1
|
Cahuê FLC, Maia PDDS, de Brito LR, da Silva VPF, Gomes DV, Pierucci APTR. Enhancing satiety and aerobic performance with beer microparticles-based non-alcoholic drinks: exploring dose and duration effects. Front Nutr 2024; 10:1225189. [PMID: 38235440 PMCID: PMC10791988 DOI: 10.3389/fnut.2023.1225189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Beer is an alcoholic beverage, rich in carbohydrates, amino acids, vitamins and polyphenols, consumed worldwide as a social drink. There is a large number of beer styles which depends on the ingredients and brewing process. The consumption of beer as a fluid replacement after sport practice is a current discussion in literature. A non-alcoholic pale-ale microparticles-based beverage (PABM) have been previously designed, however, its phenolic profile and ergogenic effect remain unknown. Thus, this study aims to verify the ergogenic potential (increase of running performance) of PAMB in male Wistar rats. Beer microparticles were obtained by spray drying and beverages with different concentrations were prepared in water. Wistar rats were subjected to a training protocol on a treadmill (5 times/week, 60 min/day) and daily intake of PABM (20 mg.kg-1 or 200 mg.kg-1) or water by gavage. Chlorogenic acid was found to be the main component in the phenolic profile (12.28 mg·g-1) of PABM analyzed with high-performance liquid chromatography and mass spectrometry. An increase in the aerobic performance was observed after 4 weeks in the 20 mg.kg-1 group, but the same dose after 8 weeks and a higher dose (200 mg.kg-1) blunted this effect. A higher dose was also related to decrease in food intake. These data suggest that PABM can improve satiety and aerobic performance, but its effect depends on the dose and time of consumption.
Collapse
Affiliation(s)
| | | | | | | | | | - Anna Paola T. R. Pierucci
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Trindade LRD, Baião DDS, da Silva DVT, Almeida CC, Pauli FP, Ferreira VF, Conte-Junior CA, Paschoalin VMF. Microencapsulated and Ready-to-Eat Beetroot Soup: A Stable and Attractive Formulation Enriched in Nitrate, Betalains and Minerals. Foods 2023; 12:foods12071497. [PMID: 37048318 PMCID: PMC10093833 DOI: 10.3390/foods12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/19/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Beetroot is a tuber rich in antioxidant compounds, i.e., betanin and saponins, and is one of the main sources of dietary nitrate. The aim of the present study was to microencapsulate a ready-to-eat beetroot soup by lyophilization using different encapsulating agents, which supply the required amount of bioactive nutrients. Particle size distributions ranged from 7.94 ± 1.74 to 245.66 ± 2.31 µm for beetroot soup in starch and from 30.56 ± 1.66 to 636.34 ± 2.04 µm in maltodextrin. Microparticle yields of powdered beetroot soup in starch varied from 77.68% to 88.91%, and in maltodextrin from 75.01% to 80.25%. The NO3− and total betalain contents at a 1:2 ratio were 10.46 ± 0.22 mmol·100 g−1 fresh weight basis and 219.7 ± 4.92 mg·g−1 in starch powdered beetroot soup and 8.43 ± 0.09 mmol·100 g−1 fresh weight basis and 223.9 ± 4.21 mg·g−1 in maltodextrin powdered beetroot soup. Six distinct minerals were identified and quantified in beetroot soups, namely Na, K, Mg, Mn, Zn and P. Beetroot soup microencapsulated in starch or maltodextrin complied with microbiological quality guidelines for consumption, with good acceptance and purchase intention throughout 90 days of storage. Microencapsulated beetroot soup may, thus, comprise a novel attractive strategy to offer high contents of bioaccessible dietary nitrate and antioxidant compounds that may aid in the improvement of vascular-protective effects.
