1
|
Wen A, Gao F, Guo B, Wang L, Yuan S, Yu H, Guo Y, Cheng Y, Yang L, Yao W. Electrolyzed water combined with ozone treatment for efficient removal of mancozeb residues from grapes. J Food Sci 2024; 89:7521-7533. [PMID: 39322972 DOI: 10.1111/1750-3841.17374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
Existing cleaning methods mainly focus on removing free-state pesticides. However, mancozeb can bind to the wax layer of grapes, forming bound-state residues that are difficult to remove. This study aims to develop an effective cleaning strategy to eliminate both free and bound mancozeb residues from grapes. Compared with the untreated mancozeb aqueous solution, the concentration of free mancozeb significantly decreased (p < 0.05) after treatment with ozonated water (OW), electrolyzed water (EW), and their combination (OW+EW) for 60 min. The combined treatment synergistically promoted mancozeb degradation, thus reducing its half-life to 38% and 75% of that observed when OW and EW were used alone, respectively. To investigate the effect of the waxy layer on mancozeb removal, oleanolic acid (OLA) was selected as a representative component. The binding effect of OLA limited the degradation of mancozeb in OW and EW, extending its half-life by 1.27 and 1.20 times, respectively. Density functional theory elucidated the mechanism by which the binding of OLA affects the degradation of mancozeb. Interestingly, the decomposition of mancozeb in OW + EW was almost unaffected by the introduction of OLA, indicating that the combined treatment could effectively remove bound-state mancozeb. The combined treatment was then successfully applied to remove mancozeb from grapes. After exposure to OW + EW for 10 min, the removal efficiency of mancozeb reached up to 80.61% with minimal risks of ethylene thiourea formation. There was no obvious change in the surface color of grapes after treatment. The findings provide valuable guidance for removing mancozeb from fresh fruits rich in waxy coatings.
Collapse
Affiliation(s)
- Aying Wen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fang Gao
- Center of Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Boru Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Linquan Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Ling Yang
- Xinjiang Agricultural Products Quality and Safety Center, Urumchi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Cui T, Gine GR, Lei Y, Shi Z, Jiang B, Yan Y, Zhang H. Ready-to-Cook Foods: Technological Developments and Future Trends-A Systematic Review. Foods 2024; 13:3454. [PMID: 39517238 PMCID: PMC11545181 DOI: 10.3390/foods13213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ready-to-cook (RTC) foods can significantly improve the cooking experience of busy or unskillful consumers, based on production involving technical combinations of food processing and packaging. Initialized by a market survey of 172 products in Beijing, this systematic review analyzes RTC foods' development status according to ingredients, packaging, and storage conditions to further clarify the scope of RTC foods. The working principles and efficacy of various food processing techniques, such as washing, cutting, marinating, and frying, and packaging design or innovations such as modified atmosphere packaging (MAP) were both summarized in detail, with attention to their ability to extend shelf life, reduce safety risks, and maximize production efficiency in RTC food production. The cutting-edge technologies that may potentially apply in the RTC food processing or packaging sector were compared with current approaches to visualize the direction of future developments. In conclusion, we have observed the specific pattern of RTC food varieties and packaging formats in the Beijing market and revealed the advancements in RTC food technologies that will continue playing a critical role in shaping this growing market, while challenges in scalability, cost-efficiency, and sustainability remain key areas for future research. The data and perspectives presented will articulate the conceptions and existing challenges of RTC food, foster consumer perception and recognition of similar products, and deliver useful guidance for stakeholders interested in such products.
Collapse
Affiliation(s)
- Tianqi Cui
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Goh Rui Gine
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Yuqin Lei
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Zhiling Shi
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Beichen Jiang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Yifan Yan
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
| | - Hongchao Zhang
- College of Food Science and Nutritional Engineering, China Agriculture University, Beijing 100083, China; (T.C.)
- Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agriculture University, Beijing 100083, China
| |
Collapse
|
3
|
Malahlela HK, Belay ZA, Mphahlele RR, Sigge GO, Caleb OJ. Recent advances in activated water systems for the postharvest management of quality and safety of fresh fruits and vegetables. Compr Rev Food Sci Food Saf 2024; 23:e13317. [PMID: 38477217 DOI: 10.1111/1541-4337.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/28/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024]
Abstract
Over the last three decades, decontamination management of fresh fruits and vegetables (FFVs) in the packhouses and along the supply chains has been heavily dependent on chemical-based wash. This has resulted in the emergence of resistant foodborne pathogens and often the deposition of disinfectant byproducts on FFVs, rendering them unacceptable to consumers. The management of foodborne pathogens, microbial contaminants, and quality of FFVs are a major concern for the horticultural industries and public health. Activated water systems (AWS), such as electrolyzed water, plasma-activated water, and micro-nano bubbles, have gained significant attention from researchers over the last decade due to their nonthermal and nontoxic mode of action for microbial inactivation and preservation of FFVs quality. The aim of this review is to provide a comprehensive summary of recent progress on the application of AWS and their effects on quality attributes and microbial safety of FFVs. An overview of the different types of AWS and their properties is provided. Furthermore, the review highlights the chemistry behind generation of reactive species and the impact of AWS on the quality attributes of FFVs and on the inactivation/reduction of spoilage and pathogenic microbes (in vivo or in vitro). The mechanisms of action of microorganism inactivation are discussed. Finally, this work highlights challenges and limitations for commercialization and safety and regulation issues of AWS. The synergistic prospect on combining AWS for maximum microorganism inactivation effectiveness is also considered. AWS offers a potential alternative as nonchemical interventions to maintain quality attributes, inactivate spoilage and pathogenic microorganisms, and extend the shelf-life for FFVs.
Collapse
Affiliation(s)
- Harold K Malahlela
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zinash A Belay
- Post-Harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | | | - Gunnar O Sigge
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Oluwafemi J Caleb
- Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
- AgriFood BioSystems and Technovation Research Group, Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
4
|
Caner C, Tiryaki K, Pala ÇU, Yüceer M. Combined effect of electrolyzed water (EW) and sonication with equilibrium modified atmosphere packaging for prolonging storage stability of fresh strawberry. FOOD SCI TECHNOL INT 2024:10820132241227009. [PMID: 38280215 DOI: 10.1177/10820132241227009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This research focuses on the effectiveness of electrolyzed water (50 and 100 ppm for 3 min), ultrasonication (80 W for 3 min), and their combinations on fresh strawberries, which are then packaged using microperforated film to enhance their storage stability. The gas composition in the headspace, pH, soluble solids, color (L*, a*, b*, and ΔE* values), anthocyanins, total phenolics, and texture profile was evaluated for the 35 days of storage at +4 °C. The lowest weight loss was measured at about 100 ppm electrolyzed water (EW; 0.47%), and the highest one was in the control group (0.57%) after storage. At the end of the storage, O2 in the headspace decreased from 20.90% to 10.50-8.10% and CO2 was accumulated from 0.03% to 16.4-14.34%. The results showed that soluble solids decreased (9.95 to 8.48-7.85 °Bx) and pH values increased (3.34 to 3.79-3.91) during storage. At the end of the storage, the total phenolics in the control group decreased by the most during storage (from 1209.09 ppm to 808.00 ppm), whereas the 50 ppm EW group had the highest (931.66 ppm). Further, the significantly highest anthocyanin amount was found to be 143.86 ppm in the 100 ppm EW group at the end of 28 days of storage. The EW can significantly delay the degradation of anthocyanin over the storage period. The sonication at 100 ppm EW damages strawberry tissues, reducing their hardness. The lowest decay rate was found in fruits treated with 100 ppm EW (41.67%), followed by 50 ppm EW (58.33%), compared to the control (75.00%). This study reveals that applications of the 50 ppm EW and also 50 pm EW combined with ultrasonication have great potential in the extending storage stability of the fresh strawberries.
