1
|
Zhang Y, Yu P, Tao F. Dynamic Interplay between Microbiota Shifts and Differential Metabolites during Dairy Processing and Storage. Molecules 2024; 29:2745. [PMID: 38930811 PMCID: PMC11206652 DOI: 10.3390/molecules29122745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Due to the intricate complexity of the original microbiota, residual heat-resistant enzymes, and chemical components, identifying the essential factors that affect dairy quality using traditional methods is challenging. In this study, raw milk, pasteurized milk, and ultra-heat-treated (UHT) milk samples were collectively analyzed using metagenomic next-generation sequencing (mNGS), high-throughput liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS). The results revealed that raw milk and its corresponding heated dairy products exhibited different trends in terms of microbiota shifts and metabolite changes during storage. Via the analysis of differences in microbiota and correlation analysis of the microorganisms present in differential metabolites in refrigerated pasteurized milk, the top three differential microorganisms with increased abundance, Microbacterium (p < 0.01), unclassified Actinomycetia class (p < 0.05), and Micrococcus (p < 0.01), were detected; these were highly correlated with certain metabolites in pasteurized milk (r > 0.8). This indicated that these genera were the main proliferating microorganisms and were the primary genera involved in the metabolism of pasteurized milk during refrigeration-based storage. Microorganisms with decreased abundance were classified into two categories based on correlation analysis with certain metabolites. It was speculated that the heat-resistant enzyme system of a group of microorganisms with high correlation (r > 0.8), such as Pseudomonas and Acinetobacter, was the main factor causing milk spoilage and that the group with lower correlation (r < 0.3) had a lower impact on the storage process of pasteurized dairy products. By comparing the metabolic pathway results based on metagenomic and metabolite annotation, it was proposed that protein degradation may be associated with microbial growth, whereas lipid degradation may be linked to raw milk's initial heat-resistant enzymes. By leveraging the synergy of metagenomics and metabolomics, the interacting factors determining the quality evolution of dairy products were systematically investigated, providing a novel perspective for controlling dairy processing and storage effectively.
Collapse
Affiliation(s)
- Yinan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China
| | - Peng Yu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China;
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Azzouz S, Ahadaf S, Zantar S, El Galiou O, Arakrak A, Bakkali M, Laglaoui A. Analysis of the bacterial diversity in Moroccan Jben cheese using TTGE, DGGE, and 16S rRNA sequencing. World J Microbiol Biotechnol 2024; 40:157. [PMID: 38592517 DOI: 10.1007/s11274-024-03964-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
This research investigated the physicochemical, microbiological, and bacterial diversity of Jben cheese, a popular artisanal variety in Morocco. The bacterial diversity was explored using culture-independent methods, including temporal temperature gel electrophoresis (TTGE), denaturing gradient gel electrophoresis (DGGE), and high-throughput sequencing (HTS). Significant intra-sample differences were observed for most physicochemical parameters within each milk type, while inter-sample differences occurred between cow and goat cheeses for dry matter and ash. Jben cheese exhibited distinct characteristics, with low pH values of 3.96, 4.16, and 4.18 for cow, goat, and mixed cheeses, respectively. Goat cheeses had higher fat (49.23 g/100 g), ash (1.91 g/100 g), and dry matter (36.39 g/100 g) than cow cheeses. All cheeses displayed high microbial counts, with a notable prevalence of the lactic acid bacteria (LAB) group, averaging 8.80 ± 0.92 log CFU/g. Jben cheese also displayed high contamination levels with total coliforms, faecal coliforms, yeast, and molds. Fatty acid profiling revealed fraudulent practices in Jben cheese marketing, with cow or mixed cheeses sold as goat cheese, as proven by low capric acid concentration. HTS analysis of Jben cheese identified ten genera and twenty-four species, highlighting Lactococcus lactis as predominant. TTGE and DGGE confirmed the presence of L. lactis but failed to provide the detailed profile achieved through HTS analysis. HTS has been demonstrated to be more reliable, whereas TTGE/DGGE methods, though informative, were more time-consuming and less reliable. Despite limitations, the combined use of TTGE, DGGE, and HTS provided a comprehensive view of indigenous bacterial communities in Jben cheese, identifying L. lactis as the main species.
Collapse
Affiliation(s)
- Safae Azzouz
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| | - Soumaya Ahadaf
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| | - Said Zantar
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| | - Ouiam El Galiou
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco.
