1
|
Ristivojević P, Krstić Ristivojević M, Stanković D, Cvijetić I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024; 29:4717. [PMID: 39407645 PMCID: PMC11478183 DOI: 10.3390/molecules29194717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Due to the urgent need for a transition to sustainable, zero-waste green technology, the extraction of bioactives from food and agricultural by-products and waste has garnered increasing interest. Traditional extraction techniques often involve using organic solvents, which are associated with environmental and health risks. Natural deep eutectic solvents (NADESs) have emerged as a promising green alternative, offering advantages such as low toxicity, biodegradability, and the ability to dissolve a wide range of biomolecules. This review provides a comprehensive overview of recent trends in the application of NADESs for extracting bioactive compounds from sustainable sources. The review explains the composition and principles of preparation and highlights various applications of NADESs in extracting different classes of bioactive compounds, emphasizing their potential to revolutionize extraction processes. By summarizing the latest advancements and trends, this review aims to support research and industrial applications of NADESs, promoting more sustainable and efficient extraction methods in the food and agricultural sectors.
Collapse
Affiliation(s)
- Petar Ristivojević
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Maja Krstić Ristivojević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Dalibor Stanković
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| | - Ilija Cvijetić
- Department of Analytical Chemistry, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia; (D.S.); (I.C.)
| |
Collapse
|
2
|
Hassanein WS, Meral R, Ceylan Z, Ahmed MM, Yilmaz MT. Use of encapsulated pomegranate seed oil in novel coarse and nanosized materials for improving the storage life of strawberry. Food Chem 2024; 441:138251. [PMID: 38219358 DOI: 10.1016/j.foodchem.2023.138251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Different-sized pomegranate seed oil-based emulsions (coarse (CsP) and nanoemulsions (NsP): 1246 and 325 nm) were successfully prepared. Strawberries treated with NsP and CsP showed a significant decrease (p < 0.05) in yeast-mold counts (TMY) by 1.80 log CFU g-1, and mesophilic aerobic bacteria counts (TMAB) decreased (p < 0.05) by 0.91 log CFU g-1, respectively. CsP- and NsP-treated strawberries had a TPC of 74.45 and 82.35 mg GAE kg-1, respectively, while control samples had a TPC of 44.24 mg GAE kg-1. The strawberries treated with NsP exhibited the highest antioxidant capacity with 179.44 mol TEAC g-1. After treatment with a coarse emulsion, severity levels of A. niger and B. cinerea were 60 and 73 % while the nanoemulsion treatment significantly reduced severity levels to 55.3 and 56 %. The coarse and nanoemulsions may have potential use within the food industry owing to their antioxidant and antifungal properties as well as their ability to enhance strawberry quality and function.
Collapse
Affiliation(s)
- Wael S Hassanein
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia
| | - Raciye Meral
- Van Yüzüncü Yıl University, Department of Food Engineering, Faculty of Engineering, 65000 Van, Turkiye
| | - Zafer Ceylan
- Bartın University Faculty of Science, Department of Molecular Biology and Genetics, 74100 Bartın, Turkiye.
| | - Marwa M Ahmed
- King Abdulaziz University, Faculty of Engineering, Department of Electrical Engineering, 21589 Jeddah, Saudi Arabia
| | - Mustafa Tahsin Yilmaz
- King Abdulaziz University, Faculty of Engineering, Department of Industrial Engineering, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Ćirić I, Dabić Zagorac D, Sredojević M, Fotirić Akšić M, Rabrenović B, Blagojević S, Natić M. Valorisation of Raspberry Seeds in Cosmetic Industry-Green Solutions. Pharmaceutics 2024; 16:606. [PMID: 38794268 PMCID: PMC11124771 DOI: 10.3390/pharmaceutics16050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
The fruit processing industry generates large quantities of by-products well known to be rich in bioactive compounds with numerous nutritional properties and beneficial effects for human health. We developed a strategy to valorise raspberry seeds and obtain valuable ingredients with potential application in cosmetic skincare formulas. Cold press extraction technology was applied to extract oil, and the remaining defatted raspberry seed cake was treated with three proline based deep eutectic solvents (DES) to extract polyphenols. The most potent was proline/citric acid extract, with free and total ellagic acid content (52.4 mg/L and 86.4 mg/L), total phenolic content (TPC, 550.1 mg GAE/L) and radical scavenging activity (RSA, 4742.7 mmol TE/L). After the direct mixing of the extract and after encapsulation with starch as a carrier, the skincare emulsion and microemulsion were characterised by irritation potential (Zein test), transepidermal water loss (TEWL), red blood cell (RBC), and DPPH antioxidant test. The resulting preparations were of improved quality in comparison to the control hand cream, with a low skin irritation effect, lower TEWL, and higher antioxidant potential. This work complies with circular economy principles and green technology standards, and represents the efficient model on how to reuse natural resources through waste minimization.
