1
|
Ajayi FF, AlShebli F, Yap PG, Gan CY, Maqsood S, Mudgil P. Assessment of hypolipidemic potential of cholesteryl esterase inhibitory peptides in different probiotic fermented milk through in vitro, in silico, and molecular docking studies. Food Chem X 2024; 24:101998. [PMID: 39634518 PMCID: PMC11616526 DOI: 10.1016/j.fochx.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Fermented milk (FM) is well-known to confer health-promoting benefits, particularly for managing chronic metabolic diseases. However, the specific cholesterol esterase (CE) inhibitory activities of FM produced from different animal milk sources have not been extensively explored. This study for the first time investigates the CE inhibition potential of FM derived from bovine (F_BM), camel (F_CM), sheep (F_SM), and goat milk (F_GM), each fermented with five different probiotic strains and stored for 14 days under refrigeration. Further, peptides identification was performed and in silico approaches were used to dock potent peptides with CE enzyme (PDB: 1AQL) to decipher mechanism of enzyme inhibition. Comprehensive approach of this study combined CE inhibition assays, peptide identification, and in silico molecular docking with the CE enzyme (PDB: 1AQL) to elucidate mechanisms underlying enzyme inhibition. Upon fermentation improvements in CE-inhibition (lower IC50 values) were observed compared to non-fermented counterparts. Moreover, the CE-inhibition potency of the FM varies significantly among the milk types and probiotic strain (p < 0.05). Regardless of probiotic strains, CE-inhibition was more evident for F_GM followed by F_CM. Peptide sequencing and molecular docking studies revealed APSFSDIPNPIGSENSEKTTMPLW from F_BM showed potent binding to CE's active site, while peptides from F_CM, F_SM, and F_GM showed indirect CE-inhibitory mechanisms. These findings suggest potential anti-hypercholesteremic effects of bovine and non-bovine fermented milk, indicating their potential use in developing novel dairy products with hypolipidemic activities.
Collapse
Affiliation(s)
- Feyisola Fisayo Ajayi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Fatimah AlShebli
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Pei-Gee Yap
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre of Health Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
2
|
Yao X, Cao X, Chen L, Liao W. Research Progress of Food-Derived Antihypertensive Peptides in Regulating the Key Factors of the Renin-Angiotensin System. Nutrients 2024; 17:97. [PMID: 39796531 PMCID: PMC11722916 DOI: 10.3390/nu17010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Food protein-derived antihypertensive peptides have attracted substantial attention as a safer alternative for drugs. The regulation of the renin-angiotensin system (RAS) is an essential aspect underlying the mechanisms of antihypertensive peptides. Most of the identified antihypertensive peptides exhibit the angiotensin-converting enzyme (ACE) inhibitory effect. In addition, artificial intelligence has improved the efficiency of ACE inhibitory peptide identifications. Moreover, the inhibition of renin and blockade or down-regulation of angiotensin type I receptor (AT1R) have also been demonstrated to be effective intervention strategies. With the identification of the ACE2/Ang (1-7)/MasR axis, activation or up-regulation of angiotensin-converting enzyme 2 (ACE2) has also emerged as a new intervention pathway. This review summarizes the research progress of antihypertensive peptides in intervening with hypertension from the perspective of their properties, sources, and key factors. The objective of this review is to provide theoretical references for the development of antihypertensive peptides and the explorations of the molecular mechanisms.
Collapse
Affiliation(s)
- Xinyu Yao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Xinyi Cao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| | - Liang Chen
- Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China;
| | - Wang Liao
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China; (X.Y.); (X.C.)
| |
Collapse
|
3
|
Wang W, Liang Q, Zhao B, Chen X, Song X. Functional Peptides from Yak Milk Casein: Biological Activities and Structural Characteristics. Int J Mol Sci 2024; 25:9072. [PMID: 39201758 PMCID: PMC11354251 DOI: 10.3390/ijms25169072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
The average content of casein in yak milk is 40.2 g/L. Casein can be degraded by enzymatic digestion or food processing to produce abundant degradation peptides. International researchers have studied the degradation peptides of yak milk casein by using multiple techniques and methods, such as in vitro activity tests, cellular experiments, proteomics, bioinformatics, etc., and found that the degradation peptides have a wide range of functional activities that are beneficial to the human body, such as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, anti-inflammatory, antidiabetic, antimicrobial, anticancer, and immunomodulatory activities, etc., and it has been proved that the types and strengths of functional activities are closely related to the structural characteristics of the peptides. This paper describes the characteristics of yak milk proteins, the functional activities, and mechanism of action of degraded peptides. Based on the types of functional activities of yak milk casein degradation peptides, we classified and elucidated the effects of structural factors, such as peptide molecular weight, peptide length, amino acid sequence, physicochemical properties, electrical charge, hydrophobicity, spatial conformation, chain length, and the type of enzyme on these activities. It reveals the great potential of yak milk casein degradation peptides as functional active peptide resources and as auxiliary treatments for diseases. It also provides important insights for analyzing yak casein degradation peptide activity and exploring high-value utilization.