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco.
| | - Abdelhay Arakrak
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| | - Mohammed Bakkali
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| | - Amin Laglaoui
- Abdelmalek Essaâdi University, Tetouan. Faculty of Science and Technology, Biotechnology and Biomolecular Engineering Research Team, B.P.416, Tangier, Morocco
- Environment and Quality, Research Unite on Nuclear Techniques, National Institute of Agricultural Research, 78 BD Sidi Mohamed ben Abdellah, 90010, Tangier, Morocco
| |
Collapse
|
3
|
Tsouggou N, Slavko A, Tsipidou O, Georgoulis A, Dimov SG, Yin J, Vorgias CE, Kapolos J, Papadelli M, Papadimitriou K. Investigation of the Microbiome of Industrial PDO Sfela Cheese and Its Artisanal Variants Using 16S rDNA Amplicon Sequencing and Shotgun Metagenomics. Foods 2024; 13:1023. [PMID: 38611328 PMCID: PMC11011710 DOI: 10.3390/foods13071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Sfela is a white brined Greek cheese of protected designation of origin (PDO) produced in the Peloponnese region from ovine, caprine milk, or a mixture of the two. Despite the PDO status of Sfela, very few studies have addressed its properties, including its microbiology. For this reason, we decided to investigate the microbiome of two PDO industrial Sfela cheese samples along with two non-PDO variants, namely Sfela touloumotiri and Xerosfeli. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), 16S rDNA amplicon sequencing and shotgun metagenomics analysis were used to identify the microbiome of these traditional cheeses. Cultured-based analysis showed that the most frequent species that could be isolated from Sfela cheese were Enterococcus faecium, Lactiplantibacillus plantarum, Levilactobacillus brevis, Pediococcus pentosaceus and Streptococcus thermophilus. Shotgun analysis suggested that in industrial Sfela 1, Str. thermophilus dominated, while industrial Sfela 2 contained high levels of Lactococcus lactis. The two artisanal samples, Sfela touloumotiri and Xerosfeli, were dominated by Tetragenococcus halophilus and Str. thermophilus, respectively. Debaryomyces hansenii was the only yeast species with abundance > 1% present exclusively in the Sfela touloumotiri sample. Identifying additional yeast species in the shotgun data was challenging, possibly due to their low abundance. Sfela cheese appears to contain a rather complex microbial ecosystem and thus needs to be further studied and understood. This might be crucial for improving and standardizing both its production and safety measures.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Aleksandra Slavko
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Olympia Tsipidou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| | - Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - Svetoslav G. Dimov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410081, China;
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Constantinos E. Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis-Zographou, 15784 Athens, Greece; (A.G.); (C.E.V.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Marina Papadelli
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (N.T.); (A.S.); (J.K.); (M.P.)
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, 18855 Athens, Greece;
| |
Collapse
|
4
|
Demirci T. Highlighting the Microbial Community of Kuflu Cheese, an Artisanal Turkish Mold-Ripened Variety, by High-Throughput Sequencing. Food Sci Anim Resour 2024; 44:390-407. [PMID: 38764510 PMCID: PMC11097025 DOI: 10.5851/kosfa.2024.e59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 05/21/2024] Open
Abstract
Kuflu cheese, a popular variety of traditional Turkish mold-ripened cheeses, is characterized by its semi-hard texture and blue-green color. It is important to elucidate the microbiota of Kuflu cheese produced from raw milk to standardize and sustain its sensory properties. This study aimed to examine the bacteria, yeasts, and filamentous mold communities in Kuflu cheese using high-throughput amplicon sequencing based on 16S and ITS2 regions. Lactococcus, Streptococcus, and Staphylococcus were the most dominant bacterial genera while Bifidobacterium genus was found to be remarkably high in some Kuflu cheese samples. Penicillium genus dominated the filamentous mold biota while the yeasts with the highest relative abundances were detected as Debaryomyces, Pichia, and Candida. The genera Virgibacillus and Paraliobacillus, which were not previously reported for mold-ripened cheeses, were detected at high relative abundances in some Kuflu cheese samples. None of the genera that include important food pathogens like Salmonella, Campylobacter, Listeria were detected in the samples. This is the first experiment in which the microbiota of Kuflu cheeses were evaluated with a metagenomic approach. This study provided an opportunity to evaluate Kuflu cheese, which was previously examined for fungal composition, in terms of both pathogenic and beneficial bacteria.
Collapse
Affiliation(s)
- Talha Demirci
- Department of Food Engineering, Faculty of
Agricultural, Selcuk University, Konya 42130,
Türkiye
| |
Collapse
|
5
|
Güley Z, Fallico V, Cabrera-Rubio R, O’Sullivan D, Marotta M, Pennone V, Smith S, Beresford T. Diversity of the Microbiota of Traditional Izmir Tulum and Izmir Brined Tulum Cheeses and Selection of Potential Probiotics. Foods 2023; 12:3482. [PMID: 37761191 PMCID: PMC10528788 DOI: 10.3390/foods12183482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
High-throughput DNA sequencing (HTS) was used to study the microbial diversity of commercial traditional Izmir Tulum (IT) and Izmir Brined Tulum (IBT) cheeses from Izmir, Türkiye. Simultaneously, cultivation-dependent methods were used to isolate, identify and characterize bacterial strains displaying probiotic potential. At the phylum level, Firmicutes dominated the microbiota of both cheese types comprising >98% of the population. Thirty genera were observed, with Streptococcus being the most abundant genus and with Streptococcus thermophilus and S. infantarius subsp. infantarius being the most abundant species. Genera, including Bifidobacterium and Chryseobacterium, not previously associated with IT and IBT, were detected. IT cheeses displayed higher operational taxonomic units (OTUs; Richness) and diversity index (Simpson) than IBT cheeses; however, the difference between the diversity of the microbiota of IT and IBT cheese samples was not significant. Three Lacticaseibacillus paracasei strains isolated from IBT cheeses exhibited probiotic characteristics, which included capacity to survive under in vitro simulated gastrointestinal conditions, resistance to bile salts and potential to adhere to HT-29 human intestinal cells. These findings demonstrate that Tulum cheeses harbor bacterial genera not previously reported in this cheese and that some strains display probiotic characteristics.
