1
|
Tan H, Wu X, Zhao M, Li H, Wu W. Formation of self-assembled fibril aggregates of trypsin-controllably hydrolyzed soy protein and its regulation on stability of high internal phase Pickering emulsions. Food Chem 2025; 462:140996. [PMID: 39213962 DOI: 10.1016/j.foodchem.2024.140996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The mechanisms of trypsin hydrolysis time on the structure of soy protein hydrolysate fibril aggregates (SPHFAs) and the stability of SPHFAs-high internal phase Pickering emulsions (HIPPEs) were investigated. SPHFAs were prepared using soy protein hydrolysate (SPH) with different trypsin hydrolysis time (0 min-120 min) to stabilize SPHFAs-HIPPEs. The results showed that moderate trypsin hydrolysis (30 min, hydrolysis degree of 2.31 %) induced SPH unfolding and increased the surface hydrophobicity of SPH, thereby promoting the formation of flexible SPHFAs with maximal thioflavin T intensity and ζ-potential. Moreover, moderate trypsin hydrolysis improved the viscoelasticity of SPHFAs-HIPPEs, and SPHFAs-HIPPEs remained stable after storage at 25 °C for 80 d and heating at 100 °C for 1 h. Excessive trypsin hydrolysis (> 30 min) decreased the stability of SPHFAs-HIPPEs. In conclusion, moderate trypsin hydrolysis promoted the formation of flexible SPHFAs with high surface charge by inducing SPH unfolding, thereby promoting the stability of SPHFAs-HIPPEs.
Collapse
Affiliation(s)
- Haitong Tan
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
2
|
Qi X, Luo Y, Fei W, Shen M, Chen Y, Yu Q, Xie J. Effects of enzyme hydrolysis-assisted fibrillation treatment on the solubility, emulsifying properties and antioxidant activity of rice protein. Int J Biol Macromol 2024; 279:135378. [PMID: 39244125 DOI: 10.1016/j.ijbiomac.2024.135378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
This work aimed to explore the changes of rice protein (RP) in solubility, emulsifying properties, and antioxidant activity after the enzyme hydrolysis-assisted fibrillation dual modification. Results showed that enzyme hydrolysis by papain and fibrillation treatments significantly affected the secondary and tertiary structures of RP. The modified proteins, including RP hydrolysate (RPH), RP nanofibrils (RPN), and RPH nanofibrils (RPHN), demonstrated enhanced solubility and antioxidant activity compared to RP, with RPHN exhibiting the superior performance. The emulsifying capacity of RPH, RPN, and RPHN increased by 9.55 %, 22.86 %, and 26.57 %, respectively, compared to that of RP. Furthermore, RPHN displayed the highest emulsion stability index. Nanoemulsion stabilized by RPHN showed enhanced centrifugal, storage, and oxidative stabilities. Neither RPHN nor RPN exhibited cytotoxicity to human cell lines, and could provide nutrients for cells. Overall, the functional properties and antioxidant activity of RP were significantly improved by enzyme hydrolysis-assisted fibrillation dual modification. This study may provide reference for the development and utilization of nanofibrils from plant proteins.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weiqi Fei
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
3
|
Edo GI, Samuel PO, Nwachukwu SC, Ikpekoro VO, Promise O, Oghenegueke O, Ongulu J, Otunuya CF, Rapheal OA, Ajokpaoghene MO, Okolie MC, Ajakaye RS. A review on the biological and bioactive components of Cyperus esculentus L.: insight on food, health and nutrition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8414-8429. [PMID: 38769860 DOI: 10.1002/jsfa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/02/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Tiger nut (Cyperus esculentus L.) is a small, tuberous root vegetable that has gained increasing attention in recent years due to its potential health benefits. This review article provides an elaborate overview of tiger nut, including its botany, historical uses, nutritional composition, potential health benefits and traditional medicinal uses. This review article comprehensively discusses the nutritional profile of tiger nut, providing a detailed understanding of its nutrient content. Furthermore, the potential health benefits of tiger nut are thoroughly reviewed, including its effects on digestive health, cardiovascular health, blood sugar control, immune function and other potential therapeutic uses. Scientific articles used for this review were retrieved from ScienceDirect, Google Scholar, PubMed and SciELO databases. Only articles published between 1997 and 2022 were used for research. This review contributes to a better understanding of tiger nut and its prospective uses in functional foods and medicine by combining the available scientific material. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Faculty of Science, Department of Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Princess Oghenekeno Samuel
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Susan Chinedu Nwachukwu
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Victor Ovie Ikpekoro
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Obasohan Promise
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ogheneochuko Oghenegueke
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Jonathan Ongulu
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Chinenye Favour Otunuya
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Opiti Ajiri Rapheal
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Mercy Orezimena Ajokpaoghene
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Michael Chukwuma Okolie
