1
|
Chen Y, Li T, Jiang L, Huang Z, Zhang W, Luo Y. The composition, extraction, functional property, quality, and health benefits of coconut protein: A review. Int J Biol Macromol 2024; 280:135905. [PMID: 39332551 DOI: 10.1016/j.ijbiomac.2024.135905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Coconut is widely appreciated for its distinctive flavor and is commonly utilized in the production of a variety of goods. Coconut protein, a by-product derived from coconut oil and coconut milk cake, is frequently underutilized or discarded. This study provides a comprehensive overview of the distribution and composition of coconut protein. Analyses reveal that coconut protein, specifically 11S globulin and 7S globulin, is predominantly found in coconut flesh. Furthermore, various extraction techniques for coconut protein, such as chemical, enzymatic, and physical methods, are discussed. The alkali dissolution and acid precipitation methods are widely utilized for extracting coconut protein, with the potential for enhancement through the incorporation of physical methods such as ultrasound. The evaluation of functional properties, quality, and health benefits of coconut protein is essential, given the limitations imposed by its solubility. Modification may be necessary to optimize its functional properties. Coconut presents a promising source of food protein, characterized by balanced amino acid composition, high digestibility, and low allergenic potential. In conclusion, this study provides a comprehensive overview of the extraction methods, functional properties, quality, and nutritional benefits of coconut protein, offering insights for potential future research directions in the field. Additionally, the information presented may serve as a valuable reference for incorporating coconut protein into plant-based food products.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America
| | - Tong Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaoxian Huang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou 570228, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States of America.
| |
Collapse
|
2
|
Wongprasert T, Mathatheeranan P, Siripitakpong P, Vilaivan T, Suriya U, Rungrotmongkol T, Cadwallader K, Suppavorasatit I. Effect of functional groups in strawberry flavoring on pea protein-flavor interactions: Potential applicable in flavor formulation for plant-based protein aqueous foods. Food Chem X 2024; 23:101702. [PMID: 39184319 PMCID: PMC11342753 DOI: 10.1016/j.fochx.2024.101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
This research aimed to explore binding interactions between pea protein isolate (PPI) and selected strawberry flavorings including vanillin, γ-decalactone, furaneol, and (Z)-3-hexen-1-ol within an aqueous system. The results showed that binding affinities of PPI with all various functional group of flavor compounds decreased as temperature increased from 5 °C to 25 °C. Notably, at 25 °C, γ-decalactone displayed the highest binding affinity, followed by vanillin, (Z)-3-hexen-1-ol, and furaneol. Lowest binding was observed for furaneol, explained by its greater lipophilicity (lower partition coefficient values or LogP value) and molecular structure in each functional group in the flavor compounds. Thermodynamically, the interaction between PPI and each selected flavor compound was spontaneous, with evidence suggesting primary forces being hydrophobic interactions or hydrogen bonding/van der Waals forces. Computational molecular docking further confirmed these interaction types. This research provides insights into the interactions between PPI and strawberry flavorings, aiding in the selection of optimal flavor compound proportion for protein-rich products.
Collapse
Affiliation(s)
- Thanakorn Wongprasert
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Pakavit Mathatheeranan
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Panatthida Siripitakpong
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Utid Suriya
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Keith Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois, 1302 W Pennsylvania Ave, Urbana, IL 61801, United States
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Leng W, Li Y, Yuan L, Li X, Gao R. Functional and Mechanistic Dissection of Protein Glutaminase PG3 and Its Rational Engineering for Enhanced Modification of Myofibrillar Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21122-21135. [PMID: 39269985 DOI: 10.1021/acs.jafc.4c05590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Protein glutaminases (PG; EC = 3.5.1.44) are enzymes known for enhancing protein functionality. In this study, we cloned and expressed the gene chryb3 encoding protein glutaminase PG3, exhibiting 39.4 U/mg specific activity. Mature-PG3 featured a substrate channel surrounded by aromatic and hydrophobic amino acids at positions 38-45 and 78-84, with Val81 playing a pivotal role in substrate affinity. The dynamic opening and closing motions between Gly65, Thr66, and Cys164 at the catalytic cleft greatly influence substrate binding and product release. Redesigning catalytic pocket and cocatalytic region produced combinatorial mutant MT6 showing a 2.69-fold increase in specific activity and a 2.99-fold increase at t65 °C1/2. Furthermore, MT6 boosted fish myofibrillar protein (MP) solubility without NaCl. Key residues such as Thr3, Asn54, Val81, Tyr82, Asn107, and Ser108 were vital for PG3-myosin interaction, particularly Asn54 and Asn107. This study sheds light on the catalytic mechanism of PG3 and guided its rational engineering and utilization in low-salt fish MP product production.