Collapse
Affiliation(s)
| | - Qi Liang
- Functional Dairy Products Engineering Laboratory of Gansu Province, College of Food Science and Engineering, Gansu Agricultural University, Anning District, Lanzhou 730070, China; (W.W.); (B.Z.); (X.C.); (X.S.)
| | | | | | | |
Collapse
|
4
|
Baba WN, Mudgil P, Mac Regenstein J, Maqsood S. Impact of quercetin conjugation using alkaline and free radical methods with tandem ultrasonication on the functional properties of camel whey and its hydrolysates. Food Res Int 2024; 190:114562. [PMID: 38945563 DOI: 10.1016/j.foodres.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
The structural and functional properties of whey-quercetin and whey hydrolysate-quercetin conjugates synthesized using alkaline and free radical-mediated methods (AM and FRM) coupled with sonication were studied. FTIR showed new peaks at 3000-3500 cm-1 (N-H stretching regions) and the 1000-1100 cm-1 region with the conjugates. Conjugation increased the random coils and α-helix content while decreasing the β-sheets and turns. It also increased the particle size and surface hydrophobicity which was significantly (p < 0.05) higher in AM than FRM conjugates. AM conjugates had higher radical scavenging activity but lower quercetin content than FRM conjugates. Overall, the functional properties of whey-quercetin conjugates were better than whey hydrolysate-quercetin conjugates. However, hydrolysate conjugates had significantly higher denaturation temperatures irrespective of the method of production. Sonication improved the radical scavenging activity and quercetin content of FRM conjugates while it decreased both for AM conjugates. This study suggested that whey-quercetin conjugates generally had better quality than whey hydrolysate conjugates and sonication tended to further improve these properties. This study highlights the potential for using camel whey or whey hydrolysate-quercetin conjugates to enhance the functional properties of food products in the food industry.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 1551, United Arab Emirates
| | - Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 1551, United Arab Emirates
| | - Joe Mac Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 1551, United Arab Emirates; International Research Center for Food, Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, Hati S. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 38855927 DOI: 10.1002/jsfa.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk. RESULTS After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL-1) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation. CONCLUSION The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, India
| | - Amar A Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Srichandan Padhi
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Amit Kumar Rai
- Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, India
| |
Collapse
|
6
|
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Singh BP, Paul S, Liu Z, Sarkar P, Patel A, Hati S. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico, in vitro, and molecular docking studies. Front Chem 2024; 12:1389846. [PMID: 38746020 PMCID: PMC11091447 DOI: 10.3389/fchem.2024.1389846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1β produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE.
Collapse
Affiliation(s)
- Rinkal Pipaliya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya, India
| | - Amar A. Sakure
- Departmentof Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Brij Pal Singh
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Souparno Paul
- Department of Microbiology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, India
| | - Ashish Patel
- Department of Animal Genetics and Breeding, College of Veterinary Science, Kamdhenu University, Anand, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
7
|
Oktaviani NPS, Ivansyah AL, Saputra MY, Handayani N, Fadylla N, Wahyuningrum D. Potential application of bisoprolol derivative compounds as antihypertensive drugs: synthesis and in silico study. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231112. [PMID: 38126063 PMCID: PMC10731320 DOI: 10.1098/rsos.231112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Two bisoprolol derivatives, N-acetyl bisoprolol and N-formyl bisoprolol, belonging to the beta-blocker class of antihypertensive drugs, were synthesized using acetylation and formylation reactions. The yields of the reactions were determined to be 32.40% for N-acetyl bisoprolol and 20.20% for N-formyl bisoprolol. In silico methods such as molecular docking, molecular dynamics simulation and SwissADME prediction were employed to evaluate the potential of these bisoprolol derivatives as antihypertensive drugs. These methods were used to assess the interaction between the bisoprolol derivatives and various receptors associated with hypertension, including human angiotensin I-converting enzyme (PDB ID: 1O8A), renin (PDB ID: 2V0Z), beta-1 adrenergic receptors (PDB ID: 4BVN, 7BVQ), voltage-dependent L-type calcium channel subunit alpha-1S (PDB ID: 6JP5) and mineralocorticoid receptor (PDB ID: 6L88). Our results demonstrated the highest binding energy when bisoprolol and its derivatives bound to 4BVN, with binding energy values of 6.74 kcal mol-1, 7.03 kcal mol-1 and 7.63 kcal mol-1 for bisoprolol, N-acetyl bisoprolol and N-formyl bisoprolol, respectively. The stability of these complexes was confirmed by molecular dynamics simulations, with a root-mean-square deviation value of approximately 2. Furthermore, the SwissADME results indicated that both derivatives exhibited similar properties to the reference drug bisoprolol.