Collapse
Affiliation(s)
- Lucileno Rodrigues da Trindade
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
| | - Diego dos Santos Baião
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Davi Vieira Teixeira da Silva
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Cristine Couto Almeida
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Fernanda Petzold Pauli
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Vitor Francisco Ferreira
- Institute of Chemistry (IQ), Fluminense Federal University, R. Dr. Mario Vianna, 523, Niterói 24210-141, Brazil
| | - Carlos Adam Conte-Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro 21941-598, Brazil
| | - Vania Margaret Flosi Paschoalin
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitaria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitria, Rio de Janeiro 21941-909, Brazil
- Graduate Studies in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
3
|
Rodrigues JB, Prata AS, Bollini HMA. Encapsulation of chia (
Salvia hispanica
) oil on an industrial scale to protect the omega‐3 against ultra‐high‐temperature (
UHT
) damage and lipid oxidation. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Juliana Burger Rodrigues
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Ana Silvia Prata
- Department of Food Engineering School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Helena Maria André Bollini
- Department of Food and Nutrition School of Food Engineering (FEA), University of Campinas (UNICAMP) Campinas São Paulo Brazil
| |
Collapse
|
4
|
Su X, Yu M, Wu S, Ma M, Su H, Guo F, Bian Q, Du T. Sensory lexicon and aroma volatiles analysis of brewing malt. NPJ Sci Food 2022; 6:20. [PMID: 35411041 PMCID: PMC9001694 DOI: 10.1038/s41538-022-00135-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Malt is an important raw material in brewing beer. With the increasing development of craft beer, brewing malt has contributed diverse colours and abundant flavours to beer. While “malty” and “worty” were commonly used to describe the malt flavour of beer, they are still inadequate. This study focused on developing of a sensory lexicon and a sensory wheel for brewing malt. Here, a total of 22 samples were used for sensory evaluation. The panels identified 53 attributes to form the lexicon of brewing malt, including appearance, flavour, taste, and mouthfeel. After consulting with the experts from the brewing industry, 46 attributes were selected from the lexicon list to construct the sensory wheel. Based on the lexicon, rate-all-that-apply analysis was used to discriminate between six samples of different malt types. The principal component analysis results showed that malt types were significantly correlated with sensory features. To further understand the chemical origin of sensory attributes, partial least squares regression analysis was used to determine the association between the aroma compounds and sensory attributes. According to the colour range and malt types, 18 samples were used for sensory descriptive analysis and volatile compounds identification. Seven main flavours were selected from the brewing malt sensory wheel. 34 aroma compounds were identified by headspace solid phase microextraction gas chromatography-mass spectrometry-olfactometry. According to the partial least squares regression results, the aroma compounds were highly correlated with the sensory attributes of the brewing malt. This approach may have practical applications in the sensory studies of other products.
Collapse
|
5
|
Maia PDDS, Baião DDS, Nanini HF, da Silva VPF, Frambach LB, Cabral IM, Pêgo B, Ribeiro BE, Pavão MSG, Paschoalin VMF, de Souza HSP, Pierucci APTR. Bioactive Compounds from Pale Ale Beer Powder Attenuate Experimental Colitis in BALB/c Mice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041194. [PMID: 35208981 PMCID: PMC8877795 DOI: 10.3390/molecules27041194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Phenolic compounds (PCs) present in foods are associated with a decreased risk of developing inflammatory diseases. The aim of this study was to extract and characterize PCs from craft beer powder and evaluate their potential benefits in an experimental model of inflammatory bowel disease (IBD). PCs were extracted and quantified from pure beer samples. BALB/c mice received either the beer phenolic extract (BPE) or beer powder fortified with phenolic extract (BPFPE) of PCs daily for 20 days by gavage. Colon samples were collected for histopathological and immunohistochemical analyses. Dextran sodium sulfate (DSS)-induced mice lost more weight, had reduced colon length, and developed more inflammatory changes compared with DSS-induced mice treated with either BPE or BPFPE. In addition, in DSS-induced mice, the densities of CD4- and CD11b-positive cells, apoptotic rates, and activation of NF-κB and p-ERK1/2 MAPK intracellular signaling pathways were higher in those treated with BPE and BPFPE than in those not treated. Pretreatment with the phenolic extract and BPFPE remarkably attenuated DSS-induced colitis. The protective effect of PCs supports further investigation and development of therapies for human IBD.
Collapse
Affiliation(s)
- Paola D. D. S. Maia
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Diego dos Santos Baião
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Hayandra F. Nanini
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Victor Paulo F. da Silva
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Lissa Bantim Frambach
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Iuri Matheus Cabral
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| | - Beatriz Pêgo
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Beatriz E. Ribeiro
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
| | - Mauro Sérgio Gonçalves Pavão
- Institute of Medical Biochemistry, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 4th floor, Rio de Janeiro 21941-617, Brazil;
| | - Vania M. F. Paschoalin
- Institute of Chemistry, Federal University of Rio de Janeiro, Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (V.M.F.P.)
| | - Heitor S. P. de Souza
- Department of Clinical Medicine, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rua Prof. Rodolpho Paulo Rocco 255, 11th floor, Rio de Janeiro 21941-617, Brazil; (H.F.N.); (B.P.); (B.E.R.)
