1
|
Air-Frying Is a Better Thermal Processing Choice for Improving Antioxidant Properties of Brassica Vegetables. Antioxidants (Basel) 2023; 12:antiox12020490. [PMID: 36830048 PMCID: PMC9952021 DOI: 10.3390/antiox12020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Brassica vegetables have demonstrated many health benefits over the years due to their composition of phenolic, flavonoid, and glucosinolate contents. However, these bioactive molecules can be easily depleted during gastronomic operations. Therefore, a sustainable method that improves their phenolic content and antioxidant activity is required for both the processors and consumers. Thermal processing has been demonstrated as a method to improve the phenolic content and antioxidant status of Brassica vegetables. In the current study, four different thermal processing methods, including freeze-drying, sautéing, steaming, and air-frying, were employed for five different Brassica vegetables, including kale, broccoli sprouts, Brussels sprouts, red cabbage, and green cabbage. The total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities were assessed using radical scavenging activity (DPPH and ABTS•+), reducing power (FRAP), and the chelating ability of metal ions. Among the methods tested, air-frying at 160 °C for 10 min showed the highest TPC, TFC, and antioxidant activity of the Brassica vegetables, while sautéing showed the lowest. The steam treatments were preferred over the freeze-drying treatments. Within the vegetables tested, both kale and broccoli sprouts contained higher antioxidant properties in most of the employed processing treatments. The results also indicated that there is a strong correlation between the TPC, TFC, and antioxidant activity (p < 0.05). This study indicates that air-frying could be used as a sustainable thermal processing method for improving biomolecules in Brassica vegetables.
Collapse
|
2
|
Fadairo OS, Nandasiri R, Nguyen T, Eskin NAM, Aluko RE, Scanlon MG. Improved Extraction Efficiency and Antioxidant Activity of Defatted Canola Meal Extract Phenolic Compounds Obtained from Air-Fried Seeds. Antioxidants (Basel) 2022; 11:antiox11122411. [PMID: 36552619 PMCID: PMC9774657 DOI: 10.3390/antiox11122411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
This study investigated the efficacy of roasting pre-treatment by air frying to enhance the extraction and recovery of the predominant sinapic acid derivatives (SADs) from roasted canola meal and the antioxidant potential of the methanolic extracts. Canola meal was obtained by air frying canola seed at 160, 170, 180 or 190 °C for 5, 10, 15 or 20 min. Oil was extracted using the Soxhlet method, and the de-oiled meal fraction was air-dried. Phenolic compounds were isolated using ultrasound-assisted extraction with 70% (v/v) methanol and then quantified by high-performance liquid chromatography-diode array detection. The antioxidant potential of the defatted meal methanolic extracts was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and metal ion-chelating activity (MIC) assays. The highest total phenolic content of 3.15 mg gallic acid equivalent/g dry weight was recorded in the defatted meal extract from seeds pre-treated with air frying at 190 °C for 15 min. Sinapine, sinapic acid and an unknown compound at a retention time (RT) of 26.6 min were the major sinapates identified in the defatted meal with the highest concentrations of 7572 ± 479.2 µg/g DW, 727 ± 43.45 µg/g DW and 1763 ± 73.5 µg/g DW, respectively, obtained at 160 °C for 5 min. Canolol (151.35 ± 7.65 µg/g DW) was detected after air frying at a temperature of 170 °C for 20 min. The FRAP and MIC correlated positively (r = 0.85) and generally decreased with increased air frying temperature-time conditions. The highest FRAP and MIC values of 0.53 mM and 80% were obtained at 160 °C for 5 and 20 min, respectively. The outcome of this study will contribute new knowledge that could improve the value addition and by-product utilization of canola seeds.