Collapse
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Kübra Tiryaki
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Çiğdem Uysal Pala
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
5
|
Cuggino SG, Posada-Izquierdo G, Bascón Villegas I, Theumer MG, Pérez-Rodríguez F. Effects of chlorine and peroxyacetic acid wash treatments on growth kinetics of Salmonella in fresh-cut lettuce. Food Res Int 2023; 167:112451. [PMID: 37087200 DOI: 10.1016/j.foodres.2022.112451] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/27/2023]
Abstract
Fresh-cut produces are often consumed uncooked, thus proper sanitation is essential for preventing cross contamination. The reduction and subsequent growth of Salmonella enterica sv Thompson were studied in pre-cut iceberg lettuce washed with simulated wash water (SWW), sodium hypochlorite (SH, free chlorine 25 mg/L), and peroxyacetic acid (PAA, 80 mg/L) and stored for 9 days under modified atmosphere at 9, 13, and 18 °C. Differences in reduction between SH and PAA were non-existent. Overall, visual quality, dehydration, leaf edge and superficial browning and aroma during storage at 9 °C were similar among treatments, but negative effects increased with temperature. These results demonstrated that PAA can be used as an effective alternative to chlorine for the disinfection of Salmonella spp. in fresh-cut lettuce. The growth of Salmonella enterica sv Thompson was successfully described with the Baranyi and Roberts growth model in the studied storage temperature range, and after treatment with SWW, chlorine, and PAA. Subsequently, predictive secondary models were used to describe the relationship between growth rates and temperature based on the models' family described by Bělehrádek. Interestingly, the exposure to disinfectants biased growth kinetics of Salmonella during storage. Below 12 °C, growth rates in lettuce treated with disinfectant (0.010-0.011 log CFU/h at 9 °C) were lower than those in lettuce washed with water (0.016 log CFU/h at 9 °C); whereas at higher temperatures, the effect was the opposite. Thus, in this case, the growth rate values registered at 18 °C for lettuce treated with disinfectant were 0.048-0.054 log CFU/h compared to a value of 0.038 log CFU/h for lettuce treated with only water. The data and models developed in this study will be crucial to describing the wash-related dynamics of Salmonella in a risk assessment framework applied to fresh-cut produce, providing more complete and accurate risk estimates.
Collapse
Affiliation(s)
- Sofia Griselda Cuggino
- Departamento de Fundamentación Biológica, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Guiomar Posada-Izquierdo
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain.
| | - Isabel Bascón Villegas
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Martin Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina; Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Centro de investigaciones en bioquímica clínica e inmunología (CIBICI), Córdoba, Argentina
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Technology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, CeiA3, Universidad de Córdoba, 14014 Córdoba, Spain
| |
Collapse
|
6
|
He J, Gao X, Huang H, Hao J. Proposal and Verification of the Theory of Layer-by-Layer Elimination of Biofilm in Listeria monocytogenes. Foods 2023; 12:foods12071361. [PMID: 37048183 PMCID: PMC10093742 DOI: 10.3390/foods12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Biofilms are microbial communities that represent a high abundance of microbial life forms on Earth. Within biofilms, structural changes during clearance processes occur in three spatial and temporal dimensions; therefore, microscopy and quantitative image analysis are essential in elucidating their function. Here, we present confocal laser scanning microscopy (CLSM) in conjunction with ISA-2 software analysis for the automated and high-throughput quantification, analysis, and visualisation of biofilm interiors and overall biofilm properties in three spatial and temporal dimensions. This paper discusses the removal process of Listeria monocytogenes (LM) biofilms using slightly acidic electrolytic water, non-electrolytic hypochlorite water, and alternating the use of strongly acidic and strongly alkaline electrolytic water. The results show that the biofilm gradually thins and gutters from the initial viscous dense and thick morphology under the action of either biocide. This process is consistent with first-level kinetics. After CLSM filming to observe the biofilm structure, analysis software was used to process and quantify the biovolume, average biofilm thickness, biofilm roughness and other indicators; fluorescence enzyme markers were used to verify the remaining amount of extracellular nucleic acid. In this study, we proposed and validated the theory of layer-by-layer elimination of LM biofilm.