Collapse
Affiliation(s)
- Weijun Leng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Ying Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Li Yuan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Abotsi EE, Panagodage Y, English M. Plant-based seafood alternatives: Current insights on the nutrition, protein-flavour interactions, and the processing of these foods. Curr Res Food Sci 2024; 9:100860. [PMID: 39381133 PMCID: PMC11460494 DOI: 10.1016/j.crfs.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024] Open
Abstract
Fish are an important food source; however, the sustainability of current seafood supplies is a major concern for key stakeholders. The development of plant-based seafood alternatives may be suitable products to alleviate some of the pressures on aquatic ecosystems and help support environmental sustainability. However, the wide-spread adoption of these products weighs heavily on the ingredients used in the formulations which should not only satisfy nutritional and sustainability targets but must also meet consumer approval and functionality. In this review, we highlight recent advances in our understanding of the nutritional quality and sensory challenges in particular flavour (which includes taste and aroma), that have so far proven difficult to overcome in the development of plant-based seafood alternatives. Protein interactions that contribute to flavour development in plant-based seafood alternatives and the factors that impact these interactions are also discussed. We also review the recent advances in the innovative technologies used to improve the texture of products in this emerging food category. Finally, we highlight key areas for targeted research to advance the development of this growing segment of food products.
Collapse
Affiliation(s)
- Enoch Enorkplim Abotsi
- Boreal Ecosystems, Grenfell Campus, Memorial University of Newfoundland, Newfoundland, Canada
| | - Yashodha Panagodage
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Marcia English
- Department of Human Nutrition, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| |
Collapse
|
5
|
Kong Y, Wu Z, Li Y, Kang Z, Wang L, Xie F, Yu D. Analyzing changes in volatile flavor compounds of soy protein isolate during ultrasonic-thermal synergistic treatments using electronic nose and HS-SPME-GC-MS combined with chemometrics. Food Chem 2024; 445:138795. [PMID: 38382257 DOI: 10.1016/j.foodchem.2024.138795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The beany flavor of soy protein isolate (SPI) creates barriers to their application in food processing. This study investigated the effect of ultrasonic-thermal synergistic treatments, combined with vacuum degassing, on the removal of volatile compounds from SPI. The results revealed that ultrasonic-thermal synergistic treatments altered protein secondary structure and increased fluorescence intensity and surface hydrophobicity, which affected the flavor-binding ability of protein, resulting in reduced electronic nose sensor response values. At synergistic treatment (350 W, 120 ℃ and 150 s), the content of hexanal, (E)-2-hexenal, and 1-octen-3-ol reduced by 70.60 %, 95.60 % and 61.23 %. (E)-2-nonenal and 2-pentylfuran were not detected. Chemometric analysis indicated significant flavor differences between control and treated SPI. Furthermore, α-helix, β-sheet, β-turn, and surface hydrophobicity highly correlated with volatile compounds through correlation analysis, indicating that altered protein structure affected interactions with volatile compounds. The study reduced beany flavor and further expanded the range of applications of plant protein in food industry.