Collapse
Affiliation(s)
- Olamide S. Fadairo
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, 196, Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (O.S.F.); (M.G.S.)
| | - Ruchira Nandasiri
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, 196, Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- St. Boniface Hospital Albrechtsen Research Centre, 351, Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Thu Nguyen
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, 196, Innovation Drive, Winnipeg, MB R3T 2N2, Canada
| | - N. A Michael Eskin
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Rotimi E. Aluko
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, 196, Innovation Drive, Winnipeg, MB R3T 2N2, Canada
| | - Martin G. Scanlon
- Food and Human Nutritional Sciences Department, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Food Technology and Research, 196, Innovation Drive, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (O.S.F.); (M.G.S.)
| |
Collapse
|
3
|
Zago E, Nandasiri R, Thiyam-Holländer U, Michael Eskin NA. Influence of thermal treatments on the antioxidant activity of hemp cake polar extracts. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3256-3265. [PMID: 35872714 PMCID: PMC9304524 DOI: 10.1007/s13197-021-05325-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 06/15/2023]
Abstract
The effect of preheating temperature (X1), preheating time (X2) and the nature of the extracting solvents (X3) on the antioxidant activity of ultrasonic extracts of hemp cake was evaluated using a factorial design with a general linear multiple regression method using the three variables (X1, X2, and X3) and three levels including low (-1), intermediate (0) and high (+ 1). The results indicated that the extracting solvent and the preheating temperature levels were the principal effects influencing the total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH and FRAP). The highest level of preheating temperature (+ 1 = 180 °C) and extracting solvent (+ 1 = Ac80) were the optimal conditions for enhancing the extraction of the total phenolics and providing the highest antioxidant activity in hemp cake extracts. The interaction between temperature (X1), and the type of solvent (X3) significantly (p < 0.05) affected all the dependent variables examined. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05325-9.
Collapse
Affiliation(s)
- Erika Zago
- BioMatter Unit - École Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Ruchira Nandasiri
- Department of Foods and Human Nutritional Sciences, University of Manitoba, W383 Duff Robin Building, Winnipeg, MB R3T 2N2 Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, MB R3T 6C5 Canada
| | - Usha Thiyam-Holländer
- Department of Foods and Human Nutritional Sciences, University of Manitoba, W383 Duff Robin Building, Winnipeg, MB R3T 2N2 Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, 196 Innovation Drive, Winnipeg, MB R3T 6C5 Canada
| | - N. A. Michael Eskin
- Department of Foods and Human Nutritional Sciences, University of Manitoba, W383 Duff Robin Building, Winnipeg, MB R3T 2N2 Canada
| |
Collapse
|
4
|
Nandasiri R, Eskin NAM. Canolol and its derivatives: A novel bioactive with antioxidant and anticancer properties. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 100:109-129. [PMID: 35659350 DOI: 10.1016/bs.afnr.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The health and safety concerns associated with synthetic antioxidants has resulted in an urgent search for natural sources of antioxidants. Such antioxidants are not only convenient but may also have important therapeutic properties. Oilseed crops, for example, are rich in phenolic compounds some of which exhibit powerful antioxidant properties that have broad applications in both the food and feed industry. Often, the concentration of these phenolic compounds is affected by many processing conditions including temperature, pressure, pH, and extracting solvents. Hence it is important to optimize processing conditions to obtain maximum levels of those antioxidants with superior antioxidant activity. Oilseeds, such as canola and mustard, are rich sources of sinapates and kaempferol derivatives. When subjected to different processing conditions, including pressurized temperature, sinapates are converted to vinyl phenol derivatives, of which the major one is canolol. This chapter will focus on the nature of canolol and its applications in food and medicine.