- Faculty of Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ruth Sheyi Ajakaye
- Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Nigeria
| |
Collapse
|
4
|
Wang X, Hu Y, Cao Z, Liang X, Zhang Y, Jiang L, Xu Z, Sui X. Effect of protease hydrolysis on the structure of acidic heating-induced soy protein amyloid fibrils. Int J Biol Macromol 2024; 282:137100. [PMID: 39486697 DOI: 10.1016/j.ijbiomac.2024.137100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The effectiveness of using amyloid fibrillation to improve the functional qualities of soy protein had drawn growing attention. However, the relationship between protein subunits and the structural polymorphism of soy protein-derived amyloid fibrils (SAFs) was not yet completely understood. In this study, soy protein subunits were hydrolyzed to different degrees according to the different action sites of different proteases (Pepsin, Papain and Alcalase). The impact of subunits on the amyloid fibrillation of soy protein was investigated through various techniques including atomic force microscopy, thioflavin T fluorescence, 1-anililo-naphthalene-8-sulfonate, and Fourier transform infrared spectrometer. The findings showed that the α and α' subunits were associated with the formation of fibril branch chains. The degree of hydrolysis of β subunits was found to be proportional to the number of fibrils. The presence of the 11S component was identified as a necessary condition for the formation of long-rigid fibrils. Furthermore, enzymatic hydrolysis unfolded the protein structure, exposing hydrophobic groups, loosening the protein structure, and altering the proportion of parallel and antiparallel β-sheet structures. This promoted the formation of amyloid fibrils and accelerated the development of stable SAFs gel. This study advances the knowledge of the function of subunits in amyloid fibrillation.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zichen Cao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiangyu Liang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zejian Xu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Yu Y, Gong M, Wang S, Wang X, Liu Y, Huang D, Guan H, Liu H, Chen Y, Jiang Y, Li D. Pectin-based cinnamon essential oil Pickering emulsion film with two-sided differential wettability: A major role in the spatial distribution of microdroplets. Int J Biol Macromol 2024; 277:133727. [PMID: 39084975 DOI: 10.1016/j.ijbiomac.2024.133727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Pickering emulsions have attracted much attention as a novel emulsifying technology. This research to explore Zein-Citrus pectin nanoparticles stabilized cinnamon essential oil (CEO) Pickering emulsion (ZCCPEs) for constructing Pickering emulsion edible film (PEF). Unlike traditional research, which focuses on antibacterial and antioxidant activities, our research examined the physical properties of PEF, specifically changes in wettability. The results show that PEF has better transparency and tensile strength than the pectin alone direct emulsion film (PAEF), and the spatial distribution of Pickering emulsion droplets gives different wettability on both sides of PEF. The partially hydrophobic upside has important application value in food packaging. At the same time, the PEF is biodegradable and environmentally non-polluting. The edible film loaded with essential oils, developed based on the Pickering stabilization mechanism in this study, possesses several desirable characteristics for potential used as bioactive packaging films in food applications.
Collapse
Affiliation(s)
- Yitian Yu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Min Gong
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Shuyi Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Xinyue Wang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yiyan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Hui Guan
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Hui Liu
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| | - Yannan Chen
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Yang Jiang
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian 271018, PR China
| |
Collapse
|
6
|
Feng Y, Li R, Zhang H, Ren F, Liu J, Wang J. Formation, structural characteristics and specific peptide identification of gluten amyloid fibrils. Food Chem 2024; 445:138648. [PMID: 38354639 DOI: 10.1016/j.foodchem.2024.138648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
This research investigates the formation of amyloid fibrils using enzymatically hydrolyzed peptides from gluten, including its components glutenin and gliadin. After completing the fibrillation incubation, the gluten group demonstrated the most significant average particle size (908.67 nm) and conversion ratio (57.64 %), with a 19.21 % increase in thioflavin T fluorescence intensity due to self-assembly. The results indicated increased levels of β-sheet structures after fibrillation. The gliadin group exhibited the highest zeta potential (∼13 mV) and surface hydrophobicity (H0 = 809.70). Around 71.15 % of predicted amyloidogenic regions within gliadin peptides showed heightened hydrophobicity. These findings emphasize the collaborative influence of both glutenin and gliadin in the formation of gluten fibrils, influenced by hydrogen bonding, hydrophobic, and electrostatic interactions. They also highlight the crucial role played by gliadin with amyloidogenic fragments such as ILQQIL and SLVLQTL, aiming to provide a theoretical basis for understanding the utilization of gluten proteins.
