1
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Farzana T, Abedin MJ, Abdullah ATM, Reaz AH, Bhuiyan MNI, Afrin S, Satter MA. Enhancing prebiotic, antioxidant, and nutritional qualities of noodles: A collaborative strategy with foxtail millet and green banana flour. PLoS One 2024; 19:e0307909. [PMID: 39159201 PMCID: PMC11332954 DOI: 10.1371/journal.pone.0307909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Foxtail millet (FM) and green banana (GB) are rich in health-promoting nutrients and bioactive substances, like antioxidants, dietary fibers, and various essential macro and micronutrients. Utilizing GB and FM flour as prebiotics is attributed to their ability to support gut health and offer multiple health benefits. The present study aimed to evaluate the impact of incorporating 10% GB flour (GBF) and different proportions (10-40%) of FM flour (FMF) on the prebiotic potential, antioxidant, nutrient, color, cooking quality, water activity and sensory attributes of noodles. The prebiotic potential, antioxidant, and nutrient of the produced noodles were significantly improved by increasing the levels of FMF. Sensorial evaluation revealed that noodles containing 30% FMF and 10% GBF attained comparable scores to the control sample. Furthermore, the formulated noodles exhibited significantly (p < 0.05) higher levels of protein, essential minerals (such as iron, magnesium, and manganese), dietary fiber (9.37 to 12.71 g/100 g), total phenolic compounds (17.81 to 36.35 mg GA eq./100 g), and total antioxidants (172.57 to 274.94 mg AA eq./100 g) compared to the control. The enriched noodles also demonstrated substantially (p < 0.05) increased antioxidant capacity, as evidenced by enhanced DPPH and FRAP activities, when compared to the control noodles. Overall, the incorporation of 30% FMF and 10% GBF led to a noteworthy improvement in the nutritional and antioxidant qualities of the noodles, as well as the prebiotic potential of the noodles with regard to L. plantarum, L. rhamnosus, and L. acidophilus. The implementation of this enrichment strategy has the potential to confer a multitude of health advantages.
Collapse
Affiliation(s)
- Tasnim Farzana
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Md. Jaynal Abedin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Abu Tareq Mohammad Abdullah
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Akter Hossain Reaz
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammad Nazrul Islam Bhuiyan
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Sadia Afrin
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| | - Mohammed Abdus Satter
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Institute of Food Science and Technology (IFST), Dhaka, Bangladesh
| |
Collapse
|
3
|
Levent H, Aktaş K. The effect of germinated black lentils on cookie quality by applying ultraviolet radiation and ultrasound technology. J Food Sci 2024; 89:2557-2566. [PMID: 38578119 DOI: 10.1111/1750-3841.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 04/06/2024]
Abstract
Black lentils contain protein, carbohydrates, dietary fiber, minerals, and vitamins, as well as phytochemicals and various bioactive compounds. Ultraviolet (UV) radiation and ultrasound (US) methods are innovative technologies that can be used to increase the efficiency of the germination process in grains and legumes. To improve the nutritional value and bioactive compounds of the cookies, black lentils germinated by applying UV radiation and US technology were used in the cookie formulation. Before the germination process, UV, US, and their combination (UV+US) were applied, and pretreated and unpretreated germinated black lentil flours were used at a level of 20% in the cookie formulation. The results revealed that pretreatment application increased the total phenolic content and antioxidant activity more than the lentil sample germinated without any treatment. In addition, the pretreatments applied further reduced the amount of phytic acid in black lentils and the lowest phytic acid content was obtained with the UV-US combination. Compared to cookies containing unpretreated germinated black lentil flour, higher L* values and lower a* values were obtained in the cookie samples containing pretreated germinated black lentil flour. Cookies containing all pretreated germinated lentils generally exhibited higher Ca and K content. This study demonstrated that UV radiation and US improved the nutritional value and bioactive components of the germinated black lentil flour and the cookies in which it was used, compared to the black lentils germinated without any treatment. PRACTICAL APPLICATION: Pretreatment of black lentils with UV/US application before germination resulted in a greater increase in total phenolic content and antioxidant activity compared to the control sample. The applied pretreatments caused a further decrease in the amount of phytic acid in black lentil samples. Black lentils germinated with the UV+US combination revealed higher Ca, Fe, K, and Mg content compared to the sample germinated without any treatment.
