1
|
Zhang W, Jiang X, Liu L, Zhao Y, Bai F, Wang J, Gao R, Xu X. The influence mechanism of phospholipids structure and composition changes caused by oxidation on the formation of flavor substances in sturgeon caviar. Food Chem 2024; 460:140585. [PMID: 39111141 DOI: 10.1016/j.foodchem.2024.140585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024]
Abstract
The oxidation-induced phospholipids (PLs) underwent structural and compositional analysis, alongside the establishment of a simulation system to verify the link between phospholipid oxidation and flavor substances formation in sturgeon caviar. Structural alterations of PLs were tracked using 31P and 1H nuclear magnetic resonance (NMR), electron spin resonance spectroscopy (ESR), and Raman spectroscopy. The findings revealed a reduction in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) from 82.3% and 10.4% to 58.2% and 5.8% respectively. Free radical signals exhibited an initial increase followed by a decrease. The diminished intensity in Raman spectra at 970 and 1080 cm-1 indicated reduced fat unsaturation attributable to PLs oxidation. Correlation analysis highlighted a significant association between PC and PE containing C22:6, C20:5, C20:4, and C18:2 with flavor substances, suggesting their role as key precursors for flavor development. This study established a theoretical basis for understanding the change of flavor quality in sturgeon caviar during storage.
Collapse
Affiliation(s)
- Weijia Zhang
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Xinyu Jiang
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| | - Fan Bai
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China.
| | - Jinlin Wang
- Quzhon Sturgeon Aquatic Food Science and Technology Development Co, Ltd, Quzhou 324002, China.
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, 266003, Qingdao, China.
| |
Collapse
|
2
|
Hachem M, Ahmmed MK, Nacir-Delord H. Phospholipidomics in Clinical Trials for Brain Disorders: Advancing our Understanding and Therapeutic Potentials. Mol Neurobiol 2024; 61:3272-3295. [PMID: 37981628 PMCID: PMC11087356 DOI: 10.1007/s12035-023-03793-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Phospholipidomics is a specialized branch of lipidomics that focuses on the characterization and quantification of phospholipids. By using sensitive analytical techniques, phospholipidomics enables researchers to better understand the metabolism and activities of phospholipids in brain disorders such as Alzheimer's and Parkinson's diseases. In the brain, identifying specific phospholipid biomarkers can offer valuable insights into the underlying molecular features and biochemistry of these diseases through a variety of sensitive analytical techniques. Phospholipidomics has emerged as a promising tool in clinical studies, with immense potential to advance our knowledge of neurological diseases and enhance diagnosis and treatment options for patients. In the present review paper, we discussed numerous applications of phospholipidomics tools in clinical studies, with a particular focus on the neurological field. By exploring phospholipids' functions in neurological diseases and the potential of phospholipidomics in clinical research, we provided valuable insights that could aid researchers and clinicians in harnessing the full prospective of this innovative practice and improve patient outcomes by providing more potent treatments for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Department of Chemistry and Healthcare Engineering Innovation Center, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mirja Kaizer Ahmmed
- Department of Fishing and Post-Harvest Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Houda Nacir-Delord
- Department of Chemistry, Khalifa University of Sciences and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Chen DW, Wan P, Yao J, Yang X, Liu J. Egg yolk phospholipids as an ideal precursor of fatty note odorants for chicken meat and fried foods: A review. Food Chem 2023; 407:135177. [PMID: 36527950 DOI: 10.1016/j.foodchem.2022.135177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Egg yolk phospholipids (PLs) have been demonstrated to generate large quantities of lipid-derived odorants, especially the fatty note odorants. Recently, egg yolk PLs have been successfully used in chicken meat and fried foods to improve aroma. This review comprehensively summarizes the properties of egg yolk PLs as precursors of fatty note odorants, including their classes, extraction, identification, oxidation, decomposition and odorant formation, applications, considerations and future prospects in the food industry. Most likely, phosphatidylcholine (PC) is the most abundant class in egg yolk PLs, and PC is more efficient than phosphatidylethanolamine in generating fatty note odorants; moreover, the predominant polyunsaturated fatty acid is linoleic acid, and its corresponding predominant hydroperoxide is 9-hydroperoxy-10,12-octadecadienoic acid during autoxidation, which is the precursor of 2,4-decadienals and 2,4-nonadienals, the key fatty note odorants. Therefore, egg yolk PLs could be an ideal precursor of fatty note odorants for chicken meat and fried foods.
Collapse
Affiliation(s)
- De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China.
| | - Peng Wan
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jingyu Yao
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaoying Yang
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| | - Jie Liu
- Department of Food Science, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
4
|
Park JY, Lee HB, Son SE, Gupta PK, Park Y, Hur W, Seong GH. Determination of lysophosphatidylcholine using peroxidase-mimic PVP/PtRu nanozyme. Anal Bioanal Chem 2023; 415:1865-1876. [PMID: 36792781 DOI: 10.1007/s00216-023-04590-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Lysophosphatidylcholine (LPC) can be used as a biomarker for diseases such as cancer, diabetes, atherosclerosis, and sepsis. In this study, we demonstrated the ability of nanozymes to displace the natural derived enzyme in enzyme-based assays for the measurement of LPC. Synthesized polyvinylpyrrolidone-stabilized platinum-ruthenium nanozymes (PVP/PtRu NZs) had a uniform size of 2.48 ± 0.24 nm and superb peroxidase-mimicking activity. We demonstrated that the nanozymes had high activity over a wide pH and temperature range and high stability after long-term storage. The LPC concentration could be accurately analyzed through the absorbance and fluorescence signals generated by the peroxidation reaction using the synthesized nanozyme with substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) and 10-acetyl-3,7-dihydroxyphenoxazine (Ampliflu™ Red). LPC at a concentration of 0-400 µM was used for the analysis, and the coefficient of determination (R2) was 0.977, and the limit of detection (LOD) was 23.1 µM by colorimetric assay. In the fluorometric assay, the R2 was 0.999, and the LOD was 8.97 µM. The spiked recovery values for the determination of LPC concentration in human serum samples were 102-115%. Based on these results, we declared that PVP/PtRu NZs had an ability comparable to that of the native enzyme horseradish peroxidase (HRP) in the enzyme-based LPC detection method.