Collapse
Affiliation(s)
- Ziba Güley
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- Department of Food Engineering, Alanya Alaaddin Keykubat University, 07425 Antalya, Türkiye
| | - Vincenzo Fallico
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- APC Microbiome Ireland, University College Cork, T12Y120 Cork, Ireland
| | - Daniel O’Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
- School of Food and Nutritional Sciences, University College Cork, T12K8AF Cork, Ireland
| | - Mariarosaria Marotta
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Vincenzo Pennone
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Sandra Smith
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| | - Tom Beresford
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland; (V.F.); (R.C.-R.); (D.O.); (M.M.); (V.P.); (S.S.); (T.B.)
| |
Collapse
|
6
|
Kahraman-Ilıkkan Ö. Microbiome composition of kombucha tea from Türkiye using high-throughput sequencing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1826-1833. [PMID: 37187981 PMCID: PMC10170013 DOI: 10.1007/s13197-023-05725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Kombucha is a fermented tea with a combination of yeast and bacteria. Kombucha teas may have a variable microbiota based on geographic origin and cultural conditions. The microbial flora of kombucha has been studied with culture-dependent methods. But, the improvement of the metataxonomic approach has broadened our perspective on fermented foods. In this study, a kombucha mother was procured from an artisanal supplier in Türkiye. High-throughput new-generation sequencing (16S rRNA and Internal Transcribed Spacer (ITS)) was carried out to investigate the microbial communities of kombucha after 7 days of fermentation in both liquid tea (L) and pellicle (P). Microbial counts, pH (4.42 ± 0.01 and 3.50 ± 0.02), and TA% (0.26 ± 0.02 and 0.60 ± 0.04) were also detected on the first and 7th days of fermentation. According to metataxonomic results, the dominant bacteria were Komagataeibacter obediens (%21.13), an acetic acid-producing bacteria, and the dominant fungal genus was Pichia kudriavzevii (64.35%) in L while Romboutsia sp. CE17 was the dominant bacteria (7%) and Pichia kudriavzevii was also the dominant yeast in P. This study also revealed different species which were not common in kombucha including propionic acid and butyric acid-producing bacteria such as Anaerotignum propionicum and Butyrivibrio fibrisolvens, a butyrivibriocin producing bacteria. Accordingly, different yeast species were detected such as Tetrapisispora phaffii and Ogataea polimorpha. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05725-z.
Collapse
|
7
|
Gölbaşi G, Akin N, Konak Göktepe Ç, Demırcı T. Monitoring the changes in physicochemical, sensory properties and microbiota of village-type homemade yoghurts along three consecutive back-slopping procedures. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Reuben RC, Langer D, Eisenhauer N, Jurburg SD. Universal drivers of cheese microbiomes. iScience 2023; 26:105744. [PMID: 36582819 PMCID: PMC9792889 DOI: 10.1016/j.isci.2022.105744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The culinary value, quality, and safety of cheese are largely driven by the resident bacteria, but comparative analyses of the cheese microbiota across cheese types are scarce. We present the first global synthesis of cheese microbiomes. Following a systematic literature review of cheese microbiology research, we collected 16S rRNA gene amplicon sequence data from 824 cheese samples spanning 58 cheese types and 16 countries. We found a consistent, positive relationship between microbiome richness and pH, and a higher microbial richness in cheeses derived from goat milk. In contrast, we found no relationship between pasteurization, geographic location, or salinity and richness. Milk and cheese type, geographic location, and pasteurization collectively explained 65% of the variation in microbial community composition. Importantly, we identified four universal cheese microbiome types, driven by distinct dominant taxa. Our study reveals notable diversity patterns among the cheese microbiota, which are driven by geography and local environmental variables.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Désirée Langer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstraße 4, 04103 Leipzig, Germany
| | - Stephanie D. Jurburg
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
9
|
Nelli A, Venardou B, Skoufos I, Voidarou C(C, Lagkouvardos I, Tzora A. An Insight into Goat Cheese: The Tales of Artisanal and Industrial Gidotyri Microbiota. Microorganisms 2023; 11:123. [PMID: 36677415 PMCID: PMC9863150 DOI: 10.3390/microorganisms11010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to determine for the first time the microbiota in artisanal-type and industrial-type Gidotyri cheeses and investigate the influence of the cheese-making practices on their composition using culture-independent techniques. The microbiota present in artisanal with commercial starters (Artisanal_CS, n = 15), artisanal with in-house starters (Artisanal_IHS, n = 10) and industrial (Ind., n = 9) Gidotyri cheese samples were analyzed using a targeted metagenomic approach (16S rRNA gene). The Ind. Gidotyri cheese microbiota were less complex, dominated by the Streptococcaceae family (91%) that was more abundant compared to the artisanal Gidotyri cheeses (p < 0.05). Artisanal cheeses were more diverse compositionally with specific bacterial species being prevalent to each subtype. Particularly, Loigolactobacillus coryniformis (OTU 175), Secundilactobacillus malefermentans (OTU 48), and Streptococcus parauberis (OTU 50) were more prevalent in Artisanal_IHS cheeses compared to Artisanal_CS (p ≤ 0.001) and Ind. (p < 0.01) Gidotyri cheeses. Carnobacterium maltaromaticum (OTU 23) and Enterobacter hormaechei subsp. hoffmannii (OTU 268) were more prevalent in Artisanal_CS cheeses compared to Artisanal_IHS cheeses (p < 0.05) and Ind. cheeses (p < 0.05). Hafnia alvei (OTU 13) and Acinetobacter colistiniresistens (OTU 111) tended to be more prevalent in Artisanal_CS compared to the other two cheese groups (p < 0.10). In conclusion, higher microbial diversity was observed in the artisanal-type Gidotyri cheeses, with possible bacterial markers specific to each subtype identified with potential application to traceability of the manufacturing processes’ authenticity and cheese quality.