Collapse
Affiliation(s)
- Ivanka Ćirić
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia; (I.Ć.); (D.D.Z.); (M.S.)
| | - Dragana Dabić Zagorac
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia; (I.Ć.); (D.D.Z.); (M.S.)
| | - Milica Sredojević
- Innovative Centre Faculty of Chemistry Belgrade, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia; (I.Ć.); (D.D.Z.); (M.S.)
| | - Milica Fotirić Akšić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.F.A.); (B.R.)
| | - Biljana Rabrenović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (M.F.A.); (B.R.)
| | - Stevan Blagojević
- Institute of General and Physical Chemistry, Studentski Trg 12-16, 11158 Belgrade, Serbia
| | - Maja Natić
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
4
|
Marino M, Gardana C, Rendine M, Klimis-Zacas D, Riso P, Porrini M, Del Bo’ C. Nutritional and Phytochemical Characterization of Freeze-Dried Raspberry ( Rubus idaeus): A Comprehensive Analysis. Foods 2024; 13:1051. [PMID: 38611356 PMCID: PMC11011873 DOI: 10.3390/foods13071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Several studies have highlighted the beneficial effects of consuming red raspberries on human health thanks to their high content of phytochemicals. However, the products used in these studies, both in the raw or freeze-dried form, were not fully characterized for nutrient and phytochemical composition. In this study, we aimed to determine the nutrient and non-nutrient compounds present in a freeze-dried red raspberry powder widely used by the food industry and consumers. The main sugars identified were fructose (12%), glucose (11%), and sucrose (11%). Twelve fatty acids were detected, with linoleic acid (46%), α-linolenic acid (20%), and oleic acid (15%) being the most abundant. Regarding micronutrients, vitamin C was the main hydro-soluble vitamin, while minerals, potassium, phosphorous, copper and magnesium were the most abundant, with concentrations ranging from 9 up to 96 mg/100 g, followed by manganese, iron and zinc, detected in the range 0.1-0.9 mg/100 g. Phytochemical analysis using UHPLC-DAD-HR-MS detection revealed the presence of Sanguiin H6 (0.4%), Lambertianin C (0.05%), and Sanguiin H-10 isomers (0.9%) as the main compounds. Among anthocyanins, the most representative compounds were cyanidin-3-sophoroside, cyanidin-3-glucoside and cyanidin-3-sambubioside. Our findings can serve as a reliable resource for the food industry, nutraceutical applications and for future investigations in the context of human health.
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| | - Marco Rendine
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| | - Dorothy Klimis-Zacas
- School of Food and Agriculture, University of Maine, 232 Hitchner Hall, Orono, ME 04469, USA;
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy; (C.G.); (M.R.); (P.R.); (M.P.); (C.D.B.)
| |
Collapse
|
5
|
Coscarella M, Nardi M, Alipieva K, Bonacci S, Popova M, Procopio A, Scarpelli R, Simeonov S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants (Basel) 2023; 13:62. [PMID: 38247486 PMCID: PMC10812405 DOI: 10.3390/antiox13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel 'solvent-free' extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes' optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications.
Collapse
Affiliation(s)
- Mario Coscarella
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Monica Nardi
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Sonia Bonacci
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Antonio Procopio
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Rosa Scarpelli
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| |
Collapse
|
6
|
Zhou M, Fakayode OA, Li H. Green Extraction of Polyphenols via Deep Eutectic Solvents and Assisted Technologies from Agri-Food By-Products. Molecules 2023; 28:6852. [PMID: 37836694 PMCID: PMC10574355 DOI: 10.3390/molecules28196852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with important biological properties. Their presence in conveniently available low-cost sources, such as agri-food by-products, has gained considerable attention in their recovery and further exploitation. Retrieving polyphenols in a green and sustainable way is crucial. Recently, deep eutectic solvents (DESs) have been identified as a safe and environmentally benign medium capable of extracting polyphenols efficiently. This review encompasses the current knowledge and applications of DESs and assisted technologies to extract polyphenols from agri-food by-products. Particular attention has been paid to fundamental mechanisms and potential applications in the food, cosmetic, and pharmaceutical industries. In this way, DESs and DESs-assisted with advanced techniques offer promising opportunities to recover polyphenols from agri-food by-products efficiently, contributing to a circular and sustainable economy.
Collapse
Affiliation(s)
- Man Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Haoxin Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (O.A.F.)