Collapse
Affiliation(s)
- Yue Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zenan Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanhui Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zimeng Kang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lu Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Zhang Z, Shi R, Zhu X, Zheng L, Jin M, Jiang D, Wu Y, Gao H, Chang Z, Wang D, Wu J, Huang J. Purified protein glutaminase from Chryseobacterium proteolyticum enhances the properties of wheat gluten. Food Chem X 2024; 22:101312. [PMID: 38559444 PMCID: PMC10978531 DOI: 10.1016/j.fochx.2024.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
Protein glutaminase (PG), originating from Chryseobacterium proteolyticum, can catalyze the deamidation of glutamine residues in plant proteins into glutamic acid, thus enhancing its functional properties. However, the low yield of PG limits its industrial production. In this study, the yield of PG in C. proteolyticum TM1040 increased by 121 %, up to 7.30 U/mL in a 15 L fermenter after medium optimization. Subsequently, purified PG was obtained by cation exchange chromatography (CEX) coupled with hydrophobic interaction chromatography (HIC). The degree of deamidation (DD) of wheat gluten after purified PG deamidation was 87.11 %, which is superior to chemical deamidation in safety and DD. The emulsifying and foaming properties of deamidated wheat gluten were 2.67 and 18.86 times higher, and the water- and oil-holding properties were 4.23 and 18.77 times higher, respectively. The deamidated wheat gluten with enhanced functional properties was used to improve the flavor and texture in baking cakes.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Rui Shi
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Xiaoyu Zhu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Lihui Zheng
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Deming Jiang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Yelin Wu
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, PR China
| | - Hongliang Gao
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Zhongyi Chang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Dongrui Wang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Jiajing Wu
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
7
|
Chen X, Zhang W, Quek SY, Zhao L. Flavor-food ingredient interactions in fortified or reformulated novel food: Binding behaviors, manipulation strategies, sensory impacts, and future trends in delicious and healthy food design. Compr Rev Food Sci Food Saf 2023; 22:4004-4029. [PMID: 37350045 DOI: 10.1111/1541-4337.13195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/24/2023]
Abstract
With consumers gaining prominent awareness of health and well-being, a diverse range of fortified or reformulated novel food is developed to achieve personalized or tailored nutrition using protein, carbohydrates, or fat as building blocks. Flavor property is a critical factor in the acceptability and marketability of fortified or reformulated food. Major food ingredients are able to interact with flavor compounds, leading to a significant change in flavor release from the food matrix and, ultimately, altering flavor perception. Although many efforts have been made to elucidate how food matrix components change flavor binding capacities, the influences on flavor perception and their implications for the innovation of fortified or reformulated novel food have not been systematically summarized up to now. Thus, this review provides detailed knowledge about the binding behaviors of flavors to major food ingredients, as well as their influences on flavor retention, release, and perception. Practical approaches for manipulating these interactions and the resulting flavor quality are also reviewed, from the scope of their intrinsic and extrinsic influencing factors with technologies available, which is helpful for future food innovation. Evaluation of food-ingredient interactions using real food matrices while considering multisensory flavor perception is also prospected, to well motivate food industries to investigate new strategies for tasteful and healthy food design in response to consumers' unwillingness to compromise on flavor for health.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Riddet Institute, Centre of Research Excellence in Food Research, Palmerston North, New Zealand
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
8
|
Pattaraprachyakul W, Sawangkeaw R, Ngamprasertsith S, Suppavorasatit I. Optimization of Coffee Oil Extraction from Defective Beans Using a Supercritical Carbon Dioxide Technique: Its Effect on Volatile Aroma Components. Foods 2023; 12:2515. [PMID: 37444252 DOI: 10.3390/foods12132515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Defective green coffee beans are typically discarded due to their negative impacts on coffee qualities compared to normal beans. However, there are some types of defective beans that can cause volatile aroma compounds after roasting similar to those produced by normal beans. This study aimed to optimize conditions for coffee oil extraction by supercritical carbon dioxide using the response surface methodology (RSM). Furthermore, the investigation assessed the aroma-active compounds and sensory quality in extracted coffee oil. Thus, operational temperatures (33.2-66.8 °C), pressure (10-30 MPa) and ethanol (g) to roasted coffee (g) ratio (0.25:1-1.5:1) were optimized for coffee oil extraction. As a result, different oil yields with different key volatile aroma compounds concentrations were obtained and it was found that the optimum conditions for extraction were a temperature of 50 °C, pressure of 30 MPa, and ethanol (g) to roasted coffee (g) ratio of 1:1 to obtain 6.50% (w/w) coffee oil yield. Key volatile aroma compounds, including furfuryl alcohol, 5-methyl furfural, 2,5-dimethylpyrazine, 4-vinylguaiacol, furfuryl acetate, 3-ethyl-2,5-dimethylpyrazine, thiazole, 1-furfurylpyrrole, pyridine, 2,3-butanediol, and 3-methyl-1,2-cyclopentanedione which contributed to the most preferable burnt, sweet, bready, chocolate-like, and roasted flavors, were quantified. Overall, the results suggested that coffee oil extracted from defective beans could be potentially used as a flavoring agent.
