1
|
Cheng L, Liu X, Ma Y, Huang X, Zhang X, Liu J, Song L, Qiao M, Li T, Wang T. Effects of different processing methods on phenolic compounds in flaxseed meal. Food Chem X 2024; 24:101934. [PMID: 39582661 PMCID: PMC11582773 DOI: 10.1016/j.fochx.2024.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
This study examined effects of different processing methods on phenolic compounds in flaxseed meal. The optimal SE treatment was 1.0 MPa for 3 min, and the contents of total flavonoids and phenolic acid were 2.26 times and 1.63 times of the control group, respectively. Notably, erucic acid increased 85.76 %. Optimal extrusion conditions (15 % moisture content, 140 °C, 29 hz) led to the presence of rutin and a 2.81 times increase in protocatechuic acid content over the control. Fermenting with 3 % Bacillus subtilis for 4 days yielded gallic acid in bound form and vanillic acid in free form, with protocatechuic acid increasing 40.65 % compared to the control. Among all the treatments, extrusion produced the highest levels of phenolic compounds in flaxseed meal. Each treatment significantly increased the open ring isomer ester phenol (SDG) compared to the control. Overall, various processing methods impacted the phenolic content and composition in flaxseed meal differently.
Collapse
Affiliation(s)
- Lin Cheng
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xiaoyong Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Yan Ma
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xianqing Huang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Xinru Zhang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Jinrui Liu
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Lianjun Song
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Mingwu Qiao
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tiange Li
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| | - Tianlin Wang
- College of Food Science and Technology, Henan Agricultural University, Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, Zhengzhou 450002, China
| |
Collapse
|
2
|
Mendes BDAB, Almeida MF, Silva GL, Amparo Dos Anjos D, Fontan GCR, Rebouças São José A, Veloso CM. Physical, textural, and sensory characteristics of gluten-free cupcakes developed with native and modified by hydrothermal treatment green plantain flours. J Food Sci 2024; 89:7437-7451. [PMID: 39390631 DOI: 10.1111/1750-3841.17455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Gluten-free diets are characterized by lower nutritional quality. The use of green plantain flour in gluten-free formulations appears as an alternative to overcome this deficiency, considering that green plantains have a relevant content of bioactive compounds, dietary fiber, including resistant starch. The objective of this work was to evaluate the effect of the addition of native and modified by hydrothermal treatment green plantain whole flours in the form of gluten-free cupcakes. The density, yield, and microstructure of the dough, specific volume (SV), height, crumb analysis, color, texture, and sensory acceptability of the cupcakes were evaluated. Partial replacement (40%) of rice flour by native and modified flours produced darker, redder cupcakes, less yellowish and with less color intensity. Sensory analysis revealed higher acceptance for cupcakes with native and modified flours, compared to the control, for appearance, flavor, texture, aroma, and overall acceptance. The native flour was the most viable option, as the cupcake produced with it showed the best values for hardness and chewiness, without changing elasticity and SV, in addition to superior sensory acceptance than the control and similar to cupcakes with other modified flours. PRACTICAL APPLICATION: Pursuing to meet the market demand for gluten-free products, with the cake being one of the most requested products in this market, and taking in account that green banana, from different cultivars, has gained interest for the production of flours. The production of flour and bakery products is of great interest to the food industry, not only because of its flavor and properties but also due to the economic and sustainable viability of producing whole green plantain flour with the potential for application, promoting diversification and innovation in the gluten-free functional products market.