Collapse
Affiliation(s)
| | | | | | | | | | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| |
Collapse
|
10
|
Kazou M, Gavriil A, Kalagkatsi O, Paschos T, Tsakalidou E. The Impact of Different Inoculation Schemes on the Microbiota, Physicochemical and Sensory Characteristics of Greek Kopanisti Cheese throughout Production and Ripening. Microorganisms 2022; 11:66. [PMID: 36677358 PMCID: PMC9863000 DOI: 10.3390/microorganisms11010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Kopanisti is a Greek PDO cheese, which is traditionally produced by the addition of an amount of over-mature Kopanisti, called Mana Kopanisti, to initiate cheese ripening. The aim of this study was the production of four types of Kopanisti cheese (A-D) using pasteurized cow milk, and a combination of the following starters/adjuncts in order to test their ability to be used in Kopanisti cheese production: A: Lactococcus lactis subsp. lactis and Lacticaseibacillus paracasei, B: L. lactis and Lc. paracasei/Mana Kopanisti, C: L. lactis and Lc. paracasei/Ligilactobacillus acidipiscis and Loigolactobacillus rennini, D: Lig. acidipiscis and Loig. rennini. Throughout production and ripening, classical microbiological, metataxonomics and physicochemical analyses were employed, while the final products (Day 35) were subjected to sensory analysis as well. Most interestingly, beta-diversity analysis of the metataxonomics data revealed the clusters constructed among the Kopanisti types based on the different inoculation schemes. On day 35, Kopanisti A-C types clustered together due to their similar 16S microbiota, while Kopanisti D was highly differentiated. On the contrary, ITS data clustered Kopanisti B and C together, while Kopanisti A and D were grouped seperately. Finally, based on the sensory evaluation, Kopanisti C appeared to have the most suitable bacteria cocktail for the Kopanisti cheese production. Therefore, not only were the conventional starters used, but also the Lig. acidipiscis and Loig. rennini strains could be used in a standardized Kopanisti cheese production that could lead to final products of high quality and safety.
Collapse
Affiliation(s)
- Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | | | | | | |
Collapse
|
11
|
Cardin M, Cardazzo B, Mounier J, Novelli E, Coton M, Coton E. Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods. Foods 2022; 11:3379. [PMID: 36359992 PMCID: PMC9653732 DOI: 10.3390/foods11213379] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Food fraud, corresponding to any intentional action to deceive purchasers and gain an undue economical advantage, is estimated to result in a 10 to 65 billion US dollars/year economical cost worldwide. Dairy products, such as cheese, in particular cheeses with protected land- and tradition-related labels, have been listed as among the most impacted as consumers are ready to pay a premium price for traditional and typical products. In this context, efficient food authentication methods are needed to counteract current and emerging frauds. This review reports the available authentication methods, either chemical, physical, or DNA-based methods, currently used for origin authentication, highlighting their principle, reported application to cheese geographical origin authentication, performance, and respective advantages and limits. Isotope and elemental fingerprinting showed consistent accuracy in origin authentication. Other chemical and physical methods, such as near-infrared spectroscopy and nuclear magnetic resonance, require more studies and larger sampling to assess their discriminative power. Emerging DNA-based methods, such as metabarcoding, showed good potential for origin authentication. However, metagenomics, providing a more in-depth view of the cheese microbiota (up to the strain level), but also the combination of methods relying on different targets, can be of interest for this field.