| |
Collapse
|
7
|
AlYammahi J, Darwish AS, Lemaoui T, Boublia A, Benguerba Y, AlNashef IM, Banat F. Molecular Guide for Selecting Green Deep Eutectic Solvents with High Monosaccharide Solubility for Food Applications. ACS OMEGA 2023; 8:26533-26547. [PMID: 37521623 PMCID: PMC10373463 DOI: 10.1021/acsomega.3c03326] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Monosaccharides play a vital role in the human diet due to their interesting biological activity and functional properties. Conventionally, sugars are extracted using volatile organic solvents (VOCs). Deep eutectic solvents (DESs) have recently emerged as a new green alternative to VOCs. Nonetheless, the selection criterion of an appropriate DES for a specific application is a very difficult task due to the designer nature of these solvents and the theoretically infinite number of combinations of their constituents and compositions. This paper presents a framework for screening a large number of DES constituents for monosaccharide extraction application using COSMO-RS. The framework employs the activity coefficients at infinite dilution (γi∞) as a measure of glucose and fructose solubility. Moreover, the toxicity analysis of the constituents is considered to ensure that selected constituents are safe to work with. Finally, the obtained viscosity predictions were used to select DESs that are not transport-limited. To provide more insights into which functional groups are responsible for more effective monosaccharide extraction, a structure-solubility analysis was carried out. Based on an analysis of 212 DES constituents, the top-performing hydrogen bond acceptors were found to be carnitine, betaine, and choline chloride, while the top-performing hydrogen bond donors were oxalic acid, ethanolamine, and citric acid. A research initiative was presented in this paper to develop robust computational frameworks for selecting optimal DESs for a given application to develop an effective DES design strategy that can aid in the development of novel processes using DESs.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Ahmad S. Darwish
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Tarek Lemaoui
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Abir Boublia
- Laboratoire
de Physico-Chimie des Hauts Polymères (LPCHP), Département
de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, Sétif 19000, Algeria
| | - Yacine Benguerba
- Laboratoire
de Biopharmacie Et Pharmacotechnie (LPBT), Ferhat Abbas Setif 1 University, Setif 19000, Algeria
| | - Inas M. AlNashef
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Research
& Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department
of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
- Center
for Membranes and Advanced Water Technology (CMAT), Khalifa University, P.O. Box 127788, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
8
|
Li F, Xiao L, Lin X, Dai J, Hou J, Wang L. Deep Eutectic Solvents-Based Ultrasound-Assisted Extraction of Antioxidants from Kudingcha ( llex kudingcha C.J. Tseng): Process Optimization and Comparison with Other Methods. Foods 2023; 12:1872. [PMID: 37174410 PMCID: PMC10178550 DOI: 10.3390/foods12091872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Kudingcha (KDC) is an important tea substitute containing abundant antioxidants. Herein, a ultrasonic-assisted extraction (UAE) technique based on deep eutectic solvents (DESs) was applied to optimize the total phenolic/total flavonoid content (TPC/TFC) from the KDC extracts. Results indicated that DES composed of L-proline and glycerol (Pro-Gly) had excellent extraction performance for TPC, TFC, ABTS•+ and FRAP, which were significantly better than other solvents. Response surface methodology (RSM) was used to obtain optimal extraction parameters for simultaneously maximizing the TPC, TFC and antioxidant activity. Results revealed that water content in Pro-Gly, liquid to solid ratio (L/S), ultrasonic temperature and extraction time were the major influence factors of the TPC, TFC, ABTS•+ and FRAP of the KDC extracts. The optimal conditions included water content in Pro-Gly of 46.4%, L/S of 25:1 (mL/g), ultrasonic temperature of 55 °C and extraction time of 50 min. Meanwhile, HPLC-MS/MS was adopted to identify the KDC extracts, which revealed the presence of major phytochemicals, including 5-chlorogenic acid, 4,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid, 3,4-dicaffeoylquinic acid, kaempferol 3-rutinoside, myricetin and isorhamnetin. Moreover, UAE-Pro-Gly achieved further higher individual phenolics contents, TPC, TFC, ABTS•+ and FRAP than other methods. In conclusion, UAE-Pro-Gly is a highly efficient method for extraction of phenolic antioxidants from KDC.
Collapse
Affiliation(s)
- Fangliang Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Leyan Xiao
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xue Lin
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| | - Jincheng Dai
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiale Hou
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Salas-Arias K, Irías-Mata A, Sánchez-Kopper A, Hernández-Moncada R, Salas-Morgan B, Villalta-Romero F, Calvo-Castro LA. Strawberry Fragaria x ananassa cv. Festival: A Polyphenol-Based Phytochemical Characterization in Fruit and Leaf Extracts. Molecules 2023; 28:1865. [PMID: 36838852 PMCID: PMC9966301 DOI: 10.3390/molecules28041865] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Berry fruits are an important dietary source of health-promoting antioxidant polyphenols. Interestingly, berry leaves of diverse species, including strawberries, have shown higher bioactive phytochemical content in the leaves than in the fruit. Moreover, the vegetative part of the plants is usually discarded, representing a presumably large source of underutilized bioactive biomass. In this investigation, the polyphenol profiles of tropical highland strawberry (Fragaria x ananassa cv. Festival) leaves and fruits were compared by high-performance liquid chromatography coupled with a diode array detector (UHPLC-DAD) and mass spectrometry (HPLC-MS). The total polyphenol strawberry leaf extracts exhibited a 122-fold-higher total polyphenol content and 13-fold higher antioxidant activity (ORAC) than strawberry fruits, and they showed evidence of possible photoprotective effects against UV damage in human melanoma cells (SK-MEL-28) and in murine embryo fibroblasts (NIH/3T3), together with promising anti-proliferative activities against the same melanoma cells. Seven polyphenols were confirmed by HPLC-DAD in the leaf extracts, with differences depending on fraction solubility. Moreover, three substituted quercetin derivatives, three substituted kaempferol derivatives, two anthocyanins, and catechin were confirmed in the soluble fraction by HPLC-MS. Given their higher total polyphenol content and bioactive activities, underutilized strawberry Festival leaves are a potential source of apparently abundant biomass with prospective bioactive applications.