Collapse
Affiliation(s)
- Yulin Feng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Ren Li
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Jie Liu
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible by-products), Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Special Food Supervision Technology for State Market Regulation, China.
| |
Collapse
|
7
|
Zhao M, Li F, Li H, Lin Q, Zhou X, Wu X, Wu W. Effects of rice bran rancidity on the interfacial adsorption properties of rice bran protein fibril aggregates and stability of high internal phase Pickering emulsions. Food Chem 2024; 443:138611. [PMID: 38309025 DOI: 10.1016/j.foodchem.2024.138611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The effects of rice bran rancidity-induced protein oxidation and heating time on the stability of rice bran protein fibril aggregates (RBPFA)-high internal phase Pickering emulsions (HIPPEs) were investigated. The optimal conditions for RBPFA-HIPPEs were 8 mg/mL RBPFA with an oil phase volume fraction of 75 %. Moderate oxidation (rice bran stored for 3 d) and moderate heating (8 h) enhanced the wettability, flexibility, diffusion rate, and adsorption rate of RBPFA, meanwhile, the rheological properties of RBPFA-HIPPEs increased. RBPFA-HIPPEs could be stably stored for 50 d at 25 °C. Moderate oxidized and moderate heated RBPFA-stabilized HIPPEs could remain stable after heat treatment and could be re-prepared after freeze-thaw (3 cycles). Additionally, the stability of RBPFA-HIPPEs was significantly related to the structural characteristics and interfacial properties of RBPFA. Overall, moderate oxidation and moderate heating enhanced the storage, thermal, and freeze-thaw stability of RBPFA-HIPPEs by improving the interfacial properties of RBPFA.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Fang Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaoling Zhou
- Chen Keming Food Manufacturing Co., Ltd, Changsha, Hunan 414000, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
8
|
Yu Z, Li N, Liu Y, Zhang B, Zhang M, Wang X, Wang X. Formation, structure and functional characteristics of amyloid fibrils formed based on soy protein isolates. Int J Biol Macromol 2024; 254:127956. [PMID: 37951451 DOI: 10.1016/j.ijbiomac.2023.127956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Food protein-derived amyloid fibrils possess great untapped potential applications in food and other biomaterials. The objective of this report was to investigate the formation mechanism, structure and functional characterization of soy protein amyloid fibrils (SPF) through hydrolysis and heating (pH 2.0, 85 °C, 0-24 h) of soy protein isolate (SPI). Fibrillation growth analysis indicated polypeptide hydrolysis upon hydrolytic heating, and the amyloid fibrils were basically formed 8 h later. The microstructure of SPF was monitored by transmission electron microscopy and scanning electron microscopy, exhibiting change from an irregular spherical structure to a coiled, intertwined thread-like polymer. The secondary structures of SPI all changed drastically during the fibrillation process was characterized by Fourier transform infrared spectroscopy, which the α-helical and β-turned content decreasing by 12.67 % and 5.07 %, respectively, and the content of ordered β-folded structures increasing with heating time, finally increasing to 53.61 % at 24 h. The fluorescence intensity of the endogenous fluorescence spectra decreased and the maximum emission wavelength was red-shifted, suggesting that the fibrillation unfolded the protein structure, hydrolyzed and self-assembled into amyloid fibrils aggregates obscuring the aromatic amino acid residues. The emulsification activity, emulsion stability and viscosity of SPF improved with the increase in protein fibrillation.
Collapse
Affiliation(s)
- Zhichao Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Ning Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Yian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Boya Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Mengyue Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China
| | - Xibo Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
9
|
Zhou Q, Xu Z, Wei Z. Precise control of aggregation morphology: Effective strategy to tune the properties of ovotransferrin particles. Int J Biol Macromol 2023; 253:126850. [PMID: 37703969 DOI: 10.1016/j.ijbiomac.2023.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
Different aggregation morphologies of ovotransferrin (OVT) aggregates were successfully obtained through precise control, and the effects on structural, physical, liquid-liquid and gas-liquid interfacial characteristics as well as mechanisms were explored for the first time. It was observed that the surface hydrophobicity of OVT fibrils was higher than OVT spheres due to the acid-heat treatment. The exploration of liquid-liquid interface behaviors indicated that OVT fibrils possessed higher adsorption capacity at the interface, revealing the higher surface activity at the oil-water interface. During adsorption process, fibrils exhibited higher diffusion rate, while spheres were easier to penetrate and rearrange at the interface. The interfacial film composed of fibrils possessed more elastic solid-like behaviors owing to the higher surface activity of individual fibrous aggregates and rapid fibril-fibril interactions. The analysis of gas-liquid interface characteristics presented that OVT spheres possessed lower interfacial tension and higher interfacial viscoelasticity, and showed significantly higher FC and FS values in comparation to fibrils. These findings will facilitate the reader's understanding of the relationship between protein aggregate structure and properties, and lay a foundation for broadening the application of OVT and even other proteins.