Collapse
Affiliation(s)
- Marco Cardin
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Enrico Novelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Viale Università 16, 35020 Legnaro, PD, Italy
| | - Monika Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Emmanuel Coton
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
12
|
Kamilari E, Tsaltas D, Stanton C, Ross RP. Metataxonomic Mapping of the Microbial Diversity of Irish and Eastern Mediterranean Cheeses. Foods 2022; 11:2483. [PMID: 36010485 PMCID: PMC9407514 DOI: 10.3390/foods11162483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The distinct sensorial characteristics of local cheeses influence consumer preferences, and make an essential contribution to the local economy. Microbial diversity in cheese is among the fundamental contributors to sensorial and qualitative characteristics. However, knowledge regarding the existence of microbial patterns associated with regional production practices in ripened cheeses remains limited. The present research was conducted to test the hypothesis that the background metagenome of cheeses could be used as a marker of their origin. We compared Irish versus Eastern Mediterranean cheeses-namely Greek and Cypriot-using High Throughput Sequencing (HTS). The study identified a significantly distinct separation among cheeses originating from the three different countries, in terms of the total microbial community composition. The use of machine learning and biomarkers discovery algorithms defined key microbes that differentiate each geographic region. Finally, the development of interaction networks revealed that the key species developed mostly negative interactions with the other members of the communities, highlighting their dominance in the community. The findings of the present research demonstrate that metagenome could indeed be used as a biological marker of the origin of mature cheeses, and could provide further insight into the dynamics of microbial community composition in ripened cheeses.
Collapse
Affiliation(s)
- Eleni Kamilari
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland or
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Lemesos 3036, Cyprus
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland or
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
- Department of Biosciences, Teagasc Food Research Centre, Moorepark, Fermoy, Co., P61 C996 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland or
- School of Microbiology, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
13
|
Kahraman-Ilıkkan Ö, Bağdat EŞ. Metataxonomic sequencing to assess microbial safety of Turkish white cheeses. Braz J Microbiol 2022; 53:969-976. [PMID: 35277850 PMCID: PMC9151932 DOI: 10.1007/s42770-022-00730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
High-throughput sequencing has provided a way to monitor the large diversity of microorganisms in fermented foods that have complex microbiota. Up to date, many kinds of cheese have been characterized with the metataxonomic approach, but the safety of unpacked Turkish white cheeses, which are widely consumed in Turkey, has not been assessed. In this study, fifteen unpacked white cheeses sold in public bazaars in Ankara province have been collected and subjected to microbial enumeration as well as physicochemical analysis. Five white cheeses, which have relatively the highest foodborne pathogens, out of fifteen white cheeses, have been analyzed by next-generation sequencing and metataxonomic analysis. According to the results, abundant families were Lactobacillaceae, Oceanospirillaceae, Enterococcaceae, Pseudomonadaceae, and Vibrionaceae. Staphylococcus aureus, E. coli, and Salmonella, which are indicators of bad hygiene and sanitation conditions, were found in cheeses. In conclusion, culture-independent methods such as metataxonomic can be important to evaluate the safety of foods.
Collapse
Affiliation(s)
- Özge Kahraman-Ilıkkan
- Food Quality Control and Analysis Program, Kahramankazan Vocational School, Başkent University, 06980, Ankara, Turkey.
| | - Elif Şeyma Bağdat
- Food Technology Program, Kahramankazan Vocational School, Başkent University, 06980, Ankara, Turkey
| |
Collapse
|
14
|
Characterization of Microbial Shifts during the Production and Ripening of Raw Ewe Milk-Derived Idiazabal Cheese by High-Throughput Sequencing. BIOLOGY 2022; 11:biology11050769. [PMID: 35625497 PMCID: PMC9138791 DOI: 10.3390/biology11050769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Idiazabal is a traditional cheese produced from raw ewe milk in the Basque Country (Southwestern Europe). The sensory properties of raw milk cheeses have been attributed, among other factors, to microbial shifts that occur during the production and ripening processes. In this study, we used high-throughput sequencing technologies to investigate the microbiota of Latxa ewe raw milk and the dynamics during cheese production and ripening processes. The microbiota of raw milk was composed of lactic acid bacteria (LAB), environmental bacteria and non-desirable bacteria. Throughout the cheese making and ripening processes, the growth of LAB was promoted, whereas that of non-desirable and environmental bacteria was inhibited. Moreover, some genera not reported previously in raw ewe milk were detected and clear differences were observed in the bacterial composition of raw milk and cheese among producers, in relation to LAB and environmental or non-desirable bacteria, some of which could be attributed to the production of flavour related compounds. Abstract In this study, we used high-throughput sequencing technologies (sequencing of V3–V4 hypervariable regions of 16S rRNA gene) to investigate for the first time the microbiota of Latxa ewe raw milk and the bacterial shifts that occur during the production and ripening of Idiazabal cheese. Results revealed several bacterial genera not reported previously in raw ewe milk and cheese, such as Buttiauxella and Obesumbacterium. Both the cheese making and ripening processes had a significant impact on bacterial communities. Overall, the growth of lactic acid bacteria (LAB) (Lactococcus, Lactobacillus, Leuconostoc, Enterococcus, Streptococcus and Carnobacterium) was promoted, whereas that of non-desirable and environmental bacteria was inhibited (such as Pseudomonas and Clostridium). However, considerable differences were observed among producers. It is noteworthy that the starter LAB (Lactococcus) predominated up to 30 or 60 days of ripening and then, the growth of non-starter LAB (Lactobacillus, Leuconostoc, Enterococcus and Streptococcus) was promoted. Moreover, in some cases, bacteria related to the production of volatile compounds (such as Hafnia, Brevibacterium and Psychrobacter) also showed notable abundance during the first few weeks of ripening. Overall, the results of this study enhance our understanding of microbial shifts that occur during the production and ripening of a raw ewe milk-derived cheese (Idiazabal), and could indicate that the practices adopted by producers have a great impact on the microbiota and final quality of this cheese.
