1
|
Silva TO, Costa GN, Dos Santos Lima M, Feihrmann AC, Barão CE, Magnani M, Pimentel TC. Chemical, microbial, and functional characterization of a new fruity probiotic kombucha. Food Res Int 2024; 198:115398. [PMID: 39643353 DOI: 10.1016/j.foodres.2024.115398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to evaluate the effect of adding Lacticaseibacillus casei as probiotic culture and/or camu-camu (Myrciaria dubia) pulp on the chemical profile, technological, functional, and sensory properties, phenolics concentration and bioaccessibility, and microbiota of kombucha. Adding L. casei decreased some volatile compounds and fruity flavor intensity and increased the Lactobacillus relative abundance (+35.73 %) and lactic acid content (from 1.26 to 1.54 g/L), decreasing flavor and overall impression acceptances. Adding camu-camu pulp resulted in more acidic products (pH of 2.75 vs 3.24), with a higher concentration of some phenolic compounds. The kombucha with L. casei and camu-camu pulp was characterized by a higher concentration of citric and acetic acids, ethanol, ascorbic acid, and most of the phenolic compounds and volatile compounds, higher bioaccessibility of phenolic compounds, increased consistency index, improved functional properties (inhibition of α-glucosidase and antioxidant activity), and better sensory properties. Furthermore, it showed an increased relative abundance of Lactobacillus (+15.11 %) and a decreased relative abundance of Acetobacter (-5.56 %) and Komagataeibacter (-9.12 %) compared to the conventional kombucha. L. casei survived the processing (> 7 log CFU/mL) and simulated gastrointestinal conditions (>5 log CFU/mL). In conclusion, the association of L. casei and camu-camu pulp resulted in potentially probiotic kombuchas with improved chemical profile, functional, technological, and sensory properties, phenolic compounds concentration and bioaccessibility, and bacterial microbial diversity.
Collapse
Affiliation(s)
- Thiago Okagawa Silva
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Giselle Nobre Costa
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - Marcos Dos Santos Lima
- Departament of Food Technology, Federal Institute of Sertao de Pernambuco, Petrolina, PE, Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB, Brasil
| | - Tatiana Colombo Pimentel
- Departamento de Ciência e Tecnologia de Alimentos, Universidade Estadual de Londrina, Londrina, PR, Brasil; Federal Institute of Paraná, Paranavaí, PR, Brazil.
| |
Collapse
|
2
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Iara Gomes de Oliveira L, Karoline Almeida da Costa W, de Candido de Oliveira F, França Bezerril F, Priscila Alves Maciel Eireli L, Dos Santos Lima M, Fontes Noronha M, Cabral L, Wagner R, Colombo Pimentel T, Magnani M. Ginger beer derived from back-slopping: Volatile compounds, microbial communities on activation and fermentation, metabolites and sensory characteristics. Food Chem 2024; 435:137640. [PMID: 37804728 DOI: 10.1016/j.foodchem.2023.137640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Physicochemical parameters, microbial diversity using sequencing and amplicon, and metabolite concentrations from Ginger Bug and Ginger Beer were characterized. Furthermore, the sensory aspects of the beverage were determined. The longer ginger bug activation time (96 h) resulted in higher production of organic acids and alcohols, increased phenolic and volatile compounds concentration, greater microbial diversity, and increased lactic acid bacteria and yeasts. In the same way, the longer fermentation time (14 days) of ginger beer resulted in higher ethanol content, volatile compounds, and phenolic compounds, in addition to better sensory characteristics. Our results showed that ginger beer produced with ginger bug and fermented for 14 days showed better volatile and phenolic compound profiles, physicochemical parameters, microbial diversity, and sensory characteristics.