Collapse
Affiliation(s)
- Qi Zhou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziyuan Xu
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
10
|
Luo Y, Wang K, Pan R, Li T, Sun Q, Pu C, Tang W. Physicochemical properties and in vitro digestion behavior of emulsion gels stabilized by rice bran protein aggregates: Effects of heating time and induction methods. Food Res Int 2023; 170:112976. [PMID: 37316014 DOI: 10.1016/j.foodres.2023.112976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
To investigate the effects of heating time and induction methods on the physicochemical properties and in vitro digestion behavior of emulsion gels, rice bran protein aggregates (RBPAs) were formed by acid-heat induction (90 °C, pH 2.0) and the emulsion gels were further prepared by adding GDL or/and laccase for single/double cross-linked induction. Heating time affected the aggregation and oil/water interfacial adsorption behavior of RBPAs. Suitable heating (1-6 h) was conducive to faster and more adsorption of aggregates at the oil/water interface. While excessive heating (7-10 h) resulted in protein precipitation, which inhibited the adsorption at the oil/water interface. The heating time at 2, 4, 5 and 6 h was thus chosen to prepare the subsequent emulsion gels. Compared with the single cross-linked emulsion gels, the double-cross-linked emulsion gels showed higher water holding capacity (WHC). After simulated gastrointestinal digestion, the single/double cross-linked emulsion gels all exhibited slow-release effect on free fatty acid (FFA). Moreover, the WHC and final FFA release rate of emulsion gels were closely related to the surface hydrophobicity, molecular flexibility, sulfhydryl, disulfide bond and interface behavior of RBPAs. Generally, these findings proved the potential of emulsion gels in designing fat alternatives, which could provide a novel technique for the fabrication of low-fat food.
Collapse
Affiliation(s)
- Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Kexin Wang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Rui Pan
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Li
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
11
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
12
|
Zolqadri R, Heidari Damani M, Malekjani N, Saeed Kharazmi M, Mahdi Jafari S. Rice bran protein-based delivery systems as green carriers for bioactive compounds. Food Chem 2023; 420:136121. [PMID: 37086611 DOI: 10.1016/j.foodchem.2023.136121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023]
Abstract
Natural protein-based delivery systems have received special interest over the last few years. Different carriers are already developed in the food industry to protect, encapsulate and deliver bioactive compounds. Rice bran protein (RBP) is currently used as a carrier in encapsulating bioactives due to its excellent functional properties, great natural value, low price, good biodegradability, and biocompatibility. Recently, RBP-based carriers including emulsions, microparticles, nanoparticles, nanoemulsions, liposomes, and core-shell structures have been studied extensively in the literature. This study reviews the important characteristics of RBP in developing bioactive delivery systems. The recent progress in various modification approaches for improving RBP properties as carriers along with different types of RBP-based bioactive delivery systems is discussed. In the final part, the bioavailability and release profiles of bioactives from RBP-based carriers and the recent developments are described.