Collapse
|
15
|
Yap M, Ercolini D, Álvarez-Ordóñez A, O'Toole PW, O'Sullivan O, Cotter PD. Next-Generation Food Research: Use of Meta-Omic Approaches for Characterizing Microbial Communities Along the Food Chain. Annu Rev Food Sci Technol 2021; 13:361-384. [PMID: 34678075 DOI: 10.1146/annurev-food-052720-010751] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread of antimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Min Yap
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,School of Microbiology, University College Cork, County Cork, Ireland
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology, Universidad de León, León, Spain.,Institute of Food Science and Technology, Universidad de León, León, Spain
| | - Paul W O'Toole
- School of Microbiology, University College Cork, County Cork, Ireland.,APC Microbiome Ireland, University College Cork, County Cork, Ireland
| | - Orla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland; .,APC Microbiome Ireland, University College Cork, County Cork, Ireland.,VistaMilk SFI Research Centre, Moorepark, Fermoy, County Cork, Ireland
| |
Collapse
|
16
|
Kamilari E, Mina M, Karallis C, Tsaltas D. Metataxonomic Analysis of Grape Microbiota During Wine Fermentation Reveals the Distinction of Cyprus Regional terroirs. Front Microbiol 2021; 12:726483. [PMID: 34630353 PMCID: PMC8494061 DOI: 10.3389/fmicb.2021.726483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Wine production in Cyprus has strong cultural ties with the island's tradition, influencing local and foreign consumers' preferences and contributing significantly to Cyprus' economy. A key contributor to wine quality and sensorial characteristics development is the microbiota that colonizes grapes and performs alcoholic fermentation. Still, the microbial patterns of wines produced in different geographic regions (terroir) in Cyprus remain unknown. The present study investigated the microbial diversity of five terroirs in Cyprus, two from the PGI Lemesos region [Kyperounta (PDO Pitsilia) and Koilani (PDO Krasochoria)], and three from the PGI Pafos region [Kathikas (PDO Laona Akamas), Panayia, and Statos (PDO Panayia)], of two grape varieties, Xynisteri and Maratheftiko, using high-throughput amplicon sequencing. Through a longitudinal analysis, we examined the evolution of the bacterial and fungal diversity during spontaneous alcoholic fermentation. Both varieties were characterized by a progressive reduction in their fungal alpha diversity (Shannon index) throughout the process of fermentation. Additionally, the study revealed a distinct separation among different terroirs in total fungal community composition (beta-diversity) for the variety Xynisteri. Also, Kyperounta terroir had a distinct total fungal beta-diversity from the other terroirs for Maratheftiko. Similarly, a significant distinction was demonstrated in total bacterial diversity between the PGI Lemesos region and the PGI Pafos terroirs for grape juice of the variety Xynisteri. Pre-fermentation, the fungal diversity for Xynisteri and Maratheftiko was dominated by the genera Hanseniaspora, Aureobasidium, Erysiphe, Aspergillus, Stemphylium, Penicillium, Alternaria, Cladosporium, and Mycosphaerella. During and post-fermentation, the species Hanseniaspora nectarophila, Saccharomyces cerevisiae, Hanseniaspora guilliermondii, and Aureobasidium pullulans, became the predominant in most must samples. Regarding the bacterial diversity, Lactobacillus and Streptococcus were the predominant genera for both grape varieties in all stages of fermentation. During fermentation, an increase was observed in the relative abundance of some bacteria, such as Acetobacter, Gluconobacter, and Oenococcus oeni. Finally, the study revealed microbial biomarkers with statistically significant higher relative representation, associated with each geographic region and each grape variety, during the different stages of fermentation. The present study's findings provide an additional linkage between the grape microbial community and the wine terroir.