Collapse
Affiliation(s)
- Karla Salas-Arias
- Doctorado en Ciencias Naturales Para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Cartago P.O. Box 159-7050, Costa Rica
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Andrea Irías-Mata
- Centro de Investigación en Granos y Semillas, Escuela de Agronomía, Universidad de Costa Rica, San José P.O. Box 2060, Costa Rica
| | - Andrés Sánchez-Kopper
- Centro de Investigación y de Servicios Químicos y Microbiológicos, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Ricardo Hernández-Moncada
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Bridget Salas-Morgan
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Fabián Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Laura A. Calvo-Castro
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| |
Collapse
|
10
|
Stillage Waste from Strawberry Spirit Production as a Source of Bioactive Compounds with Antioxidant and Antiproliferative Potential. Antioxidants (Basel) 2023; 12:antiox12020421. [PMID: 36829982 PMCID: PMC9951990 DOI: 10.3390/antiox12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
The production of fruit distillates generates solid residues which are potentially rich in bioactive compounds worthy of valorization and exploitation. We report herein the in vitro antioxidant and antiproliferative properties of an extract obtained from the waste of fermented strawberry distillate production. The main low molecular weight phenolic components of the extract were identified as ellagic acid and p-coumaric acid using spectroscopic and chromatographic analysis. The extract exhibited high antioxidant properties, particularly in the ferric reducing/antioxidant power (FRAP) assay, and a high total phenolic content (TPC). It was also able to induce an antiproliferative effect on different human cancer cell lines. A strong decrease in viability in human promyelocytic leukemia (HL-60) cells through a rapid and massive apoptosis were observed. Moreover, at an early time (<30 min), reactive oxygen species (ROS) production and inactivation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinases (MAPK) pathway were detected. Notably, the antiproliferative activity of the sample was comparable to that observed with an analogous extract prepared from unfermented, fresh strawberries. These results bring new opportunities for the valorization of fruit distillery by-products as low-cost resources for the design of bioactive formulations of comparable value to that from fresh food.
Collapse
|
11
|
Sánchez M, Laca A, Laca A, Díaz M. Towards food circular economy: hydrothermal treatment of mixed vegetable and fruit wastes to obtain fermentable sugars and bioactive compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:3901-3917. [PMID: 35962165 DOI: 10.1007/s11356-022-22486-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Due to processing activity, fruits and vegetables generate notable amounts of wastes at the processing, retail, and consumption level. Following the European goals for reducing food wastes and achieving a circular economy of resources, these biowastes should be valorized. In this work, hydrothermal hydrolysis at different conditions (temperatures, times, waste/water ratio, pH values) were tested to treat for first time; biowastes composed of mixed overripe fruits or vegetables to maximize the extraction of fermentable sugars that can be used as substrates in bioprocesses. Experimental data were fitted by a model based on irreversible first-order reactions, and kinetic constants were obtained. When hydrolysis of fruit wastes was carried out at 135 °C and pH 5 during 40 min, more than 40 g of reducing sugars per 100 g of waste (dry weight) could be obtained (represents an extraction of 97% of total carbohydrates). Concentrations of inhibitor compounds (HMF, furfural, acetic acid) in the hydrolysates were very low and, as example, a fermentation to obtain bioethanol was successfully carried out with an efficiency above 95%. Additionally, the production by hydrothermal treatment of bioactive compounds was investigated and the best results obtained were 92% DPPH inhibition and 12 mg GAE/g (dry weight) for antioxidant activity and phenolic compounds, respectively. These values are similar or even higher than those reported in literature using specific parts of fruits and vegetables.
Collapse
Affiliation(s)
- Marta Sánchez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Amanda Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería s/n, 33071, Oviedo, Spain
| |
Collapse
|
12
|
Gao H, Wang Y, Guo Z, Liu Y, Wu Q, Xiao J. Optimization of ultrasound-assisted extraction of phenolics from Asparagopsis taxiformis with deep eutectic solvent and their characterization by ultra-high-performance liquid chromatography-mass spectrometry. Front Nutr 2022; 9:1036436. [PMID: 36466400 PMCID: PMC9712969 DOI: 10.3389/fnut.2022.1036436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/31/2022] [Indexed: 07/23/2023] Open
Abstract
Asparagopsis taxiformis is a significant source of phenolics. Owing to the incessant demand of green extraction procedures for phenolics from A. taxiformis, ultrasound-assisted extraction (UAE) using deep eutectic solvents (DESs) was optimized. Among the tested DESs, betaine-levulinic acid afforded the highest total phenolic content (TPC). Moreover, the optimal extraction conditions elucidated from single-factor and response surface methodologies comprised a 52.41°C ultrasonic temperature, 46.48% water content of DES, and 26.99 ml/g liquid-to-solid ratio. The corresponding TPC (56.27 mg GAE/100 g DW) and antioxidant ability fitted the predicted values. UAE afforded superior TPC and antioxidant abilities with DESs than with traditional solvents. Using UHPLC-MS, seven phenolic acids, 18 flavonoids, and two bromophenols were identified and quantified. DES-UAE afforded the highest phenolic compound number (26) and sum of contents. These results disclose the high extraction efficiency of DES-UAE for A. taxiformis phenolics and provide a basis for the higher-value application of this species.
