1
|
Icyer NC, Ozmen D, Sener D, Kokyar N, Toker OS. Structural and sensory impact of various emulsifiers in cocoa hazelnut spread formulations. J Food Sci 2024; 89:6590-6600. [PMID: 39218962 DOI: 10.1111/1750-3841.17343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/18/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
In this study, the effects of emulsifiers such as lecithin, AMPs, Palsgaard® Oil-Binder and GMS on cocoa hazelnut spread rheology were compared under the same process conditions and formulation. Emulsifiers were added to the formulation separately at rates of 0.3%-0.4%-0.5%. Hardness values in cocoa hazelnut spread were examined at 15-day intervals until the 60th day. In addition, viscosity, rheological analyses, color, spreadability, stability tests, and sensory analyses were performed. In the production of cocoa hazelnut spread, lecithin and AMP have less hardness and lower viscosity, greater fluent consistency, better spreadability, and lower "work of shear" values compared with other emulsifiers. The emulsifier type/ratio difference did not affect the color value statistically. It was determined that the use of Oil-Binder and GMS significantly protected the stability compared with other emulsifiers. During the 60-day storage period, lecithin preserved its hardness properties better than other emulsifiers. When sensory properties were examined, the use of lecithin and AMP in cocoa hazelnut spread samples scored high in brightness, spreadability, mouthfeel, and taste parameters. As a result, lecithin comes to the fore in the use of different types and ratios of emulsifiers in cocoa hazelnut spread production technology.
Collapse
Affiliation(s)
- Necattin Cihat Icyer
- Department of Food Engineering, Faculty of Engineering and Architecture, Mus Alparslan University, Mus, Turkey
| | - Duygu Ozmen
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | | | | | - Omer Said Toker
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
2
|
Sun X, Zhang Z, Li W, Tian H, Yuan L, Yang X. Stability of high internal-phase emulsions prepared from phycocyanin and small-molecule sugars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2917-2927. [PMID: 38036304 DOI: 10.1002/jsfa.13184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND The use of high internal-phase Pickering emulsions in the food industry is widespread due to their excellent stability and special rheological properties. Proteins are often used as food-grade Pickering stabilizers due to their safety and nutritious properties. Nowadays, the development and efficient utilization of novel proteins as Pickering stabilizers has become a new challenge. RESULTS Phycocyanin complexes with small-molecule sugars (SMS), formed as a result of non-thermal interactions, can serve as stabilizers for high internal-phase Pickering emulsions. The addition of SMS-enabled gel-like emulsions significantly reduced the amount of emulsifier used. When the SMS was sorbitol, the emulsion had excellent elastic properties and self-supporting ability and was stable during long-term storage, when subjected to centrifugation, and under different temperature conditions. The fluorescent property of phycocyanin was utilized to investigate the formation mechanism of the emulsion. Small-molecule sugars were able to form 'sugar-shell' structures on the surface of proteins to enhance the structural stability of proteins. Phycocyanin-SMS-stabilized emulsions provided superior protection for photosensitive and volatile substances. The retention rates of trans-resveratrol and n-hexane increased by 384.75% and 30.55%, respectively. CONCLUSION These findings will encourage the development of proteins that stabilize Pickering emulsions. They will also provide new ideas for protecting photosensitive and volatile substances. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaolin Sun
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Zhong Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hongye Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Li Yuan
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, Engineering Research Center of High Value Utilization of Western Fruit Resources, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
3
|
Avci E, Akcicek A, Tekin Cakmak ZH, Kasapoglu MZ, Sagdic O, Karasu S. Isolation of Protein and Fiber from Hot Pepper Seed Oil Byproduct To Enhance Rheology, Emulsion, and Oxidative Stability of Low-Fat Salad Dressing. ACS OMEGA 2024; 9:10243-10252. [PMID: 38463330 PMCID: PMC10918801 DOI: 10.1021/acsomega.3c07410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