Collapse
Affiliation(s)
- Ni Putu Sani Oktaviani
- Department of Chemistry, Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Atthar Luqman Ivansyah
- Master Program in Computational Science, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Instrumentation and Computational Physics Research Group, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Muhammad Yogi Saputra
- Department of Chemistry, Faculty of Sciences, Institut Teknologi Sumatera (ITERA), Jalan Terusan Ryacudu, Way Hui, Kecamatan Jati Agung, Lampung Selatan 35365, Indonesia
| | - Nurrahmi Handayani
- Analytical Chemistry Division, Department of Chemistry, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Nurdiani Fadylla
- PT. Kimia Farma Tbk, Jl Raya Banjaran KM 16 16 Banjaran, Kab Bandung, Jawa Barat, Indonesia
| | - Deana Wahyuningrum
- PT. Kimia Farma Tbk, Jl Raya Banjaran KM 16 16 Banjaran, Kab Bandung, Jawa Barat, Indonesia
| |
Collapse
|
8
|
Bellaver EH, Kempka AP. Potential of milk-derived bioactive peptides as antidiabetic, antihypertensive, and xanthine oxidase inhibitors: a comprehensive bibliometric analysis and updated review. Amino Acids 2023; 55:1829-1855. [PMID: 37938416 DOI: 10.1007/s00726-023-03351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
Bioactive peptides consist of small protein fragments, which are inactive in their original conformation, and they become active when released from these through enzymatic hydrolysis or fermentation processes. The bioactivity of such peptides has been extensively reported in the literature as contributors to organic homeostasis processes, as well as in immunomodulation, organism defense against oxidative processes, among others. In this study, reports of the activity of BPs isolated from milk with the potential glycemic control, antihypertensive activity, and inhibitors of uric acid formation were compiled. A systematic literature review and bibliometric analysis were conducted, using the PICO strategy for the research. The temporal analysis of publications revealed a growing interest in the investigation of bioactive peptides with potential antidiabetic, antihypertensive, and xanthine oxidase inhibitory activities, using dairy sources as products for their extraction. The literature analysis also revealed an increase in research involving non-bovine dairy products for bioactive peptide extraction. The collaboration network among authors exhibited weaknesses in scientific cooperation. Regarding the analysis of keywords, the usage of terms such as "bioactive peptides", "antioxidant", "antihypertensive", and "diabetes" was evident, constituting the main research clusters. Peptides with low molecular weight, typically < 10 kDa, of hydrophobic nature with aliphatic and aromatic chains, have significant implications in molecular interactions for the required activities. Although there is a growing interest in the industry regarding the utilization of bioactive peptides as potential drugs, there is a need to address gaps related to elucidating their interactions with cellular targets and their use in human therapy.
Collapse
Affiliation(s)
- Emyr Hiago Bellaver
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil
| | - Aniela Pinto Kempka
- Department of Animal Production and Food Science, Multicentric Graduate Program in Biochemistry and Molecular Biology Santa Catarina State University, Lages, SC, Brazil.