Collapse
Affiliation(s)
- Ji Yeon Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Pramod K Gupta
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Yosep Park
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 426-791, South Korea.
| |
Collapse
|
5
|
Zhao Z, Wan P, Liu J, Yu S, Yang X, Chen DW. Monitoring of the oxidation process of egg yolk phospholipids at frying temperature by nuclear magnetic resonance. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Ahmmed MK, Carne A, Bunga S, Sabrina Tian H, Bekhit AEDA. Lipidomic signature of Pacific lean fish species head and skin using gas chromatography and nuclear magnetic resonance spectroscopy. Food Chem 2021; 365:130637. [PMID: 34329878 DOI: 10.1016/j.foodchem.2021.130637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
The present study investigated the lipid profile (fatty acid profile, positional distribution of n-3 fatty acids and phospholipid content) of head and skin of three lean fishes (gurnard, ribaldo and snapper). Gurnard head (GH) and snapper head (SnH) were found to contain a higher amount of total lipid (5.9-6.3%) than other samples (1.2-3.9%) including a considerable amount of bioactive n-3 fatty acids such as EPA (GH = 9.05%; SnH = 5.06%), DPA (GH = 2.78% ; SnH = 2.93%) and DHA (GH = 12.8% ; SnH = 7.72%) in the polar lipid fraction. DHA was found to predominate in the sn-2 position for gurnard head and snapper head. Partial least squares discriminant analysis showed that both gurnard and snapper samples were positively correlated with the n-3 fatty acids (EPA, DPA and DHA). Gurnard and snapper head had higher phospholipid content than the skin. Therefore, among the studied samples, GH and SnH are the best source of bioactive n-3 phospholipids.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh.
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Senni Bunga
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
7
|
Ahmmed MK, Carne A, Ahmmed F, Stewart I, Sabrina Tian H, Bekhit AEDA. Positional distribution of fatty acids and phospholipid composition in King salmon (Oncorhynchus tshawytscha) head, roe and skin using nuclear magnetic resonance spectroscopy. Food Chem 2021; 363:130302. [PMID: 34130099 DOI: 10.1016/j.foodchem.2021.130302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/21/2022]
Abstract
This study used a novel extraction method (ETHEX) to extract the lipid content of King salmon head, skin and roe, and determined the lipid profiles using GC-FID, 13C NMR and 31P NMR spectroscopy. On a wet tissue basis, King salmon roe was found to contain the highest amount of phospholipid (26.53 µmol/g) and n-3 fatty acids (43.32%), followed by head (PL = 10.76 µmol/g; n-3 = 7.21%) and skin (PL = 4.98 µmol/g; n-3 = 8.23%). Total EPA (6.62%) and DHA (28.83%) content, along with the sn-2 positioned EPA (3.25%), DPA (1.36%) and DHA (16.35%) were also higher in roe compared with head and skin. The highest amount of EPA (7.99%) and DHA (34.47%) contents were found in the polar lipid fractions of roe, followed by skin (EPA = 4.19%; DHA = 25.95%) and head (EPA = 2.61%; DHA = 17.85%). This result suggests that salmon roe could be used for developing n-3 phospholipid enriched products.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh.
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Ian Stewart
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
8
|
Ahmmed MK, Ahmmed F, Stewart I, Carne A, Tian HS, Bekhit AEDA. Omega-3 phospholipids in Pacific blue mackerel (Scomber australasicus) processing by-products. Food Chem 2021; 353:129451. [PMID: 33714118 DOI: 10.1016/j.foodchem.2021.129451] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
The present study investigated phospholipid content, fatty acid composition and the positional distribution (sn-1,3 and sn-2) of n-3 fatty acids in four blue mackerel processing by-products (head, skin, roe, and male gonad). Total lipid was extracted using hexane/ethanol (1:2) and the analyses were carried out using NMR and GC-FID techniques. On the basis of g wet tissue, blue mackerel roe was a better source of phospholipids (38.6 µmol), compared to head (9.89 µmol), skin (13.5 µmol), and male gonad (10.0 µmol). Total lipid extracted from roe was found to have a higher proportion of n-3 fatty acids (44.4%) including EPA (11.3%) and DHA (27.5%), compared to head (total n-3 = 36.6%; EPA, 9.08%: DHA, 21.9%), skin (total n-3 = 34.8%; EPA, 9.63%; DHA, 19.5%) and male gonad (total n-3 = 42.5%; EPA, 12.1%; DHA, 24.7%). The proportion of EPA in the sn-2 position was substantially higher in fish roe (12.6%) compared to the other by-products (head, 1.91%; skin, 2.22%; male gonad, 2.02%). However, the DPA and DHA content in the sn-2 position did not vary significantly among the various parts (p > 0.05). Phospholipid esterified n-3 fatty acids were higher in roe (55.5%) compared to head (40.9%), skin (21.8%) and male gonad (32%). The present study suggests that blue mackerel roe is the best source of marine n-3 phospholipids among the blue mackerel commercially produced by-products.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Department of Fishing and Post-harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Bangladesh, Khulshi Chittagong-4225, Bangladesh.
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Ian Stewart
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | - Alan Carne
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.
| | | | | |
Collapse
|