Collapse
Affiliation(s)
- Roshanak Zolqadri
- Department of Food Science and Technology, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Maryam Heidari Damani
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
13
|
Qi X, Li Y, Li J, Rong L, Pan W, Shen M, Xie J. Fibrillation modification to improve the viscosity, emulsifying, and foaming properties of rice protein. Food Res Int 2023; 166:112609. [PMID: 36914353 DOI: 10.1016/j.foodres.2023.112609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fibrillation of food proteins has attracted considerable attention as it can improve and broaden the functionality of proteins. In this study, we prepared three kinds of rice protein (RP) fibrils with different structural characteristics by the regulation of NaCl and explored the effect of protein structure on viscosity, emulsifying, and foaming properties. AFM results showed fibrils formed at 0 and 100 mM NaCl were mainly in the range of 50-150 nm and 150-250 nm, respectively. Fibrils formed at 200 mM NaCl were in the range of 50-500 nm and protein fibrils longer than 500 nm increased. There was no significant difference between their height and periodicity. Fibrils formed at 0 and 100 mM NaCl were more flexible and unordered than those formed at 200 mM NaCl. The viscosity consistency index K of native RP and fibrils formed at 0, 100, and 200 mM NaCl were determined. The K value of fibrils was higher than that of native RP. The emulsifying activity index, foam capacity and foam stability were enhanced by fibrillation, while longer fibrils exhibited lower emulsifying stability index, which may be because long fibrils resulted in difficulty of cover of emulsion droplets. In summary, our work provided a valuable reference for improving the functionality of rice protein and facilitated the development of protein-based foaming agents, thickeners, and emulsifiers.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yulin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jinwang Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liyuan Rong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wentao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
14
|
Fu Y, Li Y, Su H, Wu T, Li T. Inhibiting ice recrystallization by amyloid protein fibrils. Int J Biol Macromol 2023; 227:1132-1140. [PMID: 36470434 DOI: 10.1016/j.ijbiomac.2022.11.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/13/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022]
Abstract
Ice recrystallization is harmful to the quality of frozen foods and the cryopreservation of cells and biological tissues, requiring biocompatible materials with ice recrystallization inhibition (IRI) activity. Emerging studies have associated IRI activity with amphiphilic structures. We propose amphiphilic amyloid protein fibrils (APFs) may be IRI-active. APFs were prepared from whey protein isolate (WPI) in water (W-APFs) and in trifluoroethanol (TFE-APFs). W-APFs and TFE-APFs were more IRI-active than WPI over a concentration range of 2.5-10.0 mg/mL. Both APFs showed stronger IRI activity at pH 3.0 than at pH 5.0, 7.0, and 10.0, which was ascribed to the effect of water dispersibility and fibril length. The reduced IRI activity of the two APFs with increasing NaCl content was caused by fibril aggregation. Ice binding by APFs was absent or very weak. Ordered water was observed for the two APFs, which might be essential for IRI activity. Our findings may lead to the use of APFs as novel ice recrystallization inhibitors.
Collapse
Affiliation(s)
- Yuying Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuan Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huanhuan Su
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Tao Wu
- Department of Food Science, University of Tennessee, 2510 River Drive, Knoxville, TN 37996, USA
| | - Teng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Ren G, Zhu Y, Shi J, Liu J, He Y, Sun Y, Zhan Y, Lv J, Huang M, Xie H. Fabrication of Antioxidant Pickering Emulsion Based on Resveratrol-Grafted Zein Conjugates: Enhancing the Physical and Oxidative Stability. Foods 2022; 11:3851. [PMID: 36496666 PMCID: PMC9737855 DOI: 10.3390/foods11233851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Lipid oxidation is still a major problem complicating the development of food emulsions. In this study, an antioxidant Pickering emulsion stabilized by resveratrol-grafted zein (Z-R) conjugates and pectin (P) complex particles was prepared. The hydrophilic pectin successfully adjusted the wettability of Z-R; when the mass ratio of Z-R to P was 2:1 (Z-R/P2:1), the three-phase contact angle was 90.68°, and the wettability of the particles was close to neutral. Rheological analysis showed that the emulsion formed an elastic gel structure. FTIR spectra indicated that there was a hydrogen bond and electrostatic interaction between Z-R and P. The disappearance of characteristic infrared peaks of corn oil was due to a dense protective film formed on the surface of oil drops by Z-R/P2:1 particles, which was confirmed by confocal laser scanning microscopy. The emulsion stabilized by Z-R/P2:1 had excellent physical stability at a wide range of pH values (4-9), salt ion concentrations (0.04-0.15 mol·L-1) and storage times (0-30 days). The anti-lipid oxidation ability of the emulsion was outstanding; after storage for 14 days at room temperature, the MDA content in the emulsion was only 123.85 μmol/kg oil. In conclusion, the Z-R/P2:1 particles prepared in this study can effectively stabilize a Pickering emulsion and expand the usability of the method for constructing antioxidant Pickering emulsions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
16
|