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC, 89870-000, Brazil.
| |
Collapse
|
9
|
Siddiqui SA, Alvi T, Biswas A, Shityakov S, Gusinskaia T, Lavrentev F, Dutta K, Khan MKI, Stephen J, Radhakrishnan M. Food gels: principles, interaction mechanisms and its microstructure. Crit Rev Food Sci Nutr 2023; 63:12530-12551. [PMID: 35916765 DOI: 10.1080/10408398.2022.2103087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Food hydrogels are important materials having great scientific interest due to biocompatibility, safety and environment-friendly characteristics. In the food industry, hydrogels are widely used due to their three-dimensional crosslinked networks. Furthermore, they have attracted great attention due to their wide range of applications in the food industry, such as fat replacers, encapsulating agents, target delivery vehicles, and many more. In addition to basic and recent knowledge on food hydrogels, this review exclusively focuses on sensorial perceptions, nutritional significance, body interactions, network structures, mechanical properties, and potential hydrogel applications in food and food-based matrices. Additionally, this review highlights the structural design of hydrogels, which provide the forward-looking idea for future applications of food hydrogels (e.g., 3D or 4D printing).
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Tayyaba Alvi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abhishek Biswas
- Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Tatiana Gusinskaia
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Filipp Lavrentev
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russia
| | - Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | | | - Jaspin Stephen
- Centre of Excellence in Nonthermal Processing, NIFTEM-Thanjavur, Tamil Nadu, India
| | | |
Collapse
|
10
|
Immunomodulatory effect of ethanol-soluble oligopeptides from Atlantic cod (Gadus morhua). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Novel antihypertensive peptides from lupin protein hydrolysate: An in-silico identification and molecular docking studies. Food Chem 2023; 407:135082. [PMID: 36493485 DOI: 10.1016/j.foodchem.2022.135082] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Application of non-thermal treatment to proteins prior to enzymatic hydrolysis can facilitate the release of novel bioactive peptides (BPs) with unique biological activities. In this study, lupin protein isolate was pre-treated with ultrasound and hydrolysed using alcalase and flavourzyme to produce alcalase hydrolysate (ACT) and flavourzyme hydrolysate(FCT). These hydrolysates were fractionated into 1, 5, and 10 kDa molecular weight fractions using a membrane ultrafiltration technique. The in vitro angiotensin-converting enzyme (ACE) studies revealed that unfractionated ACT (IC50 = 3.21 mg mL-1) and FCT (IC50 = 3.32 mg mL-1) were more active inhibitors of ACE in comparison to their ultrafiltrated fractions with IC50 values ranging from 6.09 to 7.45 mg mL-1. Molecular docking analysis predicted three unique peptides from ACT (AIPPGIPY, SVPGCT, and QGAGG) and FCT (AIPINNPGKL, SGNQGP, and PPGIP) as potential ACE inhibitors. Thus, unique BPs with ACE inhibitory effects might be generated from ultrasonicated lupin protein.
Collapse
|
12
|
Hatakenaka T, Kato T, Okamoto K. In Vitro and In Silico Studies on Angiotensin I-Converting Enzyme Inhibitory Peptides Found in Hydrophobic Domains of Porcine Elastin. Molecules 2023; 28:molecules28083337. [PMID: 37110571 PMCID: PMC10140934 DOI: 10.3390/molecules28083337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
One of the most striking aspects of the primary structure in the hydrophobic domains of the tropoelastin molecule is the occurrence of the VAPGVG repeating sequence. Since the N-terminal tripeptide VAP of VAPGVG showed a potent ACE inhibitory activity, the ACE inhibitory activity of various derivatives of VAP was examined in vitro. The results showed that VAP derivative peptides VLP, VGP, VSP, GAP, LSP, and TRP exhibited potent ACE inhibitory activities, while the non-derivative peptide APG showed only weak activity. In in silico studies, the docking score S value showed that VAP derivative peptides VLP, VGP, VSP, LSP, and TRP had stronger docking interactions than APG. Molecular docking in the ACE active pocket showed that TRP, the most potent ACE inhibitory peptide among the VAP derivatives, had a larger number of interactions with ACE residues in comparison with APG and that the TRP molecule appeared to spread widely in the ACE pocket, while the APG molecule appeared to spread closely. Differences in molecular spread may be a reason why TRP exhibits more potent ACE inhibitory activity than APG. The results suggest that the number and strength of interactions between the peptide and ACE are important for the ACE- inhibitory potency of the peptide.