Collapse
Affiliation(s)
- Bruna de Andrade Braga Mendes
- Multidisciplinary Institute in Health (IMS), Federal University of Bahia (UFBA), Vitória da Conquista, Bahia, Brazil
| | | | - Gabriela Leite Silva
- Chemistry Laboratory, State University of Southwest Bahia, Vitória da Conquista, Bahia, Brazil
| | - Dioneire Amparo Dos Anjos
- Multidisciplinary Institute in Health (IMS), Federal University of Bahia (UFBA), Vitória da Conquista, Bahia, Brazil
| | - Gabrielle Cardoso Reis Fontan
- Rural and Animal Technology Department (DTRA), State University of the Southwest of Bahia (UESB), Itapetinga, Bahia, Brazil
| | - Alcebíades Rebouças São José
- Department of Phytotechnics and Zootechnics (DFZ), State University of the Southwest of Bahia (UESB), Vitória da Conquista, Bahia, Brazil
| | - Cristiane Martins Veloso
- Department of Natural Sciences (DCN), State University of the Southwest of Bahia (UESB), Vitória da Conquista, Bahia, Brazil
| |
Collapse
|
3
|
Madadi M, Roshanak S, Shahidi F, Varidi MJ. Optimization of a gluten-free sponge cake formulation based on quinoa, oleaster, and pumpkin flour using mixture design methodology. Food Sci Nutr 2024; 12:2973-2984. [PMID: 38628209 PMCID: PMC11016434 DOI: 10.1002/fsn3.3977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 04/19/2024] Open
Abstract
Gluten-free bakery products are the definitive solution for people with celiac disease and gluten sensitivity. In this study, the production of gluten-free sponge cake was optimized using a mixture design methodology. Effects of the amount of ingredients, including quinoa (Chenopodium quinoa) (6-10 g), oleaster (Eleagnus Angustifolia) (1-2 g), and pumpkin powder (Cucurbita moschata) (1-4 g) on the physicochemical characteristics and sensory qualities (color, flavor, cutability, texture, appearance, and overall acceptability) of cakes were investigated. Significant regression models that explained the effects of different amounts of flour on all response variables were determined. The proposed model in this study had high R 2 and R 2 (adj). Therefore, the model was approved for fitting information. Finally, a gluten-free sponge cake recipe was formulated using 1 g of oleaster flour, 1 g of pumpkin, and 10 g of quinoa flour to achieve the desired sensory quality.
Collapse
Affiliation(s)
- Mahshad Madadi
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadKhorasan RazaviIran
| | - Sahar Roshanak
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadKhorasan RazaviIran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadKhorasan RazaviIran
| | - Mohammad Javad Varidi
- Department of Food Science and Technology, Faculty of AgricultureFerdowsi University of MashhadMashhadKhorasan RazaviIran
| |
Collapse
|
4
|
Xiao J, Li Y, Niu L, Chen R, Tang J, Tong Z, Xiao C. Effect of Adding Fermented Proso Millet Bran Dietary Fiber on Micro-Structural, Physicochemical, and Digestive Properties of Gluten-Free Proso Millet-Based Dough and Cake. Foods 2023; 12:2964. [PMID: 37569233 PMCID: PMC10419140 DOI: 10.3390/foods12152964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing demand for functional foods has pushed the food industry to produce fiber-enriched products. In this study, rheological, microstructural, physicochemical, and functional characteristics were investigated for whole proso millet dough and cake, fortified with fermented proso millet bran dietary fiber flour (F-DF). Results showed that proso millet flour is less absorbent and stable than the control group. Adding proso millet flour and F-DF reduced the elasticity of the dough and increased its hardness, but had no significant effect on viscosity, cohesion, and resilience. The microstructure analysis exhibited an unformed continuous network formation in proso millet dough. Analyses suggested that proso millet flour combined with the fermented dietary fiber group had significantly higher total phenol content (0.46 GAE mg/g), DPPH• scavenging activity (66.84%), and ABTS•+ scavenging activity (87.01%) than did the other group. In addition, F-DF led to a significant reduction in the predicted released glucose contents of reformulated cakes. In summary, cakes prepared with the involvement of whole proso millet flour and F-DF exhibited less adverse sensory impact and possessed the potential to decrease postprandial blood glucose levels resulting purely from cake consumption.