This research aimed to explore the potential utilization of protein (P) and fiber (F) extracted from cold-pressed hot pepper seed oil byproduct (HPOB) in the enhancement of the rheological properties, emulsion stability, and oxidative stability of a low-fat salad dressing with 10% oil content. The assessment involved the examination of several aspects, including the physical qualities such as emulsion stability, rheological behavior, and particle size as well as the microstructure and oxidative stability. It is worth mentioning that all emulsions had desirable characteristics, including shear-thinning behavior characterized by a consistency index ranging from 6.82 to 22.32 Pa s, as well as viscoelasticity and recoverability. These qualities were notably improved with the addition of P and F of HBOP. During the thermal stability testing, it was observed that the low-fat dressing containing 1% P-1F exhibited minor changes in the G* value, indicating its exceptional emulsion stability. The control salad dressings in C1 samples contained 30% oil. (B): C2: samples containing 10% oil (low-fat salad dressing sample) exhibited ζ-potential values of -34.70 and -46.70 mV. The samples 1P-1F and 2P-1F exhibited the highest ζ-potential values. Furthermore, the increase in F resulted in a reduction in droplet size and elicited elevated values for the induction period (IP), with the exception of samples containing 1% protein, 3% fiber, and 10% oil (1P-3F). The salad dressings that included P-F exhibited enhanced oxidative stability, demonstrated by their longer IP (ranging from 5.11 to 7.04 h) compared to the control samples. The formulation consisting of samples contained 1% protein, 1% fiber, and 10% oil (1P-1F) and samples contained 2% protein, 1% fiber, and 10% oil (2P-1F) exhibited superior ζ-potential, emulsion stability, and recovery rate compared to other formulations. The findings of this investigation indicate that the interaction of proteins and fibers extracted from HPOB exhibits the potential to enhance the rheological characteristics, emulsion stability, and oxidative stability of low-fat salad dressing.
Collapse
Affiliation(s)
- Esra Avci
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
- Bypro
Functional Food and Biotechnology, Esenler, 34210 Istanbul, Turkey
| | - Alican Akcicek
- Faculty
of Tourism, Department of Gastronomy and Culinary Arts, Kocaeli University, Kartepe, 41080 Kocaeli, Turkey
| | - Zeynep Hazal Tekin Cakmak
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
| | | | - Osman Sagdic
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
| | - Salih Karasu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, 34210 Istanbul, Turkey
| |
Collapse
|
4
|
Mekarun J, Treepet S, Rujiravanit R, Theeramunkong S, Watthanaphanit A. Caffeine-Containing Emulsion: Influence of the HLB and Mixing Proportions, the Oil's Chemical Composition, and the Existence of Caffeine on Emulsion Properties. ACS OMEGA 2024; 9:2113-2122. [PMID: 38250370 PMCID: PMC10795154 DOI: 10.1021/acsomega.3c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
This study employs a low-energy emulsification method to prepare caffeine-containing emulsions, denoted as Caf-EM. Three different oils, including coconut, sesame, and grape seed oils, are utilized along with the surfactants Span 80 and Tween 80. We investigate the influence of various factors, including (i) the hydrophilic-lipophilic balance (HLB) and surfactant ratio, (ii) the chemical composition of the oils, and (iii) the presence of caffeine, on the stability and size of emulsions. The results indicate that the HLB value and surfactant ratio are the most crucial factors affecting the emulsions' stability. The most stable Caf-EM formulation is achieved by combining mixed surfactants of Span 80 and Tween 80 with an optimal HLB value of 6.4 at a concentration of 15% (S15 to 6.4) across all oil types. This specific ratio also leads to significantly smaller emulsion droplet sizes than other ratios and is the only ratio that produces stable emulsions even without caffeine (denoted as EM). Notably, formulation S15-6.4 additionally causes a phase inversion from oil-in-water (O/W) to water-in-oil (W/O). Furthermore, the presence of caffeine in the water phase contributes to the formation of smaller and more stable emulsions. The particle size of Caf-EM is approximately 1.5 times smaller than that of EM. Regarding the oil's chemical composition, while there is a discernible trend in emulsion droplet size (coconut oil > grape seed oil > sesame oil), the differences within this sequence are insignificant, suggesting that the oil's chemical composition does not have a pronounced effect.