Collapse
Affiliation(s)
- Heqi Gao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuxi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhiqiang Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Yuxin Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, China
| | - Juan Xiao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
13
|
Influence of olive mill waste phenolic compounds levels on carotenoid production by Rhodotorula spp. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Wang R, Wang L, Zhang L, Wan S, Li C, Liu S. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem 2022; 377:131989. [PMID: 35008024 DOI: 10.1016/j.foodchem.2021.131989] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/04/2022]
Abstract
This study focused on the relationship between content levels of phytochemicals and the biological activities of noni (Morinda Citrifolia L.) fruit extracts (NFEs) prepared with traditional solvents and deep eutectic solvents (DESs). The results indicated the total phenolic content in Bet-Gly (Betaine: Glycerol) extracts (11.89 mg GAE/g DW) and total iridoid content in 70% ethanol extracts (26.38 mg CE/g DW) were the highest. A total of 17 compounds were identified and quantified in NFEs. Traditional solvent extracts, except ethyl acetate, exhibited higher antioxidant activities than DESs. Three DES extracts showed higher activities against pancreatic lipase than traditional solvent extracts. Multivariate analysis revealed that the type of extraction solvent exerts a significant influence on the phytochemical compositions and biological activities of NFEs. This study provided valuable information on the efficient extraction of phytochemicals from noni fruits and DESs are promising green solvent for the extraction of bioactive compounds from noni fruits.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sitong Wan
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China.
| | - Sixin Liu
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China; Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China; School of Science, Hainan University, Haikou 570228, China.
| |
Collapse
|
15
|
Zannou O, Koca I. Greener extraction of anthocyanins and antioxidant activity from blackberry (Rubus spp) using natural deep eutectic solvents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113184] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Kovač MJ, Jokić S, Jerković I, Molnar M. Optimization of Deep Eutectic Solvent Extraction of Phenolic Acids and Tannins from Alchemilla vulgaris L. PLANTS (BASEL, SWITZERLAND) 2022; 11:474. [PMID: 35214807 PMCID: PMC8876725 DOI: 10.3390/plants11040474] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Alchemilla vulgaris L. is a good source of antioxidant components with an emphasis on phenolic acids and tannins. In this study, gallic acid, ellagic acid, and hydrolyzable tannins (HT) were extracted from this plant with different deep eutectic solvents (DESs), varying the amount of added H2O, temperature and extraction time. Seventeen DESs (n = 3) were used for the extraction, of which choline chloride:urea (1:2) proved to be the most suitable. The selection of the best solvent was followed by the examination of the influence of the extraction type and parameters using response surface methodology (RSM). Gallic acid content was in the range of 0.00-1.89 µg mg-1, ellagic acid content was 0.00-12.76 µg mg-1 and hydrolyzable tannin (HT) content was 3.06-181.26 µgTAE mg-1, depending on the used technique and the extraction conditions. According to the results, extraction by stirring and heating was the most suitable since the highest amounts of gallic acid, ellagic acid, and HT were extracted, and the obtained optimal values using response surface methodology (RSM) are confirmed by experimentally obtained values.
Collapse
Affiliation(s)
- Martina Jakovljević Kovač
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Stela Jokić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; (M.J.K.); (S.J.)
| |
Collapse
|
17
|
SHOUKAT S, MAHMUDIONO T, AL-SHAWI SG, ABDELBASSET WK, YASIN G, SHICHIYAKH RA, ISWANTO AH, KADHIM AJ, KADHIM MM, AL–REKABY HQ. Determination of the antioxidant and mineral contents of raspberry varieties. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.118521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Walid Kamal ABDELBASSET
- Prince Sattam bin Abdulaziz University, Saudi Arabia; Kasr Al-Aini Hospital, Cairo University, Egypt
| | | | | | | | | | - Mustafa Mohammed KADHIM
- Kut University College, Iraq; The Islamic University, Iraq; Osol Aldeen University College, Iraq
| | | |
Collapse
|
18
|
Neto RT, Santos SAO, Oliveira J, Silvestre AJD. Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules 2021; 27:molecules27010246. [PMID: 35011475 PMCID: PMC8746617 DOI: 10.3390/molecules27010246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction of proanthocyanidins (PACs), despite being an important and limiting aspect of their industrial application, is still largely unexplored. Herein, the possibility of combining eutectic solvents (ESs) with microwave assisted extraction (MAE) in the extraction of PACs from grape pomace (GP) is explored, aiming to improve not only the extraction yield but also the mean degree of polymerization (mDP). The combination of choline chloride with lactic acid was shown to be the most effective combination for PACs extraction yield (135 mgPAC/gGP) and, despite the occurrence of some depolymerization, also enabled us to achieve the highest mDP (7.13). Additionally, the combination with MAE enabled the process to be completed in 3.56 min, resulting in a considerably reduced extraction time.
Collapse
Affiliation(s)
- Rodrigo T. Neto
- CICECO—Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (R.T.N.); (S.A.O.S.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (R.T.N.); (S.A.O.S.)
| | - Joana Oliveira
- REQUIMTE—Laboratório Associado para a Química Verde, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (R.T.N.); (S.A.O.S.)