Effect of dynamic high-pressure microfluidization on physicochemical, structural, and functional properties of oat protein isolate. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Lian Z, Yang S, Dai S, Tong X, Liao P, Cheng L, Qi W, Wang Y, Wang H, Jiang L. Relationship between flexibility and interfacial functional properties of soy protein isolate: succinylation modification. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6454-6463. [PMID: 35561106 DOI: 10.1002/jsfa.12012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In this paper, the effects of different succinic anhydride (SA) additions on the flexibility of soy protein isolate (SPI) were investigated, and changes in protein conformation and interfacial functional properties were measured. The structure-effect relationship between conformation, flexibility, and interfacial functional properties was established. RESULTS SPI was bound to SA through disulfide bonds, and the zeta potential was reduced. The β-sheet content decreased, the disordered structure increased, and there were changes in tertiary structure and microstructure. The surface hydrophobicity, disulfide bond content, and solution turbidity were reduced to 5063, 1.0967 μmol g-1 , and 0.0036 μmol g-1 respectively. The best flexibility of SPI (0.3977) and interfacial functional properties were obtained when the mass ratio of SA/SPI was 15%. Correlation analysis showed a highly significant positive correlation (P < 0.01) between flexibility and emulsification and foaming properties, with correlation coefficients of 0.960 and 0.942 for flexibility with emulsifying activity and emulsion stability respectively, and 0.972 and 0.929 for flexibility with foaming capacity and foaming stability respectively. CONCLUSION The results suggest that succinylation-induced conformational changes of SPI improved its interfacial functional properties by changing its flexibility. These results provide theoretical guidelines for the development and application of highly emulsifiable and stable soy protein products utilizing succinylation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ziteng Lian
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Sai Yang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shicheng Dai
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaohong Tong
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peilong Liao
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Weijie Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yijun Wang
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
18
|
The formation of soy protein fibrils-chitin nanowhisker complex coacervates: Relationship to mixed foam stability. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Recent advances of interfacial and rheological property based techno-functionality of food protein amyloid fibrils. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
An D, Ban Q, Du H, Wang Q, Teng F, Li L, Xiao H. Nanofibrils of food-grade proteins: Formation mechanism, delivery systems, and application evaluation. Compr Rev Food Sci Food Saf 2022; 21:4847-4871. [PMID: 36201382 DOI: 10.1111/1541-4337.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Due to the high aspect ratio, appealing mechanical characteristics, and various adjustable functional groups on the surface proteins, food-grade protein nanofibrils have attracted great research interest in the field of food science. Fibrillation, known as a process of peptide self-assembly, is recognized as a common attribute for food-grade proteins. Converting food-grade proteins into nanofibrils is a promising strategy to broaden their functionality and applications, such as improvement of the properties of gelling and emulsifying, especially for constructing various delivery systems for bioactive compounds. Protein source and processing conditions have a great impact on the size, structure, and morphology of nanofibrils, resulting in extreme differences in functionality. With this feature, it is possible to engineer nanofibrils into four different delivery systems, including gels, microcapsules, emulsions, and complexes. Construction of nanofibril-based gels via multiple cross-linking methods can endow gels with special network structures to efficiently capture bioactive compounds and extra mechanical behavior. The adsorption behavior of nanofibrils at the interface is highly complex due to the influence of several intrinsic factors, which makes it challenging to form stabilized nanofibril-based emulsion systems. Based on electrostatic interactions, microcapsules and complexes prepared using nanofibrils and polysaccharides have combined functional properties, resulting in adjustable release behavior and higher encapsulation efficiency. The bioactive compounds delivery system based on nanofibrils is a potential solution to enhance their absorption in the gastrointestinal tract, improve their bioavailability, and deliver them to target organs. Although food-grade protein nanofibrils show unknown toxicity to humans, further research can contribute to broadening the application of nanofibrils in delivery systems.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
21
|
Li H, Cai Y, Li F, Zhang B, Wu X, Wu W. Rancidity-induced protein oxidation affects the interfacial dynamic properties and the emulsion rheological behavior of rice bran protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels 2022; 8:gels8080517. [PMID: 36005118 PMCID: PMC9407489 DOI: 10.3390/gels8080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze–thaw stability test showed that the FIB-OPEs remained stable after three freeze–thaw cycles, while the SPH-OPEs could barely withstand one freeze–thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.