Collapse
Affiliation(s)
- Jialin He
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Xiangyu Gao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Hanbing Huang
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050018, China
| | - Jianxiong Hao
- College of Food Science and Biology, Hebei University of Science and Technology, No. 26 Yuxiang Street, Shijiazhuang 050018, China
| |
Collapse
|
7
|
Lu L, Guo H, Kang N, He X, Liu G, Li J, He X, Yan X, Yu H. Application of electrolysed water in the quality and safety control of fruits and vegetables: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ling Lu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hongyan Guo
- School of Biological and Food Engineering Anhui Polytechnic University Wuhu Anhui 241000 China
| | - Ningbo Kang
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoguang He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Guishan Liu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Juan Li
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoling He
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Xiaoxia Yan
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| | - Hao Yu
- School of Food & Wine, Ningxia University Yinchuan Ningxia 750021 China
| |
Collapse
|
8
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
9
|
Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol 2021; 98:103791. [PMID: 33875220 DOI: 10.1016/j.fm.2021.103791] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
The gene encoding LysSTG2, an endolysin from Salmonella-lytic bacteriophage STG2, was cloned, overexpressed, and characterized. LysSTG2 consists of a single domain belonging to the Peptidase_M15 superfamily. LysSTG2 showed strong lytic activity against chloroform-treated S. Typhimurium cells after incubation at 4-50 °C for 30 min, at pH ranging from 7.0 to 11.0, and in the presence of NaCl from 0 to 300 mmol/L. It also showed lytic activity against all the 14 tested Gram-negative strains treated with chloroform, including Salmonella, E. coli, and Pseudomonas aeruginosa, but not against the Gram-positive bacteria tested. In addition, LysSTG2 (100 μg/mL) reduced the viability of S. Typhimurium NBRC 12529 planktonic cells by 1.2 log and that of the biofilm cells after 1-h treatment. Sequential treatment of slightly acidic hypochlorous water (SAHW) containing 40 mg/L available chlorine and LysSTG2 (100 μg/mL) was effective on S. Typhimurium NBRC 12529 biofilm cells, removing more than 99% of biofilm cells. These results demonstrate that LysSTG2 alone can effectively kill S. Typhimurium cells after permeabilization treatment and successfully control S. Typhimurium in biofilms in combination with SAHW, suggesting that the combined use of LysSTG2 and SAHW might be a novel and promising method for combating S. Typhimurium in food industries.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hung-Hsin Huang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
11
|
Abstract
Electrolyzed oxidizing water (EOW) is one of the promising novel antimicrobial agents that have recently been proposed as the alternative to conventional decontamination methods such as heat and chemical sanitizers. Acidic EOW with pH ranging from 2 to 5 is regarded most applicable in the antimicrobial treatment of vegetables and meats. Neutral and alkaline electrolyzed water have also been explored in few studies for their applications in the food industry. Neutral electrolyzed water is proposed to solve the problems related to the storage and corrosion effect of acidic EOW. Recently, the research focus has been shifted toward the application of slightly acidic EOW as more effective with some supplemental physical and chemical treatment methods such as ultrasound and UV radiations. The different applications of electrolyzed water range from drinking water and wastewater to food, utensil, and hard surfaces. The recent studies also conclude that electrolyzed water is more effective in suspensions as compared with the food surfaces where longer retention times are required. The commercialization of EOW instruments is not adopted frequently in many countries due to the potential corrosion problems associated with acidic electrolyzed water. This review article summarizes the EOW types and possible mechanism of action as well as highlights the most recent research studies in the field of antimicrobial applications and cleaning. Electrolyzed water can replace conventional chemical decontamination methods in the industry and household. However, more research is needed to know its actual mechanism of antimicrobial action along with the primary concerns related to EOW in the processing of different food products.
Collapse
|