Collapse
Affiliation(s)
- Hacer Levent
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Kübra Aktaş
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
4
|
Aktas-Akyildiz E. Effect of wheat bran and whole wheat flour on manti quality. AN ACAD BRAS CIENC 2023; 95:e20220044. [PMID: 38126429 DOI: 10.1590/0001-3765202320220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/03/2023] [Indexed: 12/23/2023] Open
Abstract
Wheat bran and whole wheat flour are excellent dietary fibre (DF) sources which are widely used in food industry to produce high fibre food products. Although they are successfully utilized in several cereal based food formulations, there is no report regarding their use in manti which is a traditional Turkish food consumed all over the country. This study aimed to investigate the effects of wheat bran and whole wheat flour on the nutritional and cooking quality of manti. Samples were produced in an industrial plant and evaluated in terms of DF, phytic acid, in vitro glycemic index (GI), color and cooking quality (cooking loss, cooking time, weight increase). Although an increase was observed in phytic acid contents of manti produced from wheat bran or whole wheat flour, their DF contents increased without any adverse effect on cooking quality compared to control manti produced from refined flour. Besides, whole wheat flour resulted in a significant decrease in GI. The outcomes of this study demonstrates the applicability of wheat bran and whole wheat flour for industrial-scale production of manti with a good nutritional profile.
Collapse
Affiliation(s)
- Eda Aktas-Akyildiz
- Hitit University, Food Engineering Department, Cevre Yolu Bulvari, No:8, 19030, Çorum, Turkey
| |
Collapse
|
5
|
Biernacka B, Dziki D, Różyło R, Gawlik-Dziki U, Nowak R, Pietrzak W. Common Wheat Pasta Enriched with Ultrafine Ground Oat Husk: Physicochemical and Sensory Properties. Molecules 2023; 28:7197. [PMID: 37894676 PMCID: PMC10608821 DOI: 10.3390/molecules28207197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Oat husk (hull) is a byproduct of oat processing that is rich in insoluble fiber. The aim of the study was to evaluate the effect of partially replacing wheat flour with oat husk (at levels of 0, 5, 10, 15, and 20 g/100 g) on the physicochemical properties and sensory acceptance of pasta. Additionally, UPLC-MS/MS analysis was performed to identify phenolic acids and flavonoid compounds, and the cooking properties of the pasta were evaluated. The test results indicate that oat husk significantly (p < 0.05) increased the ash and fiber contents in the pasta, while decreasing the protein and fat contents. Moreover, the redness and yellowness of both raw and cooked pasta increased, while lightness decreased as a result of pasta enrichment with oat husk. Oat husk also led to a decrease in the stretching force of cooked samples, although cooking loss increased significantly but did not exceed 8%. The contents of phenolics and antioxidant activity significantly increased with the incorporation of hull in pasta recipes. UPLC-MS/MS analysis showed that the enriched pasta was especially abundant in ferulic acid. Products with up to 10 g of husk/100 g of wheat flour showed good consumer acceptance. However, higher levels of this additive led to notably lower assessments, particularly in terms of pasta texture.
Collapse
Affiliation(s)
- Beata Biernacka
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Dariusz Dziki
- Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, 31 Głęboka St., 20-612 Lublin, Poland;
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, 28 Głęboka St., 20-612 Lublin, Poland;
| | - Urszula Gawlik-Dziki
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 8 Skromna St., 20-704 Lublin, Poland;
| | - Renata Nowak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-835 Lublin, Poland; (R.N.)
| | - Wioleta Pietrzak
- Department of Pharmaceutical Botany, Medical University of Lublin, 1 Chodźki St., 20-835 Lublin, Poland; (R.N.)
| |
Collapse
|
6
|
Aydin E, Turgut SS, Aydin S, Cevik S, Ozcelik A, Aksu M, Ozcelik MM, Ozkan G. A New Approach for the Development and Optimization of Gluten-Free Noodles Using Flours from Byproducts of Cold-Pressed Okra and Pumpkin Seeds. Foods 2023; 12:foods12102018. [PMID: 37238836 DOI: 10.3390/foods12102018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The significant protein and dietary fiber content of cold-pressed pumpkin (PSF) and okra (OSF) seed byproducts are well-known. However, their impact on noodles' nutritional quality has never been studied. For the first time, noodle formulation was developed employing a genetic algorithm in the R programming language to achieve the most optimal sensory attributes as well as nutritional composition, color, cooking, and textural properties. The optimized noodle formulation was detected for OSF, PSF, gluten-free flour, salt, and egg with the following amounts: 11.5 g, 87.0 g, 0.9 g, 0.6 g, and 40 g, respectively, with 10.5 mL of water. The total protein (TP%), total fat (TF%), total carbohydrate (TC%), total dietary fiber content (TDF%), ash (%), total phenolic content (TPC mg GAE/100 g), and ABTS (%) of PSF were found to be 39%, 17%, 7%, 18%, 3%, 19%, and 48%, respectively, whereas for OSF, 33%, 8%, 21%, 32%, 5%, 16%, and 38%, respectively, were detected. In addition, TP (42.88%), TF (15.6%), ash (5.68%), TDF (40.48%), TPC (25.5 mg GAE/100 g), and ABTS (70%) values were obtained for the noodles. Consequently, the valorization of the cold oil press industry's byproducts may be used as ingredients that add high value to gluten-free protein and fiber-rich noodle production, and they may gain interest from both processors and consumers.