Collapse
|
23
|
Li T, Zhou J, Wu Q, Zhang X, Chen Z, Wang L. Modifying functional properties of food amyloid-based nanostructures from rice glutelin. Food Chem 2022; 398:133798. [DOI: 10.1016/j.foodchem.2022.133798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/30/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
24
|
Influence of molecular structure and interface behavior on foam properties of rice bran protein nano-particles. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Eng HY, Mohd Rozalli NH. Rice bran and its constituents: Introduction and potential food uses. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hui Yi Eng
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Minden 11800 Pulau Pinang Malaysia
| | - Norazatul Hanim Mohd Rozalli
- Food Technology Division School of Industrial Technology Universiti Sains Malaysia Minden 11800 Pulau Pinang Malaysia
| |
Collapse
|
26
|
Tang W, Pang S, Luo Y, Sun Q, Tian Q, Pu C. Improved protective and controlled releasing effect of fish oil microcapsules with rice bran protein fibrils and xanthan gum as wall materials. Food Funct 2022; 13:4734-4747. [PMID: 35388381 DOI: 10.1039/d1fo03500b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aimed to prepare fish oil microcapsules by freeze-drying an emulsion co-stabilized by rice bran protein fibrils (RBPFs) and xanthan gum (XG) to improve the oxidation stability and controlled release effect. Emulsions stabilized either solely by RBPFs or unfibrillated rice bran protein (RBP) or by a combination of RBP and XG were also fabricated as microcapsule templates for comparison. The rheological properties, particle size, and zeta potential of the emulsions were examined. In addition, the characteristics of the fish oil microcapsules such as surface oil content, encapsulation efficiency, water activity, moisture content, morphological structure, oxidation stability, and digestive performance were also assessed. The rheological properties revealed that the addition of XG increased the storage modulus of the emulsion and reduced the loss modulus and apparent viscosity. At shear rates of 0-100 s-1, the fish oil emulsion did not exhibit any gel properties or shear thinning. Fibrillation increased the particle size of the fish oil emulsion, whereas adding XG reduced the droplet size. The combination of RBP fibrillation and XG addition provided the highest encapsulation efficiency for fish oil. Fibrillation reduced the water activity and moisture content of the fish oil microcapsules. The anisotropy of the fibrils and the high viscosity of XG produced a layer of wrapping on the continuous heterogeneous surface of the freeze-dried powder particles. RBPF/XG microcapsules stored at 45 °C for 1 month had the lowest peroxide value and thiobarbituric acid value, the lowest surface oil content, and the lightest yellowness. These results suggest that the combination of RBPFs and XG provides better encapsulation and protective effects for fish oil microcapsules. Upon simulated digestion, the microcapsules containing XG and RBPFs exhibited a more favorable controlled release of free fatty acids. These findings indicate that microcapsules formed from emulsions co-stabilized by XG and RBPFs are suitable for encapsulating fish oil in functional foods.
Collapse
Affiliation(s)
- Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shuxian Pang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yongxue Luo
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qingjie Sun
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qin Tian
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
27
|
Savoldi TE, Scheufele FB, Drunkler DA, da Silva GJ, de Lima JD, Maestre KL, Triques CC, da Silva EA, Fiorese ML. Microencapsulation of
Saccharomyces boulardii
using vegan and vegetarian wall materials. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tárcio Enrico Savoldi
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Fabiano Bisinella Scheufele
- Postgraduate Program in Chemical and Biotechnological Processes. Federal University of Technology ‐ Paraná, 19 Cristo Rei Street, Vila Becker Toledo, 85902‐490 PR Brazil
| | - Deisy Alessandra Drunkler
- Postgraduate Program in Food Technology. Federal University of Technology ‐ Paraná, 4232 Brazil Avenue, Independência Medianeira, 858884‐000 PR Brazil
| | - Glacy Jaqueline da Silva
- Postgraduate Program in Biotechnology Applied to Agriculture. Paranaense University ‐ Unipar, 4282 Mascarenhas de Moraes Square, Center Umuarama, 87502‐210 PR Brazil
| | - Juliana Destro de Lima
- Postgraduate Program in Biotechnology Applied to Agriculture. Paranaense University ‐ Unipar, 4282 Mascarenhas de Moraes Square, Center Umuarama, 87502‐210 PR Brazil
| | - Keiti Lopes Maestre
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Carina Contini Triques
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Edson Antonio da Silva
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| | - Mônica Lady Fiorese
- Postgraduate Program in Chemical Engineering. Western Paraná State University ‐ Unioeste, 645 Faculdade Street, Jd. Santa Maria Toledo, 85903‐000 PR Brazil
| |
Collapse
|
28
|
Diao Y, Zhang Y, Zhang W, Xu W, Hu Z, Yi Y, Wang Y. Acid‐thermal‐induced formation of rice bran protein nano‐particles: foaming properties and physicochemical characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yunchun Diao
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yanpeng Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Weinong Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Wei Xu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Zhixiong Hu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yang Yi
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