Collapse
Affiliation(s)
- Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Minas Mina
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
- Kyperounda Winery, P. Photiades Group, Nicosia, Cyprus
| | | | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology, and Food Science, Cyprus University of Technology, Lemesos, Cyprus
| |
Collapse
|
17
|
Molecular characterization of the bacterial communities present in sheep's milk and cheese produced in South Brazilian Region via 16S rRNA gene metabarcoding sequencing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Kamilari E, Efthymiou M, Anagnostopoulos DA, Tsaltas D. Cyprus Sausages' Bacterial Community Identification Through Metataxonomic Sequencing: Evaluation of the Impact of Different DNA Extraction Protocols on the Sausages' Microbial Diversity Representation. Front Microbiol 2021; 12:662957. [PMID: 34079530 PMCID: PMC8165277 DOI: 10.3389/fmicb.2021.662957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Cyprus traditional sausages from the Troodos mountainous region of Pitsilia gained the protected geographical indication (PGI) designation from the European Committee (EU 2020/C 203/06). Still, we lack authentication protocols for the distinction of “Pitsilia” from industrially produced Cyprus sausages. Microbial activity is an essential contributor to traditional sausages’ sensorial characteristics, but whether the microbial patterns might be associated with the area of production is unclear. In the present research, we applied high-throughput sequencing (HTS) to provide a linkage between the area of production and Cyprus sausages’ bacterial diversity. To strengthen our findings, we used three different DNA extraction commercial kits: (i) the DNeasy PowerFood Microbial Kit (QIAGEN); (ii) the NucleoSpin Food Kit (MACHEREY-NAGEL); and (iii) the blackPREP Food DNA I Kit (Analytik Jena), in which we applied three different microbial cell wall lysis modifications. The modifications included heat treatment, bead beating, and enzymatic treatment. Results regarding metagenomic sequencing were evaluated in terms of number of reads, alpha diversity indexes, and taxonomic composition. The efficacy of each method of DNA isolation was assessed quantitatively based on the extracted DNA yield and the obtained copy number of (a) the 16S rRNA gene, (b) the internal transcribed spacer (ITS) region, and (c) three Gram-positive bacteria that belong to the genera Latilactobacillus (formerly Lactobacillus), Bacillus, and Enterococcus via absolute quantification using qPCR. Compared with some examined industrial sausages, Pitsilia sausages had significantly higher bacterial alpha diversity (Shannon and Simpson indexes). Principal coordinates analysis separated the total bacterial community composition (beta diversity) of the three Pitsilia sausages from the industrial sausages, with the exception of one industrial sausage produced in Pitsilia, according to the manufacturer. Although the eight sausages shared the abundant bacterial taxa based on 16S rDNA HTS, we observed differences associated with bacterial diversity representation and specific genera. The findings indicate that the microbial communities may be used as an additional tool for identifying of the authenticity of Cypriot sausages.
Collapse
Affiliation(s)
- Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Marina Efthymiou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
19
|
Impact of DNA extraction methods on 16S rRNA-based profiling of bacterial communities in cheese. J Microbiol Methods 2021; 184:106210. [PMID: 33774112 DOI: 10.1016/j.mimet.2021.106210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022]
Abstract
Numerous factors associated with sample preparation, DNA extraction, primer choice, sequencing platform and data analysis can affect the accuracy of 16S rRNA sequencing results. The DNA extraction method is considered critical for the success of sequencing as it can be the source of considerable variations in the analysis of the microbiome. In this study, the impact of various DNA extraction methods on the results of analysis of bacterial communities in cheese was evaluated. DNA was isolated from Mozzarella as a model cheese using optimized bead-based homogenization followed by different extraction procedures. Five commercial kits and two open-formula DNA extraction protocols were evaluated for amplicon sequencing of a 16S rRNA fragment of ~1460 bp. In addition, model cheese samples artificially contaminated by defined concentrations of Listeria monocytogenes and Escherichia coli, as representatives of Gram positive and Gram negative bacteria, were analysed. Six out of seven DNA extraction procedures were found to be able to provide amplifiable bacterial DNA suitable for 16S rRNA sequence analysis, but individual extraction procedures led to variable results. In particular, lysis supported with bead-beating led to a higher proportion of G+ bacteria in relative abundance profiles, probably because of the more efficient cell wall disruption. Artificially added bacterial species were reliably detected with a quantitative response. The results demonstrated a risk in comparing the data on bacterial communities in cheese when different DNA extraction protocols are used and highlighted the need to choose a standardized approach when comparison across multiple sequencing runs is required.
Collapse
|
20
|
Papademas P, Kamilari E, Aspri M, Anagnostopoulos DA, Mousikos P, Kamilaris A, Tsaltas D. Investigation of donkey milk bacterial diversity by 16S rDNA high-throughput sequencing on a Cyprus donkey farm. J Dairy Sci 2020; 104:167-178. [PMID: 33162091 DOI: 10.3168/jds.2020-19242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The interest in milk originating from donkeys is growing worldwide due to its claimed functional and nutritional properties, especially for sensitive population groups, such as infants with cow milk protein allergy. The current study aimed to assess the microbiological quality of donkey milk produced in a donkey farm in Cyprus using culture-based and high-throughput sequencing techniques. The culture-based microbiological analysis showed very low microbial counts, whereas important food-borne pathogens were not detected in any sample. In addition, high-throughput sequencing was applied to characterize the bacterial communities of donkey milk samples. Donkey milk mostly composed of gram-negative Proteobacteria, including Sphingomonas, Pseudomonas, Mesorhizobium, and Acinetobacter; lactic acid bacteria, including Lactobacillus and Streptococcus; the endospores forming Clostridium; and the environmental genera Flavobacterium and Ralstonia, detected in lower relative abundances. The results of the study support existing findings that donkey milk contains mostly gram-negative bacteria. Moreover, it raises questions regarding the contribution of (1) antimicrobial agents (i.e., lysozyme, peptides) in shaping the microbial communities and (2) bacterial microbiota to the functional value of donkey milk.