Collapse
Affiliation(s)
- Jiramet Mekarun
- Department
of Chemistry, Faculty of Science, Mahidol
University, Salaya 73170, Nakhon Pathom, Thailand
| | - Sasimaporn Treepet
- Department
of Chemistry, Faculty of Science, Mahidol
University, Salaya 73170, Nakhon Pathom, Thailand
| | - Ratana Rujiravanit
- The
Petroleum and Petrochemical College, Chulalongkorn
University, Bangkok 10330, Thailand
- Center
of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sewan Theeramunkong
- Thammasat
University Research Unit in Drug, Health Product Development and Application
(DHP-DA), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani 12120, Thailand
| | - Anyarat Watthanaphanit
- Department
of Chemistry, Faculty of Science, Mahidol
University, Salaya 73170, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Avci E, Tekin-Cakmak ZH, Ozgolet M, Karasu S, Kasapoglu MZ, Ramadan MF, Sagdic O. Capsaicin Rich Low-Fat Salad Dressing: Improvement of Rheological and Sensory Properties and Emulsion and Oxidative Stability. Foods 2023; 12:foods12071529. [PMID: 37048350 PMCID: PMC10093882 DOI: 10.3390/foods12071529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
This study aimed to investigate the potential use of cold-pressed hot pepper seed oil by-product (HPOB) in a low-fat salad dressing to improve its rheological properties, emulsion, and oxidative stability. The total phenolic content (TPC), the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and CUPRIC reducing antioxidant capacity (CUPRAC) values were 317.4 mg GAE/100 g, 81.87%, and 6952.8 mg Trolox/100 g, respectively. The capsaicin, dihydrocapsaicin, and total carotenoid content were 175.8 mg/100 g, 71.01 mg/100 g, and 106.3 µg/g, respectively. All emulsions indicated shear-thinning, viscoelastic solid-like behavior, and recoverable characteristics, which were improved via enrichment with HPOB. The thermal loop test showed that the low-fat sample formulated with 3% HPOB indicated little change in the G* value, showing that it exhibited high emulsion stability. The induction period values (IP) of the salad dressing samples containing HPOB (between 6.33 h and 8.33 h) were higher than the IP values of the control samples (3.20 h and 2.58 h). The enrichment with HPOB retarded the formation of oxidative volatile compounds of hexanal, nonanal, and 1-octene-3-ol. According to the results presented in this study, HPOB could be effectively used in a low-fat salad dressing to enhance its rheological characteristics and oxidative stability.
Collapse
Affiliation(s)
- Esra Avci
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Zeynep Hazal Tekin-Cakmak
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Muhammed Ozgolet
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | | | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
6
|
The Potential Use of Cold-Pressed Coconut Oil By-Product as an Alternative Source in the Production of Plant-Based Drink and Plant-Based Low-Fat Ice Cream: The Rheological, Thermal, and Sensory Properties of Plant-Based Ice Cream. Foods 2023; 12:foods12030650. [PMID: 36766178 PMCID: PMC9914183 DOI: 10.3390/foods12030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
This study aimed to investigate the potential use of cold-pressed coconut oil by-products (COB) as a low-cost alternative source for plant-based drink and ice cream production. Firstly, a plant-based drink was produced from cold-pressed coconut oil by-products (COB drink) and compared with a commercial coconut drink. The fat, protein, and zeta potential values of coconut drink obtained from COB were higher than those of the commercial samples. In addition, the particle size value of the drink obtained from COB was found to be lower than that of the commercial drink. In the second stage, full-fat and low-fat plant-based ice cream samples using COB drink were produced and compared to control ice cream samples (produced by the commercial coconut drink) in terms of rheological, sensorial, and thermal properties. Rheological analysis showed that all plant-based ice cream samples indicated pseudoplastic, solid-like, and recoverable characteristics. Low-fat commercial control ice cream samples (C1) indicated the lowest K value (9.05 Pasn), whereas the low-fat plant-based ice cream sample produced by the COB drink (COB-3) exhibited the highest K value (17.69 Pasn). ΔHf values of the plant-based ice cream samples varied from 144.70 J/g to 172.70 J/g. The low-fat COB ice cream stabilized with 3% COB and full-fat COB ice cream samples showed lower ΔHf values than control ice cream samples, indicating that the COB ice cream showed desired thermal properties. The COB drink may be utilized in plant-based ice cream without altering sensory qualities, and low-fat ice cream could be manufactured in the same manner to attain full-fat ice cream quality characteristics. The results of this study demonstrated that COB can be successfully used as an inexpensive raw material source in the production of full-fat and reduced-fat vegetable-based ice cream.