- D’Or Institute for Research and Education (IDOR), Rua Diniz Cordeiro 30, Botafogo, Rio de Janeiro 22281-100, Brazil
- Correspondence: ; Tel.: +55-21-3938-2669
| | - Anna Paola T. R. Pierucci
- Basic and Experimental Nutrition Department, Josué de Castro Nutrition Institute, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, 393, Rio de Janeiro 21941-590, Brazil; (P.D.D.S.M.); (V.P.F.d.S.); (L.B.F.); (I.M.C.); (A.P.T.R.P.)
| |
Collapse
|
6
|
Developing microencapsulated powders containing polyphenols and pectin extracted from Georgia-grown pomegranate peels. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112644] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Potential for Lager Beer Production from Saccharomyces cerevisiae Strains Isolated from the Vineyard Environment. Processes (Basel) 2021. [DOI: 10.3390/pr9091628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces pastorianus, genetic hybrids of Saccharomyces cerevisiae and the Saccharomyces eubayanus, is one of the most widely used lager yeasts in the brewing industry. In recent years, new strategies have been adopted and new lines of research have been outlined to create and expand the pool of lager brewing starters. The vineyard microbiome has received significant attention in the past few years due to many opportunities in terms of biotechnological applications in the winemaking processes. However, the characterization of S. cerevisiae strains isolated from winery environments as an approach to selecting starters for beer production has not been fully investigated, and little is currently available. Four wild cryotolerant S. cerevisiae strains isolated from vineyard environments were evaluated as potential starters for lager beer production at laboratory scale using a model beer wort (MBW). In all tests, the industrial lager brewing S. pastorianus Weihenstephan 34/70 was used as a reference strain. The results obtained, although preliminary, showed some good properties of these strains, such as antioxidant activity, flocculation capacity, efficient fermentation at 15 °C and low diacetyl production. Further studies will be carried out using these S. cerevisiae strains as starters for lager beer production on a pilot scale in order to verify the chemical and sensory characteristics of the beers produced.
Collapse
|
8
|
Nunes Filho RC, Galvan D, Effting L, Terhaag MM, Yamashita F, Benassi MDT, Spinosa WA. Effects of adding spices with antioxidants compounds in red ale style craft beer: A simplex-centroid mixture design approach. Food Chem 2021; 365:130478. [PMID: 34243125 DOI: 10.1016/j.foodchem.2021.130478] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/02/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
The growing demand for authentic products that provide sensory characteristics combined with health benefits has been the focus of current studies. This study developed a Red Ale style craft beer with spices such as turmeric (T), black pepper (P) and aroma hops (H), used isolated or in mixtures. A mixture design was employed to evaluate the total phenolic compounds and the antioxidant activity in the green and aged beers formulations. The spice extracts influenced the product's shelf-life. The addition of spices into the beers did not affect the physicochemical parameters that classify the Red Ale style, according to the hierarchical cluster analysis, except for aroma hops. A multiresponse optimization approach simultaneously maximized the antioxidant activity and the phenolic compounds in beers. The ideal formulation obtained for green beers was 25% T and 37.5% P and H; for aged beers, the formulation was 50% T, 20% P and 30% H.
Collapse
Affiliation(s)
- Roberto Campos Nunes Filho
- Department of Food Science and Technology, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| | - Diego Galvan
- Chemistry Department, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil.
| | - Luciane Effting
- Chemistry Department, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| | - Marcela Moreira Terhaag
- Department of Food Science and Technology, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| | - Fábio Yamashita
- Department of Food Science and Technology, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| | - Marta de Toledo Benassi
- Department of Food Science and Technology, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| | - Wilma Aparecida Spinosa
- Department of Food Science and Technology, State University of Londrina (UEL), Londrina, PR 86057-970, Brazil
| |
Collapse
|
9
|
Ambra R, Pastore G, Lucchetti S. The Role of Bioactive Phenolic Compounds on the Impact of Beer on Health. Molecules 2021; 26:486. [PMID: 33477637 PMCID: PMC7831491 DOI: 10.3390/molecules26020486] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
This review reports recent knowledge on the role of ingredients (barley, hop and yeasts), including genetic factors, on the final yield of phenolic compounds in beer, and how these molecules generally affect resulting beer attributes, focusing mainly on new attempts at the enrichment of beer phenols, with fruits or cereals other than barley. An entire section is dedicated to health-related effects, analyzing the degree up to which studies, investigating phenols-related health effects of beer, have appropriately considered the contribution of alcohol (pure or spirits) intake. For such purpose, we searched Scopus.com for any kind of experimental model (in vitro, animal, human observational or intervention) using beer and considering phenols. Overall, data reported so far support the existence of the somehow additive or synergistic effects of phenols and ethanol present in beer. However, findings are inconclusive and thus deserve further animal and human studies.
Collapse
Affiliation(s)
- Roberto Ambra
- Council for Agricultural Research and Economics, Research Centre for Food and Nutrition, 00178 Rome, Italy; (G.P.); (S.L.)
| | | | | |
Collapse
|