Collapse
Affiliation(s)
- P Papademas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| | - E Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - M Aspri
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - D A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - P Mousikos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - A Kamilaris
- Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Enschede, 7522 NB, the Netherlands; Research Centre on Interactive Media, Smart Systems and Emerging Technologies-RISE, Nicosia 1066, Cyprus
| | - D Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus.
| |
Collapse
|
21
|
Snapshot of Cyprus Raw Goat Milk Bacterial Diversity via 16S rDNA High-Throughput Sequencing; Impact of Cold Storage Conditions. FERMENTATION 2020. [DOI: 10.3390/fermentation6040100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In general, it is a common practice among dairy producers to store the milk in the refrigerator directly after milking, in order to preserve it and prevent the development of spoilage microbes. However, the impact of keeping the milk in the refrigerator overnight on milk microbial diversity has been poorly investigated. This study aimed to provide a snapshot of the bacterial composition of goat milk after direct storage at −80 °C and after being kept overnight at 4 °C and then in storage at −80 °, using high-throughput sequencing (HTS). Goat milk samples from four different farms were analyzed, to reveal that milk bacterial diversity differed between the two different storage conditions. Goat milk directly stored at −80 °C was characterized by the presence of the Gram-negative contaminants Pseudomonas and Acinetobacter, in addition to the genera Corynebacterium, Chryseobacterium, Bacteroides and Clostridium. Milk samples that were kept overnight at 4 °C were characterized by a reduction in their bacterial biodiversity and the predominance of the Gram-negative, aerobic Phyllobacterium. Overall, HTS methodologies provide an in-depth identification and characterization of the goat raw milk microbiome. Further, they offer a better understanding of the contribution of cold storage conditions to milk microbiota formation. This study may assist dairy producers in improving raw milk and raw milk cheeses quality and guaranteeing consumers’ safety.
Collapse
|
22
|
Geronikou A, Srimahaeak T, Rantsiou K, Triantafillidis G, Larsen N, Jespersen L. Occurrence of Yeasts in White-Brined Cheeses: Methodologies for Identification, Spoilage Potential and Good Manufacturing Practices. Front Microbiol 2020; 11:582778. [PMID: 33178163 PMCID: PMC7593773 DOI: 10.3389/fmicb.2020.582778] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Yeasts are generally recognized as contaminants in the production of white-brined cheeses, such as Feta and Feta-type cheeses. The most predominant yeasts species are Debaryomyces hansenii, Geotrichum candidum, Kluyveromyces marxianus, Kluyveromyces lactis, Rhodotorula mucilaginosa, and Trichosporon spp. Although their spoilage potential varies at both species and strain levels, yeasts will, in case of excessive growth, present a microbiological hazard, effecting cheese quality. To evaluate the hazard and trace routes of contamination, the exact taxonomic classification of yeasts is required. Today, identification of dairy yeasts is mainly based on DNA sequencing, various genotyping techniques, and, to some extent, advanced phenotypic identification technologies. Even though these technologies are state of the art at the scientific level, they are only hardly implemented at the industrial level. Quality defects, caused by yeasts in white-brined cheese, are mainly linked to enzymatic activities and metabolism of fermentable carbohydrates, leading to production of metabolites (CO2, fatty acids, volatile compounds, amino acids, sulfur compounds, etc.) and resulting in off-flavors, texture softening, discoloration, and swelling of cheese packages. The proliferation of spoilage yeast depends on maturation and storage conditions at each specific dairy, product characteristics, nutrients availability, and interactions with the co-existing microorganisms. To prevent and control yeast contamination, different strategies based on the principles of HACCP and Good Manufacturing Practice (GMP) have been introduced in white-brined cheese production. These strategies include milk pasteurization, refrigeration, hygienic sanitation, air filtration, as well as aseptic and modified atmosphere packaging. Though a lot of research has been dedicated to yeasts in dairy products, the role of yeast contaminants, specifically in white-brined cheeses, is still insufficiently understood. This review aims to summarize the current knowledge on the identification of contaminant yeasts in white-brined cheeses, their occurrence and spoilage potential related to different varieties of white-brined cheeses, their interactions with other microorganisms, as well as guidelines used by dairies to prevent cheese contamination.
Collapse
Affiliation(s)
- Athina Geronikou
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thanyaporn Srimahaeak
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Kalliopi Rantsiou
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Turin, Italy
| | | | - Nadja Larsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lene Jespersen
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|