Collapse
Affiliation(s)
- Ruchira Nandasiri
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Richardson Centre for Functional Foods & Nutraceuticals, Winnipeg, MB, Canada
| | - N A Michael Eskin
- Department of Food & Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
5
|
Garcia-Alonso A, Sánchez-Paniagua López M, Manzanares-Palenzuela CL, Redondo-Cuenca A, López-Ruíz B. Edible plant by-products as source of polyphenols: prebiotic effect and analytical methods. Crit Rev Food Sci Nutr 2022; 63:10814-10835. [PMID: 35658778 DOI: 10.1080/10408398.2022.2084028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Polyphenols with high chemical diversity are present in vegetables both in the edible parts and by-products. A large proportion of them remains unabsorbed along the gastrointestinal tract, being accumulated in the colon, where they are metabolized by the intestinal microbiota. These polyphenols have been found to have "prebiotic-like" effects. The edible plant industry generates tons of residues called by-products, which consist of unutilized plant tissues (peels, husks, calyxes and seeds). Their disposal requires special and costly treatments to avoid environmental complications. Reintroducing these by-products into the value chain using technological and biotechnological practices is highly appealing since many of them contain nutrients and bioactive compounds, such as polyphenols, with many health-promoting properties. Edible plant by-products as a source of polyphenols highlights the need for analytical methods. Analytical methods are becoming increasingly selective, sensitive and precise, but the great breakthrough lies in the pretreatment of the sample and in particular in the extraction methods. This review shows the importance of edible plant by-products as a source of polyphenols, due to their prebiotic effect, and to compile the most appropriate analytical methods for the determination of the total content of phenolic compounds as well as the detection and quantification of individual polyphenols.
Collapse
Affiliation(s)
- Alejandra Garcia-Alonso
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Marta Sánchez-Paniagua López
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | | | - Araceli Redondo-Cuenca
- Departamento de Nutrición y Ciencia de los Alimentos, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| | - Beatríz López-Ruíz
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, Ciudad Universitaria, Madrid, Spain
| |
Collapse
|
6
|
Pham A, García Martínez JB, Brynych V, Stormbjorne R, Pearce JM, Denkenberger DC. Nutrition in Abrupt Sunlight Reduction Scenarios: Envisioning Feasible Balanced Diets on Resilient Foods. Nutrients 2022; 14:492. [PMID: 35276851 PMCID: PMC8839908 DOI: 10.3390/nu14030492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Abrupt sunlight reduction scenarios (ASRS) following catastrophic events, such as a nuclear war, a large volcanic eruption or an asteroid strike, could prompt global agricultural collapse. There are low-cost foods that could be made available in an ASRS: resilient foods. Nutritionally adequate combinations of these resilient foods are investigated for different stages of a scenario with an effective response, based on existing technology. While macro- and micronutrient requirements were overall met, some-potentially chronic-deficiencies were identified (e.g., vitamins D, E and K). Resilient sources of micronutrients for mitigating these and other potential deficiencies are presented. The results of this analysis suggest that no life-threatening micronutrient deficiencies or excesses would necessarily be present given preparation to deploy resilient foods and an effective response. Careful preparedness and planning-such as stock management and resilient food production ramp-up-is indispensable for an effective response that not only allows for fulfilling people's energy requirements, but also prevents severe malnutrition.
Collapse
Affiliation(s)
- Alix Pham
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Juan B. García Martínez
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Vojtech Brynych
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Ratheka Stormbjorne
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
| | - Joshua M. Pearce
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
- Department of Electrical & Computer Engineering, Western University, London, ON N6A 5B9, Canada
| | - David C. Denkenberger
- Alliance to Feed the Earth in Disasters (ALLFED), Fairbanks, AK 99775, USA; (J.B.G.M.); (V.B.); (R.S.); (J.M.P.); (D.C.D.)