Collapse
Affiliation(s)
- Jing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Yinxia Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Li Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Ronghui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Jiayu Tang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| | - Zongbo Tong
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, China;
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (J.X.); (Y.L.); (L.N.); (R.C.); (J.T.)
| |
Collapse
|
5
|
Marta H, Febiola C, Cahyana Y, Arifin HR, Fetriyuna F, Sondari D. Application of Composite Flour from Indonesian Local Tubers in Gluten-Free Pancakes. Foods 2023; 12:foods12091892. [PMID: 37174430 PMCID: PMC10178693 DOI: 10.3390/foods12091892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Pancakes are fast food snacks that are generally made with wheat flour as the basic ingredients, which is an imported commodity and detrimental for people who are allergic to gluten. To reduce the use of wheat, alternative raw materials derived from local commodities are used, such as modified cassava flour (mocaf), arrowroot flour, and suweg flour. The experiment was carried out by mixing mocaf flour, arrowroot flour, and suweg flour to produce composite flour with a ratio of 70:15:15 (CF1), 70:20:10 (CF2), and 70:20:5 (CF3). The result showed that the ratio of mocaf flour, arrowroot flour, and suweg flour had a significant effect on pasting temperature, peak viscosity, hold viscosity, breakdown viscosity, setback, L*, a*, hue, whiteness, ∆E, as well as swelling volume and solubility on the characteristics of the composite flour. There was also a significant effect on the texture characteristics of hardness, adhesiveness, chewiness, color characteristics L*, a*, whiteness, ∆E, and flavor preference for the gluten-free pancake products. The best formulation to produce pancakes that have characteristics similar to wheat flour-based pancakes was 70% mocaf flour, 15% arrowroot flour, and 15% suweg flour.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Christine Febiola
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Heni Radiani Arifin
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Fetriyuna Fetriyuna
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Dewi Sondari
- Research Center for Biomass and Bioproducts, Cibinong Science Center, National Researchand Innovation Agency, West Java, Cibinong 16911, Indonesia
| |
Collapse
|
6
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
7
|
Zannini E, Bravo Núñez Á, Sahin AW, Arendt EK. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022; 11:1026. [PMID: 35407113 PMCID: PMC8997659 DOI: 10.3390/foods11071026] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
The health benefits of fibre consumption are sound, but a more compressive understanding of the individual effects of different fibres is still needed. Arabinoxylan is a complex fibre that provides a wide range of health benefits strongly regulated by its chemical structure. Arabinoxylans can be found in various grains, such as wheat, barley, or corn. This review addresses the influence of the source of origin and extraction process on arabinoxylan structure. The health benefits related to short-chain fatty acid production, microbiota regulation, antioxidant capacity, and blood glucose response control are discussed and correlated to the arabinoxylan's structure. However, most studies do not investigate the effect of AX as a pure ingredient on food systems, but as fibres containing AXs (such as bran). Therefore, AX's benefit for human health deserves further investigation. The relationship between arabinoxylan structure and its physicochemical influence on cereal products (pasta, cookies, cakes, bread, and beer) is also discussed. A strong correlation between arabinoxylan's structural properties (degree of branching, solubility, and molecular mass) and its functionalities in food systems can be observed. There is a need for further studies that address the health implications behind the consumption of arabinoxylan-rich products. Indeed, the food matrix may influence the effects of arabinoxylans in the gastrointestinal tract and determine which specific arabinoxylans can be included in cereal and non-cereal-based food products without being detrimental for product quality.
Collapse
Affiliation(s)
- Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Ángela Bravo Núñez
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Aylin W. Sahin
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
| | - Elke K. Arendt
- School of Food and Nutritional Sciences, University College Cork, T12 K8AF Cork, Ireland; (Á.B.N.); (A.W.S.); (E.K.A.)
- APC Microbiome Ireland, University College Cork, T12 K8AF Cork, Ireland
| |
Collapse
|
8
|
Guerra‐Oliveira P, Belorio M, Gómez M. Wasted bread flour as a novel ingredient in cake making. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Priscila Guerra‐Oliveira
- Food Technology Area. College of Agricultural Engineering University of Valladolid Av. Madrid 34004 Palencia Spain
| | - Mayara Belorio
- Food Technology Area. College of Agricultural Engineering University of Valladolid Av. Madrid 34004 Palencia Spain
| | - Manuel Gómez
- Food Technology Area. College of Agricultural Engineering University of Valladolid Av. Madrid 34004 Palencia Spain
| |
Collapse
|
9
|
|