Collapse
|
7
|
Yalmanci D, Dertli E, Tekin-Cakmak ZH, Karasu S. Utilization of exopolysaccharide produced by Leuconostoc lactis GW-6 as an emulsifier for low-fat mayonnaise production. Int J Biol Macromol 2023; 226:772-779. [PMID: 36521704 DOI: 10.1016/j.ijbiomac.2022.12.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the potential usage of exopolysaccharide (EPS) produced by Leuconostoc lactis GW-6 species as an emulsifier in a low-fat mayonnaise by the formation of a complex with whey protein isolate (WPI) to improve rheological properties, emulsion, and oxidative stability. For the determination of rheological properties, the flow behavior, frequency sweep, and 3-ITT rheological properties of low-fat mayonnaise samples were studied. All samples showed shear thinning, viscoelastic solid-like, and recoverable character. The K and n values for the mayonnaise samples were determined as 24.529-174.403 Pa.sn and 0.166-0.304, respectively, indicating that shear-thinning characters could be improved with WPI-EPS interaction. The higher K' and K″ values of all low-fat samples prepared with EPS-WPI than the low-fat control sample explained the synergistic effect of EPS and WPI. Importantly, no effect was observed when WPI was used as alone as an emulsifier. Oxidative stability was tested by OXITEST and IP values of samples prepared by WPI and EPS were compared to control samples. In conclusion, the results of this study showed that the EPS and WPI interaction can significantly affect the rheological properties and emulsion and oxidative stability of mayonnaise samples.
Collapse
Affiliation(s)
- Dilara Yalmanci
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Zeynep Hazal Tekin-Cakmak
- Department of Nutrition and Dietetics, Health Sciences Faculty, Istinye University, İstanbul 34010, Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey.
| |
Collapse
|
8
|
ARSLAN A, SAGDIC O, KARASU S, TEKIN-CAKMAK ZH. The effect of the use of salep powder obtained from different wild orchid species in Turkey on the rheological, thermal, and sensory properties of ice cream. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Aysen ARSLAN
- Istinye University, Turkey; Yıldız Technical University, Turkey
| | | | | | | |
Collapse
|
9
|
Akcicek A, Yildirim RM, Tekin-Cakmak ZH, Karasu S. Low-Fat Salad Dressing as a Potential Probiotic Food Carrier Enriched by Cold-Pressed Tomato Seed Oil By-Product: Rheological Properties, Emulsion Stability, and Oxidative Stability. ACS OMEGA 2022; 7:48520-48530. [PMID: 36591179 PMCID: PMC9798515 DOI: 10.1021/acsomega.2c06874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the potential of the use of cold-pressed tomato seed oil by-products in a low-fat salad dressing as potential probiotic food carriers to improve the oxidative stability and emulsion stability as well as the rheological properties. The low-fat salad dressing emulsions were formulated with cold-pressed tomato seed by-product (TBP) and Lactobacillus plantarum ELB90. The optimum low-fat salad dressing formulations found were determined as 10 g/100 g oil, 0.283 g/100 g xanthan, and 2.925 g/100 g TBP. The samples prepared with the optimum formulation (SD-O) were compared with the low-fat control salad dressing sample (SD-LF) and the high-fat control salad dressing sample (SD-HF) based on the rheological properties, emulsion stability, oxidative stability, and L. plantarum ELB90 viability. The sample SD-O showed shear-thinning, viscoelastic solid, and recoverable characters. The sample SD-O showed higher IP and ΔG ++ and lower ΔS ++ values than those of the control samples. After 9 weeks of refrigerated storage, viable L. plantarum ELB90 cell counts of salad dressing samples were counted as 7.93 ± 0.03, 5.81 ± 0.04, and 6.02 ± 0.08 log cfu g-1 for SD-O, SD-LF, and SD-HF, respectively. This study showed that TBP could be successfully used in a low-fat salad dressing as a potential probiotic carrier.