Collapse
Affiliation(s)
- Wasin Pattaraprachyakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai RD., Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Ruengwit Sawangkeaw
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, 254 Institute Building 3, Phayathai RD., Wangmai, Pathumwan, Bangkok 10330, Thailand
| | - Somkiat Ngamprasertsith
- Fuels Research Center, Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Inthawoot Suppavorasatit
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Phayathai RD., Wangmai, Pathumwan, Bangkok 10330, Thailand
- Flavor Science and Functional Ingredients Research Unit, Chulalongkorn University, Phayathai RD., Wangmai, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Gouseti O, Larsen ME, Amin A, Bakalis S, Petersen IL, Lametsch R, Jensen PE. Applications of Enzyme Technology to Enhance Transition to Plant Proteins: A Review. Foods 2023; 12:2518. [PMID: 37444256 DOI: 10.3390/foods12132518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As the plant-based food market grows, demand for plant protein is also increasing. Proteins are a major component in foods and are key to developing desired structures and textures. Seed storage proteins are the main plant proteins in the human diet. They are abundant in, for example, legumes or defatted oilseeds, which makes them an excellent candidate to use in the development of novel plant-based foods. However, they often have low and inflexible functionalities, as in nature they are designed to remain densely packed and inert within cell walls until they are needed during germination. Enzymes are often used by the food industry, for example, in the production of cheese or beer, to modify ingredient properties. Although they currently have limited applications in plant proteins, interest in the area is exponentially increasing. The present review first considers the current state and potential of enzyme utilization related to plant proteins, including uses in protein extraction and post-extraction modifications. Then, relevant opportunities and challenges are critically discussed. The main challenges relate to the knowledge gap, the high cost of enzymes, and the complexity of plant proteins as substrates. The overall aim of this review is to increase awareness, highlight challenges, and explore ways to address them.
Collapse
Affiliation(s)
- Ourania Gouseti
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Mads Emil Larsen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Ashwitha Amin
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Serafim Bakalis
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Rene Lametsch
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| | - Poul Erik Jensen
- Department of Food Science, University of Copenhagen, 1958 Copenhagen, Denmark
| |
Collapse
|
10
|
Functional, structural properties and interaction mechanism of soy protein isolate nanoparticles modified by high-performance protein-glutaminase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
11
|
A Combined Spectroscopy and Computational Molecular Docking Investigation on the Coupling Between β-lactoglobulin Dimers and Vanillin. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Yang L, Ying Z, Li H, Li J, Zhang T, Song Y, Liu X. Extrusion production of textured soybean protein: The effect of energy input on structure and volatile beany flavor substances. Food Chem 2022; 405:134728. [DOI: 10.1016/j.foodchem.2022.134728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
|
13
|
Bi S, Pan X, Zhang W, Ma Z, Lao F, Shen Q, Wu J. Non-covalent interactions of selected flavors with pea protein: Role of molecular structure of flavor compounds. Food Chem 2022; 389:133044. [PMID: 35489259 DOI: 10.1016/j.foodchem.2022.133044] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
The influence of the molecular structures of flavor compounds (specifically, variations in chain length and functional groups) on the binding of the flavor compounds (Z)-2-penten-1-ol, hexanal, and (E)-2-octenal to pea protein was investigated. The results showed that the molecular structures of the flavor compounds strongly influenced their binding affinity for pea protein. Specifically, (E)-2-octenal exhibited a higher binding affinity and a higher Stern-Volmer constant with pea protein than both hexanal and (Z)-2-penten-1-ol. Thermodynamic analysis indicated that the flavor compound-pea protein interactions were spontaneous. Hydrophobic interactions were dominant in the non-covalent interactions between (E)-2-octenal/(Z)-2-penten-1-ol and pea protein, whereas hydrogen bonding was dominant in the non-covalent interactions between hexanal and pea protein. Surface hydrophobicity measurements, the use of bond-disrupting agents, and molecular docking further supported the hypothesis that hydrogen bonding, as well as hydrophobic interactions, occurred between the flavor compounds and pea protein.
