1
|
Sun L, Yang L, Ding X, Chen S, Sun L, Gu H, Wang Y, Li S, Chen Z, Sun W, Zhao L, Nayab A. Effects of fermentation conditions on molecular weight, production, and physicochemical properties of gellan gum. Int J Biol Macromol 2024; 279:135304. [PMID: 39242009 DOI: 10.1016/j.ijbiomac.2024.135304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Gellan gum has been widely used in many industries due to its excellent physical properties. In this study, the effects of different fermentation conditions on molecular weight and production of gellan gum were analyzed, and the optimized fermentation conditions for a high molecular weight gellan gum (H-GG: 6.42 × 105 Da) were obtained, which increased the molecular weight and yield of gellan gum by 201.4 % and 44.9 % respectively. Fourier transform infrared spectroscopy (FT-IR) and x-ray diffraction (XRD) analysis indicated that H-GG has similar characteristic absorption and semi-crystalline structures with the initial gellan gum (I-GG), and it was composed of glucose, rhamnose, and glucuronic acid showing no obvious changes in the molecular structure. Scanning electron microscope (SEM) observation revealed that the filaments of H-GG were slender, longer, and looser with larger pores. Importantly, gel properties analysis showed that the gel strength, viscoelasticity, and water-holding capacity of H-GG were better than those of I-GG, and the rheological results revealed that the H-GG is a pseudoplastic fluid with higher apparent viscosity and stable viscoelasticity at 20-70 °C. Therefore, the molecular weight and yield of gellan gum are significantly affected by fermentation conditions, and the obtained H-GG demonstrates improved gel and rheological properties.
Collapse
Affiliation(s)
- Ling Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Lei Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xialiang Ding
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shiyi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Henghao Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yazhen Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Suyang Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ziwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Luning Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Afira Nayab
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
2
|
Hou Y, Ge Y, Mulati A, Yang Y, Wang J. Ultrasound as a Physical Elicitor to Improve Texture in Blueberry Fruit: Physiological Indicator and Transcriptomic Analysis. Foods 2024; 13:3246. [PMID: 39456309 PMCID: PMC11508173 DOI: 10.3390/foods13203246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Ultrasound (US) washing has been verified to improve the quality of postharvest blueberry fruit. However, its physiological and molecular mechanisms remain largely unknown. In the present study, an US with a frequency of 25 kHz and a power density of 400 W for 2 min was performed to investigate its role in impacting the quality of blueberries. The results showed that US washing improved the quality of blueberries, with a higher firmness and lignin content (p < 0.05) than the control. Moreover, US washing inhibited the levels of superoxide radical (O2·-) production rate and hydrogen peroxide (H2O2) content while stimulating the superoxide dismutase (SOD) and catalase (CAT) activities of the blueberry fruit. Transcriptomic analysis screened 163 differentially expressed genes (DEGs), and the key DEGs were mainly enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant-pathogen interaction pathways. Furthermore, the transcription factors and the structural genes associated with lignin biosynthesis were also identified from the DEGs. More importantly, the correlation analysis revealed that firmness and lignin content were positively correlated with the expression of C4H, COMT1, and POD52 in blueberry fruit, indicating that these genes might be involved in the regulation of US-mediated lignin synthesis. The findings provide new insight into the US-enhanced quality of blueberry fruits.
Collapse
Affiliation(s)
| | | | | | | | - Jiayi Wang
- National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (Y.H.); (Y.G.); (A.M.); (Y.Y.)
| |
Collapse
|
3
|
Yao J, Zhang L, Fan K. Effect of chitosan coating, carbon dots and ultrasound treatment on microorganisms and physicochemical quality of fresh-cut lettuce. FOOD SCI TECHNOL INT 2024; 30:574-582. [PMID: 37661649 DOI: 10.1177/10820132231199508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The effect of chitosan (CH) coating, carbon dots (CDs) and ultrasound (US) treatment on microorganisms and the physicochemical quality of fresh-cut (FC) lettuce was investigated. FC lettuces were treated by US and dipped into CD/CH coating, then packed and stored for 15 d at 4 °C. Results presented that CD/CH coating exhibited a superior effect on the depressing growth of aerobic plate count, mould and yeast, the decrease of respiratory rate, the inhibition of peroxidase and polyphenol oxidase activities, the maintenance of ascorbic acid and chlorophyll contents, the reduction of mass loss, the restriction of water distribution in US-treated FC lettuce. This exhibited that CD/CH coating effectively kept the microbial and physicochemical quality of FC lettuce.