Collapse
Affiliation(s)
- Alican Akcicek
- Department
of Gastronomy and Culinary Arts, Faculty of Tourism, Kocaeli University, Kartepe, Kocaeli41080, Turkey
| | - Rusen Metin Yildirim
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul34220, Turkey
| | - Zeynep Hazal Tekin-Cakmak
- Department
of Nutrition and Dietetics, Health Sciences Faculty, Istinye University, İstanbul34010, Turkey
| | - Salih Karasu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul34220, Turkey
| |
Collapse
|
10
|
|
11
|
Kim SM, Woo JH, Kim HW, Park HJ. Formulation and evaluation of thermoreversible sugar-paste for hot-melt 3D printing. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ribeiro BG, Campos Guerra JM, Sarubbo LA. Production of a biosurfactant from S. cerevisiae and its application in salad dressing. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kilicli M, Toker OS. Some physicochemical and technological properties of cooking water of pulses as a canned industry waste: effect of ultrasound treatment during soaking. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Canned products are important part of human diet and therefore, many types of canned products with high amounts are produced worldwide. During canned production, cooking water of pulses (aquafaba) is an important waste. Therefore, recycling of it is important for sustainability and economic value. In the present study, it was aimed to determine technological properties of aquafabas obtained from canned production. For this aim, chickpea, bean, kidney bean, broad bean, green pea and lentil were used in this study, and conventional soaking and ultrasound soaking was both performed. Aquafaba is a cooking water of pulses not only chickpea and also lentil, pea and bean species. Aquafaba is used for foaming, emulsifying and gelling agent as a plant based food additive. Soaking with ultrasound has shortened the soaking time of all pules as well as increased the D
eff (effective diffusion constant) values. Diffusion is a basic physical mechanism for remove moisture or absorb and also give important information about physical and thermal properties of sample. “Remove moisture” term is using for drying and the other is using for hydration. The relationship between the physical properties of pulses and D
eff values was observed. The protein content of aquafaba on a dry basis changed between 20 and 35% and it has been observed that there are also positive correlation with their foaming properties. Foaming capacities of aquafabas varied between 167 and 567% in conventional soaking, and between 133 and 533% in ultrasonic soaking. In both methods, chickpea aquafaba showed the lowest foaming capacity and stability, while pea had the highest foaming capacity and stability. US process generally decreased the protein content and foaming capacity (FC) of aquafabas. The foam of pea and lentil aquafabas showed higher resistant against to gravity. In contrary to the foaming properties, an increase in emulsifying properties was observed as a result of US. It has been observed that the obtained aquafabas can be used in various products in the food industry thanks to their technological features instead of animal-based ingredients.