Collapse
Affiliation(s)
- Toshiya Hatakenaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
- Vital Resources Applied Laboratory, Inc., Iizuka 820-0067, Japan
| | - Tamaki Kato
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
| | - Kouji Okamoto
- Vital Resources Applied Laboratory, Inc., Iizuka 820-0067, Japan
| |
Collapse
|
13
|
Mudgil P, Redha A, Nirmal NP, Maqsood S. In vitro antidiabetic and antihypercholesterolemic activities of camel milk protein hydrolysates derived upon simulated gastrointestinal digestion of milk from different camel breeds. J Dairy Sci 2023; 106:3098-3108. [PMID: 36935238 DOI: 10.3168/jds.2022-22701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/11/2022] [Indexed: 03/19/2023]
Abstract
Milk protein hydrolysates derived from 4 camel breeds (Pakistani, Saheli, Hozami, and Omani) were evaluated for in vitro inhibition of antidiabetic enzymatic markers (dipeptidyl peptidase IV and α-amylase) and antihypercholesterolemic enzymatic markers (pancreatic lipase and cholesterol esterase). Milk samples were subjected to in vitro simulated gastric (SGD) and gastrointestinal digestion (SGID) conditions. In comparison with intact milk proteins, the SGD-derived milk protein hydrolysates showed enhanced inhibition of α-amylase, dipeptidyl peptidase IV, pancreatic lipase, and cholesterol esterase as reflected by lower half-maximal inhibitory concentration values. Overall, milk protein hydrolysates derived from the milk of Hozami and Omani camel breeds displayed higher inhibition of different enzymatic markers compared with milk protein hydrolysates from Pakistani and Saheli breeds. In vitro SGD and SGID processes significantly increased the bioactive properties of milk from all camel breeds. Milk protein hydrolysates from different camel breeds showed significant variations for inhibition of antidiabetic and antihypercholesterolemic enzymatic markers, suggesting the importance of breed selection for production of bioactive peptides. However, further studies on identifying the peptides generated upon SGD and SGID of milk from different camel breeds are needed.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Ali Redha
- The Department of Public Health and Sport Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX1 2LU, United Kingdom; Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nilesh P Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
14
|
Mudgil P, Gan CY, Affan Baig M, Hamdi M, Mohteshamuddin K, Aguilar-Toalá JE, Vidal-Limon AM, Liceaga AM, Maqsood S. In-depth peptidomic profile and molecular simulation studies on ACE-inhibitory peptides derived from probiotic fermented milk of different farm animals. Food Res Int 2023; 168:112706. [PMID: 37120189 DOI: 10.1016/j.foodres.2023.112706] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023]
Abstract
Investigations into ACE inhibitory properties of probiotic fermented bovine, camel, goat, and sheep milk were performed and studied for two weeks of refrigerated storage. Results from the degree of proteolysis suggested higher susceptibility of goat milk proteins, followed by sheep and camel milk proteins, to the probiotic-mediated proteolysis. ACE-inhibitory properties displayed continuous decline in ACE-IC50 values for two weeks of refrigerated storage. Overall, goat milk fermented with Pediococcus pentosaceus caused maximum ACE inhibition (IC50: 262.7 µg/mL protein equivalent), followed by camel milk (IC50: 290.9 µg/mL protein equivalent). Studies related to peptide identification and in silico analysis using HPEPDOCK score revealed presence of 11, 13, 9 and 9 peptides in fermented bovine, goat, sheep, and camel milk, respectively, with potent antihypertensive potential. The results obtained suggest that the goat and camel milk proteins demonstrated higher potential for generating antihypertensive peptides via fermentation when compared to bovine and sheep milk.
Collapse
Affiliation(s)
- Priti Mudgil
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800, USM, Penang, Malaysia
| | - Mohd Affan Baig
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Marwa Hamdi
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Khaja Mohteshamuddin
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Av. de las Garzas 10, Col. El Panteón, Lerma de Villada 52005, Estado de México, Mexico
| | - Abraham M Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa 91073, Veracruz, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, USA
| | - Sajid Maqsood
- Food Science Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.