Collapse
Affiliation(s)
- Jianhua Yao
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Liang Zhang
- Yichang Anji Agriculture Co., Ltd, Zhijiang, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
4
|
Yu Y, Wang Y, Okonkwo CE, Chen L, Zhou C. Multimode ultrasonic-assisted decontamination of fruits and vegetables: A review. Food Chem 2024; 450:139356. [PMID: 38643647 DOI: 10.1016/j.foodchem.2024.139356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Fruits and vegetables (F&V) are a significant part of our diet consumption. Microbial and pesticide residues are the predominant safety hazards of F&V consumption. Ordinary water washing has a very limited effect on removing microorganisms and pesticide residues and requires high water usage. Ultrasound, as an environmentally friendly technology, shows excellent potential for reducing microbial contamination and pesticide residue. This paper summarizes the research on ultrasound application in F&V washing, including the removal of microbial and pesticide residues and the comprehensive effect on their physicochemical characteristics. Furthermore, multimode ultrasonic-assisted techniques like multi-frequency and sequential ultrasound, combined with novel and conventional methods, can enhance the ultrasound-based effect and be more effective and sustainable in preventing F&V from microbial contamination. Overall, this work explicitly establishes the background on the potential for ultrasound cleaning and disinfection in the food industry as a green, effective, and ultimate method of preventing foodborne illnesses.
Collapse
Affiliation(s)
- Yanhua Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Clinton Emeka Okonkwo
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| | - Li Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Qu Y, Guo L, Hong C, Wan Y, Tuly J, Ma H. Effects of multi-frequency ultrasonic assisted sodium hypochlorite on the cleaning effect and quality of fresh-cut scallion stems. ULTRASONICS SONOCHEMISTRY 2023; 100:106613. [PMID: 37774468 PMCID: PMC10561118 DOI: 10.1016/j.ultsonch.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study aimed to evaluate the feasibility of multi-frequency ultrasound-assisted sodium hypochlorite (NaClO) on fresh-cut scallion stem (FCS) cleaning. Ultrasonic cleaning parameters (frequency mode, frequency amplitude, and the sample to water ratios) were optimized against cleanliness and microbial biomass as evaluation indexes. Under the optimum conditions, the free chlorine residues and quality attributes of FCS were also investigated. The results showed that the cleanliness of FCS improved significantly (p < 0.05) and the total number of microorganisms, especially Escherichia coli, decreased dramatically under the optimized cleaning condition with the simultaneous ultrasound (US) at the sweep frequency (SF) combination of 20 + 28 kHz, the ultrasonic density of 60 W/L, pulse time of 10 s, which indicated that the shelf life of FCS would be extended. Compared to FCS after the 250 ppm NaClO cleaning, the retention of ascorbic acid (AA), color, and texture structure of FCS had no significant difference after ultrasound-assisted NaClO treatment. Meanwhile, the content of allicin increased by 52.5% under ultrasound-assisted cleaning. The integration of US into the cleaning process resulted in a notably reduction of 68% in NaClO concentration, as well as the weight loss and respiration rate (RR) of the scallion stems. Therefore, ultrasound-assisted NaClO cleaning was regarded as a promising and effective approach for cleaning fresh-cut vegetables.
Collapse
Affiliation(s)
- Yulan Qu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Lina Guo
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Chen Hong
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yuming Wan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Jamila Tuly
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China; Institute of Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Fernandes FAN, Rodrigues S. Ultrasound applications in drying of fruits from a sustainable development goals perspective. ULTRASONICS SONOCHEMISTRY 2023; 96:106430. [PMID: 37167783 DOI: 10.1016/j.ultsonch.2023.106430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
This review focuses on the many contributions of ultrasound technologies for fruit drying toward the United Nations Sustainable Development Goals (SDG). Along this review, several aspects attained from the application of ultrasound technologies are correlated with the SDGs. The main ultrasonic technologies applied for fruit drying, such as ultrasonic bath, probe ultrasound, air-borne ultrasound air-drying, and ultrasound-assisted contact air-drying, are presented. An in-depth discussion on ultrasound contributions, its advantages, disadvantages, and limitations are made. The effects of ultrasound on water diffusivity in several fruits are presented by correlating this effect with drying time and cost of energy. Ultrasound-assisted fruit drying, like other food processing technologies, directly impacts Zero Hunger, but ultrasound technologies contribute to much more than delivering long shelf-life food. This technology can be used to produce healthy foods and provide well-being, which will be discussed by correlating the effects of ultrasound-assisted air-drying with the concentration of nutritional compounds. Ultrasound-assisted fruit drying reduces wastewater toxicity and energy consumption and improves productivity, potentially improving workplaces and salaries. A walk through the technology is presented from Zero Hunger to No Poverty.