29
|
Alavi F, Chen L. Complexation of nanofibrillated egg white protein and low methoxy pectin improves microstructure, stability, and rheology of oil-in-water emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Zhao H, Wang S, Zhao G, Li Y, Liu X, Yang L, Zhu L, Liu H. Fabrication and emulsifying properties of non-covalent complexes between soy protein isolate fibrils and soy soluble polysaccharides. Food Funct 2022; 13:386-397. [PMID: 34908089 DOI: 10.1039/d1fo01604k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-covalent complexes (SPIF/SSPS) of soy protein isolate fibrils (SPIF) and soy soluble polysaccharides (SSPS) were fabricated and used to stabilize oil-in-water (O/W) emulsions. FT-IR spectroscopy and zeta potential results demonstrated that the interactions between SPIF and SSPS mainly include hydrogen bonding and electrostatic interactions. The presence of SSPS decreased the particle size and surface hydrophobicity of SPIF, resulting in a decrease and redshift of the fluorescence intensity. During the interfacial adsorption process, SPIF/SSPS complexes had lower diffusion and penetration rates compared with pure SPIF because of their hydrophilic region, but the molecular reorganization rate increased. Emulsions stabilized with the SPIF/SSPS complex at 5 : 5 (i.e., 1 : 1) ratio had both an excellent emulsifying activity index (EAI) of 26.17 m2 g-1 and an excellent emulsifying stability index (ESI) of 93.01%, as well as the smallest emulsion droplet particle size of 1.74 μm. Meanwhile, no flocculation was observed in this emulsion which is attributed to the sufficient steric stabilization provided by the hydrophilic SSPS. After three weeks of storage, there was no phase separation observed in the emulsions stabilized by SPIF/SSPS complexes in 5 : 4 and 5 : 5 ratios and the Turbiscan stability indices were 17.86 and 15.14, respectively, much lower than the other emulsion formulations tested.
Collapse
Affiliation(s)
- Hekai Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
- National Research Center of Soybean Engineering and Technology, Northeast Agricultural University, Harbin 150000, China
| | - Guilan Zhao
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Yangyang Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Xiulin Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - Lijie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, China.
| |
Collapse
|
31
|
Meng Y, Wei Z, Xue C. Protein fibrils from different food sources: A review of fibrillation conditions, properties, applications and research trends. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
32
|
Wang N, Cui X, Duan Y, Yang S, Wang P, Saleh ASM, Xiao Z. Potential health benefits and food applications of rice bran protein: research advances and challenges. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Na Wang
- College of Light Industry, Liaoning University, Shenyang, China
| | - Xiaotong Cui
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yumin Duan
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Shu Yang
- College of Life Science and Bioengineering, Shenyang University, Shenyang, Liaoning, China
| | - Peng Wang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| | - Ahmed S. M. Saleh
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
- Department of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Zhigang Xiao
- College of Food, Shenyang Agricultural University, Shenyang, Liaoning, China
- College of Grain Science and Technology, Shenyang Normal University, Shenyang, Liaoning, China
| |
Collapse
|
33
|
Vaniski R, Silva SC, Silva‐Buzanello RA, Canan C, Drunkler DA. Improvement of
Lactobacillus acidophilus
La‐5 microencapsulation viability by spray‐drying with rice bran protein and maltodextrin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rosane Vaniski
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | | | | - Cristiane Canan
- Federal Technological University of Paraná Medianeira Paraná Brazil
| | | |
Collapse
|
34
|
Formation, structural characteristics, foaming and emulsifying properties of rice glutelin fibrils. Food Chem 2021; 354:129554. [PMID: 33761336 DOI: 10.1016/j.foodchem.2021.129554] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
The rice glutelin fibrils (RGFs) were formed under heating at acidic condition, and the optimal condition was achieved at pH 2, 150 mM (ionic strength), 4% (protein concentration), 90 °C and 300 rpm (stirring speed) through the thioflavin T intensity. The atomic force microscopy images showed that the average contour length of RGFs increased from < 100 to 365 nm under the optimal fibrillation. The average particle size of rice glutelin (RG) decreased from 650 to 221 nm after initial heating time. Combining the degraded subunits, it suggested that RG was hydrolyzed to peptides, then these released peptides assembled into the ordered fibrils via intermolecular interactions, accompanying by the structural rearrangement. Additionally, the foaming and emulsifying properties were improved during fibrillation, which could be related to the interfacial properties and structure of RGFs. This work will deepen the understanding of the formation of RGFs and explore their potential application.
Collapse
|
35
|
Li T, Wang L, Zhang X, Geng H, Xue W, Chen Z. Assembly behavior, structural characterization and rheological properties of legume proteins based amyloid fibrils. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106396] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Effects of rice bran rancidity on oxidation, structural characteristics and interfacial properties of rice bran globulin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106123] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|