Collapse
Affiliation(s)
- Louise Iara Gomes de Oliveira
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Fabrícia França Bezerril
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lucélia Cabral
- Institute of Biosciences, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
4
|
Lee YJ, Kang HJ, Yi SH, Jung YH. Antioxidant Properties of Kombucha Made with Tartary Buckwheat Tea and Burdock Tea. Prev Nutr Food Sci 2023; 28:347-352. [PMID: 37842253 PMCID: PMC10567594 DOI: 10.3746/pnf.2023.28.3.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 10/17/2023] Open
Abstract
Kombucha is a beverage fermented by SCOBY, which is a symbiotic culture of bacteria and yeast. Recently, kombucha has received significant attention due to its health benefits, which include antioxidant and anti-obesity effects. In this study, we investigated the characteristics of kombucha made with Tartary buckwheat and burdock, both known for their high polyphenols content. First, the total polyphenol content and antioxidant activity were measured by 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays, which revealed a polyphenol content of 180 ug/mL in Tartary buckwheat kombucha and a high radical scavenging ability of over 90% in both kombucha preparations. Analysis of the changes in the organic acid content during fermentation revealed increases in various organic acid contents, such as glucuronic acid, lactic acid, and acetic acid. Glucuronic acid, especially, which has many functional properties in health, was found to be produced at a concentration of 4.03 g/L in Tartary buckwheat kombucha. Pancreatic lipase inhibitory ability analysis revealed inhibitory effects of 40.47% and 57.68% for Tartary buckwheat and burdock kombucha, respectively. The results of this study confirmed the antioxidant and anti-obesity effects of kombucha made from Tartary buckwheat and burdock, indicating the potential value of these ingredients as functional kombucha ingredients.
Collapse
Affiliation(s)
- Yeon Ju Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Korea
| | - Hye Jee Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Korea
| | | | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 4566, Korea
| |
Collapse
|
5
|
Different parts from the whole red beet (Beta vulgaris L.) valorization with stimulatory effects on probiotic lactobacilli and protection against gastrointestinal conditions. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Abstract
Kombucha is a fermented sweetened tea with a mixed fermenting culture of yeast and acetic acid bacteria. While the history of kombucha is not completely clear, it is now available around the world and has shown an increase in availability and demand in the United States market. The proponents of kombucha consumption tout the varied health benefits it can provide. The final kombucha flavor and composition is a function of both the initial tea used and the fermentation process. While the ascribed benefits are varied and numerous, the number of direct studies has been limited. This review focuses on the current state of understanding of the chemical composition and the potential health effects both positive and negative reported in the literature.
Collapse
|
7
|
Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int J Food Microbiol 2022; 377:109783. [PMID: 35728418 DOI: 10.1016/j.ijfoodmicro.2022.109783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 01/10/2023]
Abstract
In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.
Collapse
|
8
|
Coffee brews as food matrices for delivering probiotics: Opportunities, challenges, and potential health benefits. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Traditional and flavored kombuchas with pitanga and umbu-cajá pulps: Chemical properties, antioxidants, and bioactive compounds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
12
|
Fabricio MF, Mann MB, Kothe CI, Frazzon J, Tischer B, Flôres SH, Ayub MAZ. Effect of freeze-dried kombucha culture on microbial composition and assessment of metabolic dynamics during fermentation. Food Microbiol 2021; 101:103889. [PMID: 34579857 DOI: 10.1016/j.fm.2021.103889] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
Kombucha is a traditional fermented beverage gaining popularity around the world. So far, few studies have investigated its microbiome using next-generation DNA sequencing, whereas the correlation between the microbial community and metabolites evolution along fermentation is still unclear. In this study, we explore this correlation in a traditionally produced kombucha by evaluating its microbial community and the main metabolites produced. We also investigated the effects of starter cultures processed in three different ways (control, starter culture without liquid suspension (CSC), and a freeze-dried starter culture (FDSC)) to evaluate changes in kombucha composition, such as antioxidant activity and sensory analysis. We identified seven genera of bacteria, including Komagataeibacter, Gluconacetobacter, Gluconobacter, Acetobacter, Liquorilactobacillus, Ligilactobacillus, and Zymomonas, and three genera of yeasts, Dekkera/Brettanomyces, Hanseniaspora, and Saccharomyces. Although there were no statistically significant differences in the acceptance test in sensory analysis, different starter cultures resulted in products showing different microbial and biochemical compositions. FDSC decreased Zymomonas and Acetobacter populations, allowing for Gluconobacter predominance, whereas in the control and CSC kombuchas the first two were the predominant genera. Results suggest that the freeze-drying cultures could be implemented to standardize the process and, despite it changes the microbial community, a lower alcohol content could be obtained.
Collapse
Affiliation(s)
- Mariana Fensterseifer Fabricio
- Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Michele Bertoni Mann
- Postgraduate Program in Agricultural and Environmental Microbiology, Basic Health Sciences Institute, Federal University of Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Caroline Isabel Kothe
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Jeverson Frazzon
- Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Bruna Tischer
- Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Simone Hickmann Flôres
- Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil
| | - Marco Antônio Záchia Ayub
- Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves, 9500, PO Box 15090, ZC 91501-970, Porto Alegre, RS, Brazil.
| |
Collapse
|