Collapse
Affiliation(s)
- Fabiano A N Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil.
| | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
7
|
Effects of conjugates of ε-polylysine-dextran created through Maillard reaction on quality and storage stability of the chicken gel. Food Res Int 2023; 164:112360. [PMID: 36737948 DOI: 10.1016/j.foodres.2022.112360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
The present study mainly focused on the effects of the conjugates of PL-dextran produced through the Maillard reaction on the quality and storage stability of chicken gel for 5 days at 4 ℃. According to the results of the texture profile, water retention capacity (WRC), low-field nuclear magnetic resonance (LF NMR), aerobic plate count (APC), and total volatile basic nitrogen (TVBN), ε-polylysine (PL) could improve chicken gel storage stability while decreasing the quality of protein gels (p < 0.05). Additionally, adding dextran with high or low molecular weight could significantly increase the quality of gel during storage (p < 0.05), whereas decreased storage stability could be obtained (p < 0.05). In general, conjugates formed by PL and dextran with high molecular weight were beneficial for quality maintenance. In comparison, the polymers produced from the low molecular weight of dextran could modify the storage stability of gels. Adding conjugates of dextran and PL benefited the structure formation of protein gel, while PL would retain part of antibacterial activity when crosslinked with dextran. Therefore, it could be concluded that the quality improvement effect of PL-dextran addition on gel quality was greater than its antibacterial effect, which would impact the formulation design of novel emulsion-type meat products.
Collapse
|
8
|
Ultrasound, Acetic Acid, and Peracetic Acid as Alternatives Sanitizers to Chlorine Compounds for Fresh-Cut Kale Decontamination. Molecules 2022; 27:molecules27207019. [DOI: 10.3390/molecules27207019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chlorinated compounds are usually applied in vegetable sanitization, but there are concerns about their application. Thus, this study aimed to evaluate ultrasound (50 kHz), acetic acid (1000; 2000 mg/L), and peracetic acid (20 mg/L) and their combination as alternative treatments to 200 mg/L sodium dichloroisocyanurate. The overall microbial, physicochemical, and nutritional quality of kale stored at 7 °C were assessed. The impact on Salmonella enterica Typhimurium was verified by plate-counting and scanning electron microscopy. Ultrasound combined with peracetic acid exhibited higher reductions in aerobic mesophiles, molds and yeasts, and coliforms at 35 °C (2.6; 2.4; 2.6 log CFU/g, respectively). Microbial counts remained stable during storage. The highest reduction in Salmonella occurred with the combination of ultrasound and acetic acid at 1000 mg/L and acetic acid at 2000 mg/L (2.8; 3.8 log CFU/g, respectively). No synergistic effect was observed with the combination of treatments. The cellular morphology of the pathogen altered after combinations of ultrasound and acetic acid at 2000 mg/L and peracetic acid. No changes in titratable total acidity, mass loss, vitamin C, or total phenolic compounds occurred. Alternative treatments presented equal to or greater efficacies than chlorinated compounds, so they could potentially be used for the decontamination of kale.
Collapse
|
9
|
Zhou W, Sarpong F, Zhou C. Use of Ultrasonic Cleaning Technology in the Whole Process of Fruit and Vegetable Processing. Foods 2022; 11:foods11182874. [PMID: 36141006 PMCID: PMC9498452 DOI: 10.3390/foods11182874] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
In an era of rapid technological development, ultrasound technology is being used in a wide range of industries. The use of ultrasound technology in fruit and vegetable processing to improve production efficiency and product quality has been an important research topic. The cleaning of whole fresh fruits and vegetables is an important part of fruit and vegetable processing. This paper discusses the development process of components of the ultrasonic equipment, the application of ultrasonic technology in fruit and vegetable cleaning, and the research advances in ultrasonic cleaning technology. Moreover, the feasibility of ultrasonication of fruits and vegetables for cleaning from the perspectives of microbial inactivation, commodity storage, and sensory analysis were discussed. Finally, the paper identified the inevitable disadvantages of cavitation noise, erosion, and tissue damage in fruit and vegetable processing and points out the future directions of ultrasonic fruit and vegetable cleaning technology.