Collapse
Affiliation(s)
- Mahmut Kilicli
- Food Engineering Department , Yildiz Technical University, Chemical and Metallurgical Engineering Faculty , Istanbul , Turkey
- Department of Food Processing , Gaziantep University, Technical Sciences Vocational School , Gaziantep , Turkey
| | - Omer Said Toker
- Food Engineering Department , Yildiz Technical University, Chemical and Metallurgical Engineering Faculty , Istanbul , Turkey
| |
Collapse
|
14
|
Silin MA, Magadova LA, Davletshina LF, Yunusov TI, Merzlyakov KK, Kotekhova VD. Complex study of acid-in-oil emulsions, their formation, stabilization and breakdown. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2032133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mikhail A. Silin
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
| | - Lyubov A. Magadova
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
| | - Lyutsia F. Davletshina
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
| | - Timur I. Yunusov
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
- Center for Hydrocarbon Recovery, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Konstantin K. Merzlyakov
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
| | - Viktoria D. Kotekhova
- Department of Technology of Chemicals for Oil and Gas Industry, Gubkin Russian State University of Oil and Gas, Moscow, Russia
| |
Collapse
|
15
|
Dhandhi Y, Chaudhari RK, Naiya TK. Development in separation of oilfield emulsion toward green technology – A comprehensive review. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1995427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yogesh Dhandhi
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Ronak Kumar Chaudhari
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Tarun Kumar Naiya
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
16
|
Tekin-Cakmak ZH, Atik I, Karasu S. The Potential Use of Cold-Pressed Pumpkin Seed Oil By-Products in a Low-Fat Salad Dressing: The Effect on Rheological, Microstructural, Recoverable Properties, and Emulsion and Oxidative Stability. Foods 2021; 10:foods10112759. [PMID: 34829043 PMCID: PMC8620466 DOI: 10.3390/foods10112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2–0.4 g/100 g), POB (1.0–5.0 g/100 g), egg yolk powder (3 g/100 g), and sunflower oil (10–30 g/100 g) in 17 different formulations. The optimization was carried out using response surface methodology (RSM) and full factorial central composite design (CCD). Results showed that all samples presented the shear-thinning (or pseudoplastic) flow behavior with 3.75–16.11 Pa·sn and 0.18–0.30, K and n values, respectively. The flow behavior rheological data were fitted to a power-law model (R2 > 0.99). The samples with high POB and low oil content showed similar K and n values compared to high oil content samples. Additionally, the dynamic rheological properties and three interval thixotropic test (3-ITT) were determined. The G′ value was larger than G″ in all frequency ranges, indicating viscoelastic solid characteristics in all samples. The optimum formulation was determined as 0.384% XG, 10% oil, and 3.04% POB. The samples prepared with the optimum formulation (POBLF-SD) were compared to low-fat (LF-SD), and high-fat (HF-SD) control salad dressing samples based on the rheological properties, emulsion stability, oxidative stability, zeta potential, and particle size. The oxidation kinetic parameters namely, IP, Ea, ΔS++, and ΔG++ showed that the oxidative stability of salad dressing samples could be improved by enriched by POB. The results of the present study demonstrated that POB could be considerably utilized as a natural fat substitute and stabilizer in salad dressing type emulsions.