Collapse
Affiliation(s)
- Ebru Aydin
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Sebahattin Serhat Turgut
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Sedef Aydin
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Serife Cevik
- Department of Food Processing, Gelendost Vocational High School, Isparta University of Applied Sciences, 32900 Isparta, Turkey
| | - Ayse Ozcelik
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Mehmet Aksu
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Muhammed Mustafa Ozcelik
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| | - Gulcan Ozkan
- Department of Food Engineering, Faculty of Engineering, Suleyman Demirel University, 32200 Isparta, Turkey
| |
Collapse
|
7
|
Hu H, Zhou XY, Wang YS, Zhang YX, Zhou WH, Zhang L. Effects of particle size on the structure, cooking quality and anthocyanin diffusion of purple sweet potato noodles. Food Chem X 2023; 18:100672. [PMID: 37091512 PMCID: PMC10114142 DOI: 10.1016/j.fochx.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
The effects of different particle sizes of purple sweet potato flour (PSPF) on the structure and quality of noodles and the diffusion kinetics of anthocyanins during cooking were studied. As the particle size of the PSPF decreased (from 269 to 66 μm), the adverse effects of the addition of PSPF on the quality of noodles were reduced. The smaller particle size of PSPF was beneficial for the secondary structure orderliness and the tighter microstructure of PSP noodles. The diffusion of anthocyanins in noodles to the soup during cooking could be fitted well with Fick's second law, and diffusion coefficients were in the range of 8.3248-14.0893 × 10-9 m2/s. The noodles with 15% 66 μm PSPF showed the best cooking properties, the highest sensory score, the highest anthocyanin retention ability and a compact and orderly microstructure. Thus, they could be considered as noodles rich in anthocyanins for commercial application.
Collapse
|
8
|
Grgić T, Pavišić Z, Maltar-Strmečki N, Voučko B, Čukelj Mustač N, Ćurić D, Le-Bail A, Novotni D. Ultrasound-assisted Modification of Enzymatic and Antioxidant Activities, Functional and Rheological Properties of Oat and Barley Bran. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03074-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
9
|
Yan J, Lv Y, Ma S. Wheat bran enrichment for flour products: Challenges and Solutions. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingyao Yan
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Yiming Lv
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan China
| |
Collapse
|
10
|
SÜFER Ö. GLUTEN‐FREE TRADITIONAL TURKISH NOODLE WITH
MACROLEPIOTA PROCERA
MUSHROOM: FUNCTIONAL, TEXTURAL, THERMAL AND SENSORY CHARACTERISTICS. Cereal Chem 2022. [DOI: 10.1002/cche.10581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Özge SÜFER
- Osmaniye Korkut Ata UniversityDepartment of Food Engineering80000OsmaniyeTurkey
| |
Collapse
|
11
|
Meenu M, Padhan B, Zhou J, Ramaswamy HS, Pandey JK, Patel R, Yu Y. A Detailed Review on Quality Parameters of Functional Noodles. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2092747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Maninder Meenu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Bandana Padhan
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Joanna Zhou
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, New York City, NY, USA
| | | | | | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Incheon, South Korea
| | - Yong Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Equipment and Informatization in Environment Controlled Agriculture, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
12
|
Ning X, Zhou Y, Wang Z, Zheng X, Pan X, Chen Z, Liu Q, Du W, Cao X, Wang L. Evaluation of passion fruit mesocarp flour on the paste, dough, and quality characteristics of dried noodles. Food Sci Nutr 2022; 10:1657-1666. [PMID: 35592275 PMCID: PMC9094450 DOI: 10.1002/fsn3.2788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 11/06/2022] Open
Abstract
Reasonable intake of high-fiber staple food is already one of the most effective measures in fiber deficiency disease prevention and control. Passion fruit mesocarp flour (PFMF), the primary byproduct during passion fruit processing, was utilized to manufacture high-fiber dried noodles. The presence of PFMF boosted wheat flour gelatinization and retrogradation. The competition for water between PFMF and wheat flour inhibited the formation of the gluten network, which harmed the cooking properties and decreased consumer acceptance of the resulting dried noodles. Nevertheless, PFMF fortification could considerably increase the dietary fiber content of noodles. Especially for noodles with 9% PFMF, the total dietary fiber content was greater than 6%, and they thus could be regarded as a high-dietary-fiber food. Generally, the current work demonstrates the feasibility of fabricating PFMF-enriched dried noodles and their nutritional superiority compared to the corresponding normal product.
