of modern, innovative applications of the medicinal and aromatic plants, aspects regarding future perspectives are also discussed.
Collapse
Affiliation(s)
- Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (R.C.F.); (A.M.B.)
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| | - Alina Ortan
- Veterinary Medicine of Bucharest, University of Agronomic Sciences, 011464 Bucharest, Romania;
| |
Collapse
|
25
|
Majdinasab M, Niakousari M, Shaghaghian S, Dehghani H. Antimicrobial and antioxidant coating based on basil seed gum incorporated with Shirazi thyme and summer savory essential oils emulsions for shelf-life extension of refrigerated chicken fillets. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Development of active agents filled polylactic acid films for food packaging application. Int J Biol Macromol 2020; 163:1451-1457. [DOI: 10.1016/j.ijbiomac.2020.07.209] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/15/2022]
|
27
|
Tabatabaee Bafroee AS, Khanjari A, Teimourifard R, Yarmahmoudi F. Development of a novel active packaging film to retain quality and prolong the shelf life of fresh minced lamb meat. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ali Khanjari
- Departments of Food Hygiene and Microbiology Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Reza Teimourifard
- Departments of Food Hygiene and Microbiology Faculty of Veterinary Medicine University of Tehran Tehran Iran
| | - Fatemeh Yarmahmoudi
- Departments of Food Hygiene and Microbiology Faculty of Veterinary Medicine University of Tehran Tehran Iran
| |
Collapse
|
28
|
Developing poly(vinyl alcohol)/chitosan films incorporate with d-limonene: Study of structural, antibacterial, and fruit preservation properties. Int J Biol Macromol 2020; 145:722-732. [DOI: 10.1016/j.ijbiomac.2019.12.230] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/13/2023]
|