- Correspondence: ; Tel.: +35-123-437-0711; Fax: +35-123-437-0084
| |
Collapse
|
19
|
Núñez-Gómez V, Periago MJ, Navarro-González I, Campos-Cava MP, Baenas N, González-Barrio R. Influence of Raspberry and Its Dietary Fractions on the In vitro Activity of the Colonic Microbiota from Normal and Overweight Subjects. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:494-500. [PMID: 34697672 PMCID: PMC8629792 DOI: 10.1007/s11130-021-00923-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 05/04/2023]
Abstract
Raspberry is a source of dietary fibre and phenolic compounds, which are metabolised by the gut microbiota, resulting in the production of short chain fatty acids (SCFAs) and phenolic catabolites; but the formation of these compounds depends on the microbiota composition. The aim of this study was to investigate whether the raspberry and its fractions (phenolic extract, total and insoluble dietary fibre) affect the microbial activity depending on the body weight condition. For this, in vitro fermentations of raspberry fractions were carried out using faeces from normal-weight (NW) and overweight volunteers (OW) during 48 h, and phenolic catabolites and SCFAs were analysed at 0, 6, 24 and 48 h. The whole raspberry and the phenolic extract produced greater quantities of urolithins and total SCFAs when compared with fibre fractions, reaching the highest amount between 24 and 48 h. The body weight condition was an important factor, since faeces from NW led to greater production of urolithins from non-extractable phenolic compounds bound to fibre fractions, whereas in OW the urolithins production was higher from the fractions with more extractable polyphenols. In summary, the whole raspberry has been shown to have a prebiotic effect, mainly due to its phenolic compounds content rather than its fibre content.
Collapse
Affiliation(s)
- Vanesa Núñez-Gómez
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain.
| | - Ma Jesús Periago
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Inmaculada Navarro-González
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Ma Piedad Campos-Cava
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Nieves Baenas
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| | - Rocío González-Barrio
- Grupo de Nutrición y Bromatología, Departamento de Tecnología de los Alimentos, Nutrición y Bromatología, Facultad de Veterinaria, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
20
|
Mousavi SR, Rahmati-Joneidabad M, Noshad M. Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. Int J Biol Macromol 2021; 190:618-623. [PMID: 34509518 DOI: 10.1016/j.ijbiomac.2021.08.213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effect of chia seed mucilage (CSM) - bacterial cellulose nano-fiber (CNF) edible coating on bioactive compounds and antioxidant enzyme activity of strawberries. Strawberries were coated with CSM containing 0.6 and 8.0% (w/w) of CNF. The content of total phenol, flavonoids, anthocyanin, ascorbic acid, protein content, antioxidant activity and the activity of polyphenol oxidase, peroxidase, superoxide dismutase and phenylalanine ammonia-lyase enzymes were evaluated. The use of CSM - CNF edible coatings further preserved the phenolic, flavonoid, ascorbic acid and antioxidant activity of strawberries, and this effect was more evident in the CSM-coated sample containing CNF; However, the accumulation of anthocyanins in the coated samples was lower than the control sample. The activity of polyphenol oxidase and peroxidase enzymes, which lead to the degradation of phenolic compounds and brown color in the product, was also effectively controlled by the edible coating.
Collapse
Affiliation(s)
- Seyed Rasoul Mousavi
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mostafa Rahmati-Joneidabad
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
21
|
Ghorani R, Noshad M, Alizadeh Behbahani B. Effects of aerosolized citric acid-radio frequency as a pretreatment on hot-air drying characteristics of banana. Food Sci Nutr 2021; 9:6382-6388. [PMID: 34760268 PMCID: PMC8565226 DOI: 10.1002/fsn3.2610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 11/07/2022] Open
Abstract
The effects of aerosolized citric acid-radio frequency (RF) pretreatment were evaluated on the quality characteristics of hot air-dried banana. The results showed that increasing the RF intensity elevated the total phenolic content (TPC), shrinkage, and color changes, while the TPC and color changes decreased with increasing the RF exposure duration. A rise in the RF intensity reduced the rehydration ratio (RR) and firmness of the samples. Aerosolization of citric acid rendered the preservation of the phenolic compounds of the samples to a higher extent, and TPC decreased from 311 ± 3.4 mg/g in fresh banana to 252.1 ± 4.24 mg/g in the samples treated with a RF of 27.12 Hz for 40 min, 280.5 ± 8.1 mg/g in the ones treated with 1% aerosolized citric acid for 40 min, and 162.5 ± 10.8 mg/g in the ones with no pretreatment. According to scanning electron microscopy (SEM), the application of aerosolized citric acid pretreatment caused tissue softening and the formation of cell holes in the samples. Cell wall collapse and damage were severe when RF was in use, which caused the blockage of some microchannels within the tissue. The Page model with the highest determination coefficient (R 2) and the lowest root-mean-squared error (RMSE) and chi-square (χ 2) was selected as the best model.
Collapse
Affiliation(s)
- Reza Ghorani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Mohammad Noshad
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| |
Collapse
|
22
|
Encapsulation of bioactive compounds from fruit and vegetable by-products for food application – A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Bioactive Compounds from Agricultural Residues, Their Obtaining Techniques, and the Antimicrobial Effect as Postharvest Additives. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:9936722. [PMID: 34568485 PMCID: PMC8463193 DOI: 10.1155/2021/9936722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022]
Abstract
Agricultural vegetable products always seek to meet the growing demands of the population; however, today, there are great losses in supply chains and in the sales stage. Looking for a longer shelf life of fruits and vegetables, postharvest technologies have been developed that allow an adequate transfer from the field to the point of sale and a longer shelf life. One of the most attractive methods to improve quality and nutritional content and extend shelf life of fruits and vegetables is the incorporation of bioactive compounds with postharvest technologies. These compounds are substances that can prevent food spoilage and the proliferation of harmful microorganisms and, in some cases, act as a dietary supplement or provide health benefits. This review presents an updated overview of the knowledge about bioactive compounds derived from plant residues, the techniques most used for obtaining them, their incorporation in edible films and coatings, and the methods of microbial inhibition.