Collapse
Affiliation(s)
- Shuang Bi
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xin Pan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhuo Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
14
|
Formation and release of cooked rice aroma. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
L-Glutamine-, peptidyl- and protein-glutaminases: structural features and applications in the food industry. World J Microbiol Biotechnol 2022; 38:204. [PMID: 36002753 DOI: 10.1007/s11274-022-03391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/15/2022] [Indexed: 10/15/2022]
Abstract
L-Glutaminases are enzymes that catalyze the cleavage of the gamma-amido bond of L-glutamine residues, producing ammonia and L-glutamate. These enzymes have several applications in food and pharmaceutical industries. However, the L-glutaminases that hydrolyze free L-glutamine (L-glutamine glutaminases, EC 3.5.1.2) have different structures and properties with respect to the L-glutaminases that hydrolyze the same amino acid covalently bound in peptides (peptidyl glutaminases, EC 3.5.1.43) and proteins (protein-glutamine glutaminase, EC 3.5.1.44). In the food industry, L-glutamine glutaminases are applied to enhance the flavor of foods, whereas protein glutaminases are useful to improve the functional properties of proteins. This review will focus on structural backgrounds and differences between these enzymes, the methodology available to measure the activity as well as strengths and limitations. Production methods, applications, and challenges in the food industry will be also discussed. This review will provide useful information to search and identify the suitable L-glutaminase that best fits to the intended application.
Collapse
|
16
|
Qu R, Dai T, Wu J, Tian A, Zhang Y, Kang L, Ouyang W, Jin C, Niu J, Li Z, Chang Z, Jiang D, Huang J, Gao H. The characteristics of protein-glutaminase from an isolated Chryseobacterium cucumeris strain and its deamidation application. Front Microbiol 2022; 13:969445. [PMID: 36016794 PMCID: PMC9396377 DOI: 10.3389/fmicb.2022.969445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Protein-glutaminase (PG), a deamidation enzyme commercially derived from Chryseobacterium proteolyticum, is used to improve the solubility and other functional properties of food proteins. In this study, a new PG-producing strain, Chryseobacterium cucumeris ZYF120413-7, was isolated from soil, and it had a high PG yield and a short culture time. It gave the maximum PG activity with 0.557 U/ml on Cbz-Gln-Gly after 12 h of culture, indicating that it was more suitable for PG production. The enzyme activity recovery and purification fold were 32.95% and 161.95-fold, respectively, with a specific activity of 27.37 U/mg. The PG was a pre-pro-protein with a 16 amino acids putative signal peptide, a pro-PG of 118 amino acids, and a mature PG of 185 amino acids. The amino acid sequence identity of PG from strain ZYF120413-7 was 74 and 45%, respectively, to that of PG from C. proteolyticum 9670T and BH-PG. The optimum reaction pH and temperature of PG was 6 and 60°C, respectively. Enzyme activity was inhibited by Cu2+. The optimum PG substrate was Cbz-Gln-Gly, and the Km and Vmax values were 1.68 mM and 1.41 μM mg protein−1 min−1, respectively. Degree of deamidation (DD) of soy protein isolate (SPI) treated by purified PG was 40.75% within the first 2 h and 52.35% after 18 h. These results demonstrated that the PG from C. cucumeris ZYF120413-7 was a promising protein-deamidating enzyme for improving the functionality of food proteins.