Collapse
Affiliation(s)
- Xin Ning
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Yahan Zhou
- School of Light Industry Beijing Technology and Business University Beijing China
| | - Zhen Wang
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Xiaodong Zheng
- Jinan Fruit Research Institute All China Federation of Supply and Marketing Co-operatives Jinan China
| | - Xiaoli Pan
- School of Physical and Telecommunication Engineering Yulin Normal University Yulin China
| | - Zhilin Chen
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Qiuping Liu
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Wei Du
- Guangxi Hong Bang Food Co., Ltd. Yulin China
| | - Xiaohuang Cao
- College of Chemistry and Food Science Yulin Normal University Yulin China
| | - Lei Wang
- College of Chemistry and Food Science Yulin Normal University Yulin China.,Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology Yulin China.,Colleges and Universities Key Laboratory for Efficient Use of Agricultural Resources in the Southeast of Guangxi Yulin China
| |
Collapse
|
13
|
Yeşil S, Levent H. The influence of fermented buckwheat, quinoa and amaranth flour on gluten-free bread quality. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Carpentieri S, Larrea-Wachtendorff D, Donsì F, Ferrari G. Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Abstract
Rye (Secale cereale L.) is abundantly cultivated in countries like Europe and North America, particularly in regions where soil and climate conditions are unfavorable for the growth of other cereals. Among all the cereals generally consumed by human beings, rye grains are characterized by the presence of the highest content of fiber. They are also a rich source of many phytochemical compounds, which are mainly distributed in the outer parts of the grain. This review focuses on the current knowledge regarding the characteristics of rye bran and wholemeal rye flour, as well as their applications in the production of both food and nonfood products. Previous studies have shown that the physicochemical properties of ground rye products are determined by the type of milling technique used to grind the grains. In addition, the essential biologically active compounds found in rye grains were isolated and characterized. Subsequently, the possibility of incorporating wholemeal rye flour, rye bran, and other compounds extracted from rye bran into different industrial products is discussed.
Collapse
|
16
|
Sissons M. Development of Novel Pasta Products with Evidence Based Impacts on Health-A Review. Foods 2022; 11:foods11010123. [PMID: 35010249 PMCID: PMC8750499 DOI: 10.3390/foods11010123] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Pasta made from durum wheat is a widely consumed worldwide and is a healthy and convenient food. In the last two decades, there has been much research effort into improving the nutritional value of pasta by inclusion of nonconventional ingredients due to the demand by health-conscious consumers for functional foods. These ingredients can affect the technological properties of the pasta, but their health impacts are not always measured rather inferred. This review provides an overview of pasta made from durum wheat where the semolina is substituted in part with a range of ingredients (barley fractions, dietary fibre sources, fish ingredients, herbs, inulin, resistant starches, legumes, vegetables and protein extracts). Impacts on pasta technological properties and in vitro measures of phytonutrient enhancement or changes to starch digestion are included. Emphasis is on the literature that provides clinical or animal trial data on the health benefits of the functional pasta.
Collapse
Affiliation(s)
- Mike Sissons
- Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Tamworth, NSW 2340, Australia
| |
Collapse
|
17
|
Aktaş K, Levent H, Yeşil S, Adıgüzel E. Effects of shorts, by-product of milling, on the chemical composition and quality properties of pasta. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The aim of this study was to investigate the effects of wheat shorts, a milling by-product, on some properties of pasta. For this purpose, wheat semolina was replaced with wheat shorts at 15, 30, and 45% levels in pasta formulation. Some physical, chemical, and sensory properties of pasta samples were evaluated and compared with control samples prepared with durum wheat semolina. As the concentrations of shorts increased in the pasta formulation, the brightness values decreased and the redness values increased. The ash, fat, total dietary fibre, total phenolic content, antioxidant activity, and mineral content increased with the use of shorts. The highest solid loss value (10.28%) was found in pasta samples containing 45% shorts. The addition of shorts up to 30% presented similar overall acceptability scores to control pasta samples. As a result, it was observed that as the shorts content of the samples increase, the nutritional value and the levels of some components that affect health positively, increase as well. So, the samples containing 30% shorts appear to be at forefront due to health effects and overall acceptability scores.