- Department of Mechanical Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
- Alaska Center for Energy and Power, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| |
Collapse
|
7
|
Fadairo O, Nandasiri R, Alashi AM, Eskin NAM, Thiyam-Höllander U. Air frying pretreatment and the recovery of lipophilic sinapates from the oil fraction of mustard samples. J Food Sci 2021; 86:3810-3823. [PMID: 34342008 DOI: 10.1111/1750-3841.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022]
Abstract
Roasting of mustard seeds prior to oil extraction is a well-documented unit operation essential to produce canolol and other lipophilic sinapates. This study investigated the effectiveness of air frying as a seed roasting treatment operation for enhancing the recovery of lipophilic sinapates from various mustard samples and fractions/products. Air frying of seeds, powder, cake, bran, and flour from different mustard varieties was carried out at temperature-time combinations of 160, 170, and 180°C for 5, 10, 15, and 20 min, respectively. Oil was extracted using the Soxtec method. Lipophilic sinapates were extracted from the oil using equal volumes of hexane to methanol 70% (v/v) and quantified by high performance liquid chromatography-diode array detection (HPLC-DAD). The total phenolic content (TPC) and antioxidant activity of the oils were also evaluated. The results showed a time-temperature dependency for the recovery of major oil-soluble sinapates in all mustard samples and fractions. The optimum air frying condition 180°C for 15 min produced the maximum yield of canolol as well as other unidentified oil-soluble sinapates (retention time (RT)-7.7, RT-11.50, RT-14.95, and RT-16.24 min). The oil from lower grade yellow mustard seeds (LGYMS) roasted at 180°C for 20 mins specifically had the highest TPC (3402.22 ± 58.79 mg GAE/g oil), while LGYMS oils generally showed better antioxidant activities (2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion reducing antioxidant power (FRAP), and inhibition of linoleic acid oxidation) but were lower in metal ion chelating capacity. This information would be beneficial to the oil industry because air frying generated valuable canolol and other antioxidant lipophilic sinapates from mustard varieties and their fractions. PRACTICAL APPLICATION: A major limitation in the application of natural extracts in vegetable oils is the poor lipophilic nature of phenolic compounds. This study employed a new thermal treatment (air frying) in the recovery of canolol and other lipophilic antioxidants. Such treatments can enrich mustard-based ingredients with canolol and other lipophilic antioxidants for domestic and industrial applications.
Collapse
Affiliation(s)
- Olamide Fadairo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ruchira Nandasiri
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Usha Thiyam-Höllander
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
8
|
Nandasiri R, Imran A, Thiyam-Holländer U, Eskin NAM. Rapidoxy® 100: A Solvent-Free Pre-treatment for Production of Canolol. Front Nutr 2021; 8:687851. [PMID: 34277685 PMCID: PMC8282822 DOI: 10.3389/fnut.2021.687851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 01/20/2023] Open
Abstract
RapidOxy® 100 is an automated instrument originally designed for measuring the oxidative stability of both solid and liquid samples. The compact and portable design of RapidOxy® 100, and its built-in pressurized heating chamber, provides a suitable environment for studying processing conditions. The feasibility of using oxygen or an inert atmosphere provides the ideal environment to study the effect of dry heat pre-treatment on canola antioxidants. The current study used RapidOxy® 100 to examine the impact of pressurized dry heat pre-treatment, under nitrogen, on the ultrasonic extraction of phenolic compounds. The effect of different pre-treatment temperature-time combinations of 120, 140, 160, and 180°C for 2, 5, 10, 15, and 20 min on the subsequent extraction of canola phenolic compounds was examined. The major sinapates identified by HPLC were sinapine, sinapic acid, and canolol. The optimum RapidOxy® condition for the maximum recovery of canolol was 160°C for 10 min. RapidOxy® 100 proved to be a novel and versatile instrument for enhancing the extraction of phenolic compounds.
Collapse
Affiliation(s)
- Ruchira Nandasiri
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | - Afra Imran
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | - Usha Thiyam-Holländer
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB, Canada
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
9
|
Nandasiri R, Zago E, Thiyam‐Holländer U, Eskin NAM. Attenuation of sinapic acid and
sinapine‐derived flavor‐active
compounds using a
factorial‐based
pressurized
high‐temperature
processing. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruchira Nandasiri
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods & Nutraceuticals Winnipeg Manitoba Canada
| | - Erika Zago
- BioMatter Unit—École Polytechnique de Bruxelles Université Libre de Bruxelles Brussels Belgium
| | - Usha Thiyam‐Holländer
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods & Nutraceuticals Winnipeg Manitoba Canada
| | | |
Collapse
|