Collapse
Affiliation(s)
- Wenhao Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Frederick Sarpong
- Value Addition Division, CSIR-Oil Palm Research Institute, Kade P.O. Box 74, Ghana
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Correspondence: ; Tel.: +86-511-88780201
| |
Collapse
|
10
|
Johnson Esua O, Sun DW, Ajani CK, Cheng JH, Keener KM. Modelling of inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by combining ultrasound with plasma functionalized buffer. ULTRASONICS SONOCHEMISTRY 2022; 88:106086. [PMID: 35830785 PMCID: PMC9287556 DOI: 10.1016/j.ultsonch.2022.106086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Linear (first-order) and non-linear (Weibull, biphasic, and log-logistic) models were evaluated for predicting the inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by a novel technique (UPFB) combining ultrasound (US) with plasma functionalized buffer (PFB). Results showed that UPFB was more effective for inactivating bacteria when compared with individual applications of US or PFB with reductions of 3.92 and 3.70 log CFU/g for Escherichia coli and Listeria monocytogenes, respectively. Compared with the linear model, the three non-linear models presented comparable performances and were more suitable for describing the inactivation kinetics with superior adj-R2 (0.962-0.999), accuracies (0.970-1.006) and bias factors (0.995-1.031), and by assessing the strengths of evidence, weights of evidence and evidence ratios for the models, the biphasic model was identified as the best fit model. The current study provided new insights into the effective evaluation of decontamination methods.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| | - Clement Kehinde Ajani
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | | |
Collapse
|
11
|
Fatty Acid Profile, Physicochemical Composition, and Sensory Properties of Atlantic Salmon Fish (Salmo salar) during Different Culinary Treatments. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7425142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to assess the effects of boiling, steaming, and oven-cooking on the fatty acid profile, physicochemical composition, and sensory properties of Atlantic salmon fish. The protein content of steamed (18.90%) and oven-cooked (20.59%) salmon was significantly higher than that of boiled (16.69%) and raw fish (14.73%). Analysis of the fatty acids profile revealed that steaming significantly (
) influenced the fatty acid contents of Atlantic salmon by recording the lowest SFA and the highest omega-3, omega-6, and PUFA contents. Textural properties such as hardness, gumminess, and chewiness were significantly higher (
) in oven-cooked salmon, with steamed salmon having significantly lower and higher values of hardness (75.32 ± 4.73) and springiness (90.56 ± 3.94), respectively. Also, volatile organic compounds, including aldehydes, ketones, and alcohol, were significantly higher (
) in oven-cooked and steamed salmon. Additionally, the E-nose sensors analysis showed that S2 and S7 were significantly correlated during oven-cooking and steaming. Furthermore, low-field NMR analysis showed that the values of T21 and T22 relaxation characteristics of raw and cooked samples fluctuated, with steamed salmon having the highest peak values indicating reduced proton mobility and increased freedom of the protons compared to other treatments. Therefore, steaming resulted in the best quality salmon when considering the fatty acid profile, physicochemical composition, and sensory properties of Atlantic salmon fish, suggesting further studies to ascertain its effectiveness compared to modern treatments.
Collapse
|
12
|
Zhang ZH, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan JK. Micro-nano-bubble technology and its applications in food industry: A critical review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2023172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Zhi-Hong Zhang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shaomeng Wang
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lina Cheng
- Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Haile Ma
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianli Gao
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang, China
| | | | - Jing-Kun Yan
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| |
Collapse
|
13
|
NASCIMENTO RC, SÃO JOSÉ JFBD. Green tea extract: a proposal for fresh vegetable sanitization. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.63421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Fan K, Wu J, Chen L. Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. ULTRASONICS SONOCHEMISTRY 2021; 80:105838. [PMID: 34801817 PMCID: PMC8605411 DOI: 10.1016/j.ultsonch.2021.105838] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 05/24/2023]
Abstract
The eating safety and high quality of fruits and vegetables have always been concerned by consumers, so require a safe, non-toxic, environment-friendly technology for their preservation. The application of ultrasound is a potential technology in the preservation of fruits and vegetables. This paper describes the ultrasound mechanism for inactivating microorganisms, with the cavitation phenomena of ultrasound being considered as a main effect. Effect of ultrasound on microorganisms of fruits and vegetables was discussed. Ultrasound alone and its combined treatments can be an effective method to inactivate the spoilage and pathogenic microorganisms on the surface of fruit and vegetables. Effect of ultrasound on physicochemical quality of fruits and vegetables was reviewed. Ultrasound and its combined treatments reduced mass loss, decreased color change, maintained firmness, enhanced and inhibited enzyme activity as well as preserving nutritional components such as total phenolic, total flavonoids, anthocyanin, and ascorbic acid.