Collapse
Affiliation(s)
- K. Aktaş
- 1 Department of Gastronomy and Culinary Arts, School of Applied Sciences, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey
| | - H. Levent
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey
| | - S. Yeşil
- 3 Department of Food Engineering, Faculty of Engineering, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey
| | - E. Adıgüzel
- 2 Department of Nutrition and Dietetics, Faculty of Health Sciences, Karamanoğlu Mehmetbey University, 70200, Karaman, Turkey
| |
Collapse
|
18
|
New ingredients and alternatives to durum wheat semolina for a high quality dried pasta. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Liu T, Wang K, Xue W, Wang L, Zhang C, Zhang X, Chen Z. In vitro starch digestibility, edible quality and microstructure of instant rice noodles enriched with rice bran insoluble dietary fiber. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Göksel Saraç M. Evaluation of non-starch polysaccharide addition in Turkish noodles: ELECTRE techniques approach. J Texture Stud 2021; 52:368-379. [PMID: 33491201 DOI: 10.1111/jtxs.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
In the present study, the effects of non-starch polysaccharide addition into noodle samples were determined in uncooked and cooked noodle samples from cooking, physicochemical, textural, and sensorial aspects. Turkish-type noodles were obtained using apple (AFN), carrot (CFN), inulin (IFN), and pea (PFN) fibers among the non-starch polysaccharides. Moreover, the sensory analyses were performed using elimination et choixtraduisant la realite-elimination and choice translating reality (ELECTRE), one of the multi-criteria decision-making approach methods. The cooking loss values were found to be low in the final products containing a high amount of dietary fibers. The hardest product among the cooked noodles was the noodle produced using pea fiber that was also the one with the lowest water absorption value. Because of the different characteristics of dietary fibers, the noodles also have different properties. Based on the criteria selected as a result of the ELECTRE analysis performed for sensorial analysis, the most preferred product following the control sample was found to be the IFN sample. The others were ranked as the ones obtained using pea, carrot, and apple fiber.
Collapse
|
21
|
Skendi A, Zinoviadou KG, Papageorgiou M, Rocha JM. Advances on the Valorisation and Functionalization of By-Products and Wastes from Cereal-Based Processing Industry. Foods 2020; 9:E1243. [PMID: 32899587 PMCID: PMC7554810 DOI: 10.3390/foods9091243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers' spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - Kyriaki G. Zinoviadou
- Department of Food Science and Technology, Perrotis College, American Farm School, GR-57001 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, GR-57400 Thessaloniki, Greece;
| | - João M. Rocha
- REQUIMTE—Chemistry and Technology Network, Green Chemistry Laboratory (LAQV), Department of Chemistry and Biochemistry, Faculty of Sciences—University of Porto (FCUP), Rua do Campo Alegre, s/n., P-4169-007 Porto, Portugal; or
| |
Collapse
|
22
|
Kaleda A, Talvistu K, Tamm M, Viirma M, Rosend J, Tanilas K, Kriisa M, Part N, Tammik ML. Impact of Fermentation and Phytase Treatment of Pea-Oat Protein Blend on Physicochemical, Sensory, and Nutritional Properties of Extruded Meat Analogs. Foods 2020; 9:E1059. [PMID: 32764254 PMCID: PMC7465559 DOI: 10.3390/foods9081059] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022] Open
Abstract
Plant materials that are used for the production of extruded meat analogs are often nutritionally incomplete and also contain antinutrients, thus there is a need to explore alternative plant proteins and pre-treatments. This study demonstrates application of phytase and fermentation to a pea-oat protein blend with a good essential amino acid profile and subsequent texturization using extrusion cooking. Enzymatic treatment reduced the content of antinutrient phytic acid by 32%. Extrusion also degraded phytic acid by up to 18%, but the effect depended on the material. Differences in physicochemical, sensorial, and textural properties between untreated and phytase-treated extruded meat analogs were small. In contrast, fermented material was more difficult to texturize due to degradation of macromolecules; physicochemical and textural properties of extrudates were markedly different; sensory analysis showed enhancement of flavor, but also detected an increase in some unwanted taste attributes (bitterness, cereal and off-taste). Phytic acid was not degraded by fermentation. Analysis of volatile compounds showed extrusion eliminated volatiles from the raw material but introduced Maillard reaction products. Overall, phytase treatment and fermentation demonstrated the potential for application in extruded meat analogs but also highlighted the necessity of optimization of process conditions.
Collapse
Affiliation(s)
- Aleksei Kaleda
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia; (K.T.); (M.T.); (M.V.); (J.R.); (K.T.); (M.K.); (N.P.); (M.-L.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|