Collapse
Affiliation(s)
- Zeynep Hazal Tekin-Cakmak
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34349, Turkey;
| | - Ilker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey;
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34349, Turkey;
- Correspondence: ; Tel.: +90-212-3834623
| |
Collapse
|
17
|
Atik I, Tekin Cakmak ZH, Avcı E, Karasu S. The Effect of Cold Press Chia Seed Oil By-Products on the Rheological, Microstructural, Thermal, and Sensory Properties of Low-Fat Ice Cream. Foods 2021; 10:foods10102302. [PMID: 34681350 PMCID: PMC8535298 DOI: 10.3390/foods10102302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the utilization of cold-pressed chia-seed oil by-products (CSOB) in a low-fat ice cream formulation as a fat replacer and stabilizer. In the study, ice cream emulsion mixtures were formulated by using 0.2–0.4% xanthan gum (XG), 2.5–12.5% fat, and 1–3% CSOB. Optimization was performed using the response surface methodology (RSM) and full factorial central composite design (CCD) based on the flow behavior rheological properties of the emulsions obtained from 17 different experimental points. All of the emulsion samples showed non-Newtonian shear-thinning flow behavior. The consistency coefficient (Κ) values of the emulsion samples were found to be 4.01–26.05 Pasn and were significantly affected by optimization parameters (p < 0.05). The optimum formulation was determined as 0.29% XG, 2.5% CSOB, 2.5% fat. The low-fat (LF-IC) and full-fat control samples (FF-IC) were compared to samples produced with an optimum formulation (CBLF-IC) based on the steady shear, frequency sweep, and 3-ITT (three interval thixotropy test) rheological properties, thermal properties, emulsion stability, light microscope images, and sensory quality. CBLF-IC showed similar rheological behavior to FF-IC. The mix of CBLF-IC showed higher emulsion stability and lower poly-dispersity index (PDI) value and fat globule diameters than those of FF-IC and LF-IC. The thermal properties of the samples were significantly affected by the addition of CSOB in an ice cream mix. CBLF-IC exhibited a lower temperature range (ΔT), enthalpy of fusion (ΔHf), and freezing point temperature (Tf) than those of FF-IC and LF-IC. While CBLF-IC exhibited a higher overrun value than other samples, it showed similar sensory properties to the FF-IC sample. The results of this study suggested that CSOB could be used successfully in low-fat ice cream production. This study also has the potential to gain new perspectives for the evaluation of CSOB as a fat substitute in a low-fat ice cream.
Collapse
Affiliation(s)
- Ilker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey;
| | - Zeynep Hazal Tekin Cakmak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
| | - Esra Avcı
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34210, Turkey; (Z.H.T.C.); (E.A.)
- Correspondence: ; Tel.: +90-212-383-46-23
| |
Collapse
|
18
|
Carvalho JDDS, Oriani VB, Oliveira GM, Hubinger MD. Solid lipid microparticles loaded with ascorbic acid: Release kinetic profile during thermal stability. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Vivian Boesso Oriani
- Laboratory of Process Engineering Department of Food Engineering School of Food Engineering University of Campinas Campinas Brazil
| | | | - Míriam Dupas Hubinger
- Laboratory of Process Engineering Department of Food Engineering School of Food Engineering University of Campinas Campinas Brazil
| |
Collapse
|
19
|
Botega DCZ, Nogueira C, Moura NM, Martinez RM, Rodrigues C, Barrera‐Arellano D. Influence of Aqueous Matrices into Candelilla Wax Organogels Emulsions for Topical Applications. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Daniele Cristina Zulim Botega
- Research and Innovation Department Chemyunion Química Ltda Av. Independência 1501, Sorocaba, São Paulo 18087‐101 Brazil
- Fats and Oils Laboratory, Department of Food and Technology, School of Food Engineering University of Campinas 13083‐970, POBox 6091, Campinas, São Paulo Brazil
| | - Cecilia Nogueira
- Research and Innovation Department Chemyunion Química Ltda Av. Independência 1501, Sorocaba, São Paulo 18087‐101 Brazil
| | - Naine Martins Moura
- Research and Innovation Department Chemyunion Química Ltda Av. Independência 1501, Sorocaba, São Paulo 18087‐101 Brazil
| | - Renata Miliani Martinez
- Research and Innovation Department Chemyunion Química Ltda Av. Independência 1501, Sorocaba, São Paulo 18087‐101 Brazil
- School of Chemical Engineering University of Sorocaba 18023‐000, Rod. Raposo Tavares km 92, Sorocaba, São Paulo Brazil
| | - Cristiane Rodrigues
- Research and Innovation Department Chemyunion Química Ltda Av. Independência 1501, Sorocaba, São Paulo 18087‐101 Brazil
| | - Daniel Barrera‐Arellano
- Fats and Oils Laboratory, Department of Food and Technology, School of Food Engineering University of Campinas 13083‐970, POBox 6091, Campinas, São Paulo Brazil
| |
Collapse
|