Collapse
|
24
|
Wang R, He R, Li Z, Wang L. LC-Q-Orbitrap-MS/MS Characterization, Antioxidant Activity, and α-Glucosidase-Inhibiting Activity With In Silico Analysis of Extract From Clausena Indica (Datz.) Oliv Fruit Pericarps. Front Nutr 2021; 8:727087. [PMID: 34540879 PMCID: PMC8440871 DOI: 10.3389/fnut.2021.727087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Clausena indica (Datz.) Oliv fruit pericarps (CIOPs) is an important agro-industrial by-product rich in active components. In this article, the effects of traditional and green deep eutectic solvents (DESs) on the high-performance liquid chromatography (HPLC) characterization, antioxidant activities, and α-glucosidase-inhibitory activity of phenolic extracts from CIOPs were investigated for the first time. The results showed that ChCl-Gly and Bet-CA had higher extraction efficiency for the total phenolic content (TPC, 64.14-64.83 mg GAE/g DW) and total flavonoid content (TFC, 47.83-48.11 mg RE/g DW) compared with the traditional solvents (water, methanol, and ethyl acetate). LC-Q-Orbitrap-MS/MS was adopted to identify the phenolic compositions of the CIOPs extracts. HPLC-diode array detection (HPLC-DAD) results indicated that arbutin, (-)-epigallocatechin, chlorogenic acid, procyanidin B1, (+)-catechin, and (-)-epicatechin were the major components for all extracts, especially for deep eutectic solvents (DESs). In addition, ChCl-Xyl and ChCl-Gly extracts showed higher antioxidant activities against 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS+•), ferric reducing antioxidant power (FRAP), reducing power (RP), and cupric ion reducing antioxidant capacity (CUPRAC) than extracts extracted by other solvents. A strong α-glucosidase-inhibiting activity (IC50, 156.25-291.11 μg/ml) was found in three DESs extracts. Furthermore, in silico analysis of the major phenolics in the CIOPs extracts was carried out to explore their interactions with α-glucosidase. Multivariate analysis was carried out to determine the key factors affecting the antioxidant activity and α-glucosidase-inhibiting activity. In short, DES can be taken as a promising solvent for valorization and recovery of bioactive compounds from agro-industrial by-products. The results verified that CIOPs can be used as a prospective source rich in bio-active compounds applied in the food and pharmacy industries.
Collapse
Affiliation(s)
- Ruimin Wang
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Ruiping He
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhaohui Li
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou, China
- Key Laboratory of Food Nutrition and Functional Food, Hainan University, Haikou, China
| |
Collapse
|
25
|
Rojas-Ocampo E, Torrejón-Valqui L, Muñóz-Astecker LD, Medina-Mendoza M, Mori-Mestanza D, Castro-Alayo EM. Antioxidant capacity, total phenolic content and phenolic compounds of pulp and bagasse of four Peruvian berries. Heliyon 2021; 7:e07787. [PMID: 34430752 PMCID: PMC8367789 DOI: 10.1016/j.heliyon.2021.e07787] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 01/14/2023] Open
Abstract
Revaluing agri-food waste to offer consumers bioactive compounds for a healthy diet is an important issue. In the present work, the antioxidant capacity (AC), total phenolic content (TPC) and phenolic compounds of pulp and bagasse of four Peruvian berries with UHPLC-DAD was determined. Elderberry (Sambucus peruviana Kunth) bagasse had a greater amount of TPC (4.87 ± 0.02 mg GAE/100 gfw) and AC (7.66 ± 0.04 and 7.51 ± 0.24 μmol TE/gfw in DPPH and ABTS, respectively) than the bagasse of the other berries, with a strong positive correlation between TPC and AC. Blueberry (Vaccinium floribundum Kunth) bagasse contains the highest amount of gallic acid (103.26 ± 1.59 μg/gfw), chlorogenic acid (1276.55 ± 1.86 μg/gfw), caffeic acid (144.46 ± 1.78 μg/gfw), epicatechin (1113.88 ± 1.82 μg/gfw) and p-coumaric acid (77.82 ± 1.92 μg/gfw). Elderberry (Sambucus peruviana Kunth) bagasse contains the highest amount of catechin (153.32 ± 0.79 μg/gfw). No significant differences were found in the content of chlorogenic acid and epicatechin of blackberry (Rubus roseus Poir). It was shown that the wastes of the four Amazonian berries have higher values of bioactive properties than their pulp, being the elderberry bagasse the one with the best properties.