Collapse
Affiliation(s)
- Ruidan Qu
- School of Life Sciences, East China Normal University, Shanghai, China
- School of Health & Social Care, Shanghai Urban Construction Vocational College, Shanghai, China
| | - Tian Dai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiajing Wu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Aitian Tian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yanfang Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Li Kang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Ouyang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congli Jin
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jinjin Niu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhen Li
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhongyi Chang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Huang
- School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Jing Huang,
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai, China
- Hongliang Gao,
| |
Collapse
|
17
|
Fu W, Chen X, Cheng H, Liang L. Tailoring protein intrinsic charge by enzymatic deamidation for solubilizing chicken breast myofibrillar protein in water. Food Chem 2022; 385:132512. [PMID: 35299018 DOI: 10.1016/j.foodchem.2022.132512] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/01/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
Inspired by the salt-in effect, the potential use of protein-glutaminase (PG) to increase the intrinsic charges of chicken breast myofibrillar proteins (CMPs) for enhanced water solubility was tested. The degree of deamidation (DD) and solubility of CMPs increased with PG reaction time. Over 60% of CMPs were soluble in water under a DD of 6.5% due to specific conversion of glutamine to glutamic acid. PG deamidation could remarkably increase the net charge of CMPs with a merit in maintaining most of the amino acid and protein subunit compositions. Such a high electrostatic repulsion exerted a transformation of β-sheet into α-helix, unfolded the structure to expose hydrophobic residues, and allowed the dissociation of myofibril and release of subunits (myosin, actin or their oligomers), leading to a stable colloidal state. This work may foster the engineering advances of protein micro-modification in the tailor manufacture of muscle protein-based beverages.
Collapse
Affiliation(s)
- Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Improvement of solubility, foaming, and emulsification properties of coconut (Cocos nucifera L.) protein by non-enzymatic deamidation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Yin X, Zhang G, Zhou J, Li J, Du G. Combinatorial engineering for efficient production of protein-glutaminase in Bacillus subtilis. Enzyme Microb Technol 2021; 150:109863. [PMID: 34489022 DOI: 10.1016/j.enzmictec.2021.109863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/21/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Protein-glutaminase (EC 3.5.1.44, PG) converts protein glutamine residues in proteins and peptides into glutamic acid residue, and markedly improves the solubility, emulsification, and foaming properties of food proteins. However, the source bacteria, Chryseobacterium proteolyticum, have low enzyme production ability, inefficient genetic operation, and high production cost. Therefore, it is critical to establish an efficient expression system for active PG. Here, combinatorial engineering was developed for high-yield production of PG in Bacillus subtilis. First, we evaluated different B. subtilis strains for PG self-activation. Then, combinatorial optimization involving promoters, signal peptides, and culture medium was applied to produce active recombinant PG in a B. subtilis expression system. Through combinatorial engineering, PG enzyme activity reached 3.23 U/mL in shaken-flask cultures. Active PG with the yield of 7.07 U/mL was obtained at 40 h by the PSecA-YdeJ combination in fed-batch fermentation, which is the highest yield of PG in existing reports.
Collapse
Affiliation(s)
- Xinxin Yin
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guoqiang Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiannan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
20
|
Chen X, Fu W, Luo Y, Cui C, Suppavorasatit I, Liang L. Protein deamidation to produce processable ingredients and engineered colloids for emerging food applications. Compr Rev Food Sci Food Saf 2021; 20:3788-3817. [PMID: 34056849 DOI: 10.1111/1541-4337.12759] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022]
Abstract
With the ever-increasing demands for functional and sustainable foods from the general public, there is currently a paradigm shift in the food industry toward the production of novel protein-based diet. Food scientists are therefore motivated to search for natural protein sources and innovative technologies to modify their chemical structure for desirable functionality and thus utilization. Deamidation is a viable, efficient, and attractive approach for modifying proteins owing to its ease of operating, specificity, and cost-effective processes. Over the past three decades, the knowledge of protein deamidation for food applications has evolved drastically, including the development of novel approaches for deamidation, such as protein-glutaminase and ion exchange resin, and their practices in new protein substrate. Thanks to deamidation, enhanced functionalities of food proteins from cereals, legumes, milk, oil seeds and others, and thereby their processabilities as food ingredients have been achieved. Moreover, deamidated proteins have been used to fabricate engineered food colloids, including self-assembled protein particles, protein-metallic complexes, and protein-carbohydrate complexes, which have demonstrated tailored physicochemical properties to modulate oral perception, improve gastrointestinal digestion and bioavailability, and protect and/or deliver bioactive nutrients. Novel bioactivity, altered digestibility, and varied allergenicity of deamidated proteins are increasingly recognized. Therefore, deamidated proteins with novel techno-functional and biological properties hold both promise and challenges for future food applications, and a comprehensive review on this area is critically needed to update our knowledge and provide a better understanding on the protein deamidation and its emerging applications.
Collapse
Affiliation(s)
- Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenyan Fu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Chun Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
21
|
Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|