Collapse
Affiliation(s)
- Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China.
| | - Jiaxin Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Libing Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| |
Collapse
|
15
|
Flat dual-frequency sweeping ultrasound enhances the inactivation of polyphenol oxidase in strawberry juice. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01202-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Lv JM, Gouda M, Zhu YY, Ye XQ, Chen JC. Ultrasound-Assisted Extraction Optimization of Proanthocyanidins from Kiwi ( Actinidia chinensis) Leaves and Evaluation of Its Antioxidant Activity. Antioxidants (Basel) 2021; 10:antiox10081317. [PMID: 34439565 PMCID: PMC8389255 DOI: 10.3390/antiox10081317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Using ultrasound (US) in proanthocyanidin (PA) extraction has become one of the important emerging technologies. It could be the next generation for studying the US mechnophore impact on the bioactive compound’s functionality. The objective of this study was to demonstrate the potential of US treatment on PAs extracted from kiwifruit (Actinidia chinensis) leaves, and to provide a comprehensive chemical composition and bioactivity relationship of the purified kiwifruit leaves PAs (PKLPs). Several methods like single-factor experiments and response surface methodology (RSM) for the four affected factors on US extraction efficiency were constructed. HPLC-QTOF-MS/MS, cytotoxicity analysis, and antioxidant activity were also demonstrated. In the results, the modeling of PA affected factors showed that 40% US-amplitude, 30 mL/g dry weight (DW) solvent to solid ration (S/S), and 70 °C for 15 min were the optimum conditions for the extraction of PAs. Furthermore, PKLPs exhibited significant radical scavenging and cellular antioxidant activity (p < 0.05). In conclusion, this study’s novelty comes from the broad prospects of using US in PKLP green extraction that could play an important role in maximizing this phytochemical functionality in drug discovery and food science fields.
Collapse
Affiliation(s)
- Ji-Min Lv
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Mostafa Gouda
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
- Department of Nutrition & Food Science, National Research Centre, Dokki, Giza 12422, Egypt
- Correspondence: (M.G.); (J.-C.C.)
| | - Yan-Yun Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Xing-Qian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
| | - Jian-Chu Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (J.-M.L.); (Y.-Y.Z.); (X.-Q.Y.)
- Correspondence: (M.G.); (J.-C.C.)
| |
Collapse
|
17
|
Esua OJ, Cheng JH, Sun DW. Optimisation of treatment conditions for reducing Shewanella putrefaciens and Salmonella Typhimurium on grass carp treated by thermoultrasound-assisted plasma functionalized buffer. ULTRASONICS SONOCHEMISTRY 2021; 76:105609. [PMID: 34157567 PMCID: PMC8237354 DOI: 10.1016/j.ultsonch.2021.105609] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 05/16/2023]
Abstract
A novel method of thermoultrasound-assisted plasma functionalized buffer (PFB) for decontaminating grass carp was evaluated using the Box-Behnken design (BBD) with processing variables including PFB generating voltage (PV), ultrasound treatment time (UT) and temperature (TP). The predicted models were found to be significant (p < 0.05) and displayed sufficient fitness with experimental data as indicated by non-significant (p > 0.05) lack of fit and high coefficient of determination (R2≥0.97) values. The optimum decontamination conditions for the responses of S. putrefaciens and S. Typhimurium were PV of 66 V, UT of 14.90 min and TP of 60 ℃, achieving reductions of 4.40 and 3.97 log CFU/g, respectively, with a desirability of 0.998. Among the variables, temperature presented higher significance for inactivating bacteria and the production of volatile basic nitrogen and lipid peroxidation under the optimized conditions were within the limits of freshness for grass carp. Additionally, the effects of PFB and the optimized thermoultrasound-assisted PFB decontamination were mild on the microstructure of grass carp with slight ruptures and loose myofibril structures, indicating the potential of thermoultrasound-assisted PFB for seafood products decontamination with reduced processing time.