Collapse
Affiliation(s)
- Elizabeth Rojas-Ocampo
- Programa Académico de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| | - Llisela Torrejón-Valqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| | - Lucas D Muñóz-Astecker
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| | - Diner Mori-Mestanza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial de la región Amazonas (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Calle Higos Urco N° 342-350-356, Chachapoyas, Amazonas, Peru
| |
Collapse
|
26
|
Sharma M, Dash KK. Deep eutectic solvent‐based microwave‐assisted extraction of phytochemical compounds from black jamun pulp. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13750] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maanas Sharma
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| | - Kshirod K. Dash
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Malda West Bengal India
| |
Collapse
|
27
|
Guo Y, Li Y, Li Z, Jiang L, Cao X, Gao W, Wang J, Luo D, Chen F. Deep eutectic solvent-homogenate based microwave-assisted hydrodistillation of essential oil from Litsea cubeba (Lour.) Pers. fruits and its chemical composition and biological activity. J Chromatogr A 2021; 1646:462089. [PMID: 33848643 DOI: 10.1016/j.chroma.2021.462089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022]
Abstract
As an important natural product, the sufficient separation of plant essential oil (EO) is helpful to improve its utilization value. In this work, deep eutectic solvent-homogenate based microwave-assisted hydrodistillation (DES-HMAHD) was developed and applied to isolate EO from the fruits of Litsea cubeba (Lour.) Pers. Different types of DES were investigated in terms of the EO kinetics and composition, among which oxalic acid/choline chloride (OA/ChCl) had obvious advantages. Following, molar ratio of OA and ChCl (1:1), water content (50%), liquid-solid ratio (12.5:1 mL/g), homogenate time (2 min), and microwave power (700 W) were found to be the optimum conditions. Gas chromatography-mass spectrometer (GC-MS) analysis showed that the EO isolated from DES-HMAHD contained a large proportion of m-cymene and trans-linalool oxide, which were quite different from the conventionally reported L. cubeba EO. In addition, the proposed DES-HMAHD resulted in higher separation efficiency and economic value, as well as lower environmental impact, as compared with other techniques. Afterwards, the EO isolated by different methods was evaluated from the perspective of biological activity. The EO obtained by DES-HMAHD showed higher antioxidant activity (DPPH and ABTS) but lower antifungal activity, which was related to its chemical composition. In general, DES-HMAHD produced a kind of L. cubeba EO with different components, which provided a scientific foundation for the sufficient isolation of plant EO and its application in the natural products.
Collapse
Affiliation(s)
- Yu Guo
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yan Li
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhuang Li
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Jiang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xifeng Cao
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenbin Gao
- College of Life Science, Cangzhou Normal University, Cangzhou 061001, China
| | - Jun Wang
- College of Life Science, Cangzhou Normal University, Cangzhou 061001, China
| | - Duqiang Luo
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Fengli Chen
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
28
|
Ivanović M, Islamčević Razboršek M, Kolar M. Innovative Extraction Techniques Using Deep Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1428. [PMID: 33114332 PMCID: PMC7690858 DOI: 10.3390/plants9111428] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022]
Abstract
The growing interest of the food, pharmaceutical and cosmetics industries in naturally occurring bioactive compounds or secondary plant metabolites also leads to a growing demand for the development of new and more effective analysis and isolation techniques. The extraction of bioactive compounds from plant material has always been a challenge, accompanied by increasingly strict control requirements for the final products and a growing interest in environmental protection. However, great efforts have been made in this direction and today a considerable number of innovative extraction techniques have been developed using green, environmentally friendly solvents. These solvents include the deep eutectic solvents (DES) and their natural equivalents, the natural deep eutectic solvents (NADES). Due to their adjustable physical-chemical properties and their green character, it is expected that DES/NADES could be the most widely used solvents in the future, not only in extraction processes but also in other research areas such as catalysis, electrochemistry or organic synthesis. Consequently, this review provided an up-to-date systematic overview of the use of DES/NADES in combination with innovative extraction techniques for the isolation of bioactive compounds from various plant materials. The topicality of the field was confirmed by a detailed search on the platform WoS (Web of Science), which resulted in more than 100 original research papers on DES/NADES for bioactive compounds in the last three years. Besides the isolation of bioactive compounds from plants, different analytical methods are presented and discussed.
Collapse
Affiliation(s)
- Milena Ivanović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mitja Kolar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Optimization Ultrasound-Assisted Deep Eutectic Solvent Extraction of Anthocyanins from Raspberry Using Response Surface Methodology Coupled with Genetic Algorithm. Foods 2020; 9:foods9101409. [PMID: 33020421 PMCID: PMC7599779 DOI: 10.3390/foods9101409] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Raspberries have been reported to contain abundant anthocyanins and other active compounds. To extract anthocyanins from raspberries more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this paper. The extraction process was optimized by response surface methodology coupled with a genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins 1.378 ± 0.009 mg/g from raspberry powder via UADESE were obtained at a water content of 29%, ultrasonic power of 210 W, extraction temperature of 51 °C and extraction time of 32 min. The AB-8 macroporous resin combined with the high-speed counter current chromatography (HSCCC) method were further used to isolate and purify the anthocyanins extracts obtained under optimum extraction conditions, and the structure of purified anthocyanins components were identified by UV-Visible spectrophotometer (UV-Vis), high-performance liquid chromatography (HPLC), high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS/MS), 1H nuclear magnetic resonance (NMR) and 13C-NMR spectra. The two anthocyanins (cyanidin-3-glucoside with a purity of 92.25% and cyanidin-3-rutinoside with a purity of 93.07%) identified were consistent with those present in raspberries. These findings provided an effective and feasible method for extraction, isolation and purification of anthocyanins from natural plant resources.
Collapse
|