Collapse
Affiliation(s)
- Okon Johnson Esua
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin 4, Ireland.
| |
Collapse
|
18
|
Contribution of ultrasound and conventional hot water to the inactivation of Rhizopus stolonifer in sweet potato. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Control of N-Propanol Production in Simulated Liquid State Fermentation of Chinese Baijiu by Response Surface Methodology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-propanol is a vital flavor compound of Chinese baijiu, and the proper n-propanol contents contribute to the rich flavor of Chinese baijiu. However, the excessive content of n-propanol in liquor will reduce the drinking comfort. Based on the Box–Behnken design principle, the response surface test was used to optimize the factors affecting the production of n-propanol in a simulated liquid state fermentation of Chinese baijiu, and the best combination of factors to reduce n-propanol content was determined. Results showed that the content ratio of additional glucose to threonine and temperature had a significant effect on the production of n-propanol (p = 0.0009 < 0.01 and p = 0.0389 < 0.05, respectively). The best combination of fermentation parameters obtained was: the ratio of additional glucose to threonine content was 6:4, the temperature was 32 °C, and the initial pH was 4.40. Under these conditions, the production of n-propanol was 53.84 ± 0.12 mg/L, which was close to the theoretical value. Thus, the fermentation parameter model obtained through response surface optimization is reliable and can provide technical guidance for regulating the production of n-propanol and realizing high-quality baijiu brewing.
Collapse
|
20
|
Simultaneous selective enrichment of methylparaben, propylparaben, and butylparaben from cosmetics samples based on syringe-to-syringe magnetic fluid phase microextraction. Talanta 2021; 221:121547. [DOI: 10.1016/j.talanta.2020.121547] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/25/2023]
|
21
|
Gençdağ E, Görgüç A, Okuroğlu F, Yılmaz FM. The effects of power ‐ ultrasound, peroxyacetic acid and sodium chloride washing treatments on the physical and chemical quality characteristics of dried figs. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Esra Gençdağ
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Ahmet Görgüç
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Fulya Okuroğlu
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| | - Fatih Mehmet Yılmaz
- Engineering Faculty, Food Engineering Department Aydın Adnan Menderes University Aydın Turkey
| |
Collapse
|
22
|
Donatti Leão Alvarenga P, Mileib Vasconcelos C, de São José JFB. Application of Ultrasound Combined with Acetic Acid and Peracetic Acid: Microbiological and Physicochemical Quality of Strawberries. Molecules 2020; 26:molecules26010016. [PMID: 33375142 PMCID: PMC7792923 DOI: 10.3390/molecules26010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022] Open
Abstract
This work evaluated the application of organic acids (acetic and peracetic acid) and ultrasound as alternative sanitization methods for improving the microbiological and physicochemical qualities of strawberries. A reduction of up to 2.48 log CFU/g aerobic mesophiles and between 0.89 and 1.45 log CFU/g coliforms at 35 °C was found. For molds and yeasts, significant differences occurred with different treatments and storage time (p < 0.05). Ultrasound treatments in combination with peracetic acid and acetic acid allowed a decimal reduction in molds and yeasts (p < 0.05). All evaluated treatments promoted a significant reduction in the Escherichia coli count (p < 0.05). Scanning electron microscopy revealed fragmented E. coli cells due to treatment with acetic acid and ultrasound. Storage time significantly affected pH, total titratable acidity, total soluble solids and the ratio of the total titratable acidity to the total soluble solids (p < 0.05). Anthocyanin content did not change with treatment or time and generally averaged 13.47 mg anthocyanin/100 g of strawberries on fresh matter. Mass loss was not significantly affected by the applied treatments (p > 0.05). The combination of ultrasound and peracetic acid may be an alternative to chlorine-based compounds to ensure microbiological safety without causing significant changes in the physicochemical characteristics of strawberries.
Collapse
Affiliation(s)
- Priscila Donatti Leão Alvarenga
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória, Espírito Santo 28630, Brazil;
| | - Christiane Mileib Vasconcelos
- Food Biotechnology Laboratory, Vila Velha University, Comissário José Dantas de Melo Avenue, Vila Velha, Espírito Santo 28630, Brazil;
| | - Jackline Freitas Brilhante de São José
- Department of Integrated Health Education, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória, Espírito Santo 28630, Brazil
- Correspondence: ; Tel.: +55–27–3335–7223
| |
Collapse
|