| |
Collapse
|
15
|
Purification, molecular docking and in vivo analyses of novel angiotensin-converting enzyme inhibitory peptides from protein hydrolysate of moth bean (Vigna aconitifolia (Jacq.) Màrechal) seeds. Int J Biol Macromol 2023; 230:123138. [PMID: 36610577 DOI: 10.1016/j.ijbiomac.2023.123138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The moth bean is a high-protein food legume. Enzymatic hydrolysates of food proteins demostrate health benefits. Search for diet related food protein hydrolysates is therefore within the scope of functional foods. Present study asertains to produce, screen and identify natural ACE-I inhibitory peptides derived from moth bean seed protein hydrolysates. The extracted protein was hydrolysed using alcalase, chymotrypsin, flavourzyme, papain, pepsin and trypsin respectively. Alcalase achieved the greatest degree of hydrolysis and ACE inhibition. The highest ACE-I inhibitory activity was exhibited by the peptide with the lowest molecular weight i.e. <3 kDa (IC50 11.19 ± 0.15 μg/mL). This was further separated by FPLC, followed by mass spectrometry. Molecular docking analysis showed the peptides IAWDFR and ADLPGLK bind to active sites whereas DKPWWPK and AVIPNAPNLR to non-active sites of the ACE molecule. In vivo administration of MBP hydrolysate to dexamethasone-induced hypertensive rats reduced their systolic blood pressure (125 ± 0.76 mmHg) compared with positive control (155 ± 3.13 mmHg). Moth bean protein peptides exhibit functional nutraceutical properties with adequate antihypertensive activity.
Collapse
|
16
|
Deep learning drives efficient discovery of novel antihypertensive peptides from soybean protein isolate. Food Chem 2023; 404:134690. [DOI: 10.1016/j.foodchem.2022.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
17
|
Yield and Composition Variations of the Milk from Different Camel Breeds in Saudi Arabia. SCI 2023. [DOI: 10.3390/sci5010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
With the increasing interest in the identification of differences between camel breeds over the last decade, this study was conducted to estimate the variability of milk production and composition of four Saudi camel breeds during different seasons. Milk records were taken two days per week from females of Majahem, Safra, Wadha, and Hamra breeds distributed over Saudi Arabia. The milk yield during winter indicated that the weekly average of the Wadha breed was significantly lower (27.13 kg/week) than Majahem and Hamra breeds. The Safra breed had the lowest milk yield (30.7 kg/week) during summer. During winter, the Hamra breed had a lower content of all analyzed milk components except proteins and was characterized by a lower pH than the milk of the other breeds. However, the Hamra breed had significantly higher contents of milk fat and lactose than the other breeds during summer, with the corresponding values of 3.87 and 4.86%, respectively. Milk collected during winter from Majahem, Safra, and Wadha breeds was characterized by a significant increase in all milk components and milk pH. Finally, the isoelectric focusing analysis revealed noticeable variability of casein purified from camel milk within the different Saudi breeds, with the highest significant value of 2.29 g per 100 mL recorded for the Wadha breed.
Collapse
|
18
|
Zhu Z, Guo H, Xu Y, Pius Bassey A, Ali A, Huang M, Huang J. ACE Inhibitory Peptides Derived from Muscovy Duck ( Cairina moschata) Plasma. Foods 2022; 12:50. [PMID: 36613266 PMCID: PMC9818667 DOI: 10.3390/foods12010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In this study, angiotensin-converting enzyme inhibitory peptides (ACE-IPs) derived from Muscovy duck (Cairina moschata) plasma hydrolysate (MDPH) were investigated. According to the general research protocol for bioactive peptides, the crude ACE-IPs of Muscovy duck plasma were separated and purified by ultrafiltration, gel chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). Then the components with the highest ACE inhibition potential were selected for identification. Finally, the inhibition mechanism was explored by molecular docking and in silico simulated digestion. A total of 121 peptides was detected, and five were screened for synthesis verification and molecular docking. The peptide VALSSLRP revealed high ACE inhibitory activity (91.67 ± 0.73%) because this peptide bound tightly to the S1' pocket and formed 3 hydrogen bonds. Meaningfully, this work provides some new information about the generation of ACE-IPs derived from duck blood plasma.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haoyu Guo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Anthony Pius Bassey
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahtisham Ali
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| |
Collapse
|
19
|
|
20
|
Oussaief O, Jrad Z, Adt I, Kaddes K, Khorchani T, Degraeve P, El Hatmi H. Antioxidant, lipase and
ACE
‐inhibitory properties of camel lactoferrin and its enzymatic hydrolysates. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Zeineb Jrad
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Isabelle Adt
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Khaoula Kaddes
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Halima El Hatmi
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
- Department of Food, High Institute of Applied Biology of Medenine University of Gabes Medenine 4119 Tunisia
| |
Collapse
|
21
|
Influence of calcium and potassium ions on the rheological properties and network formation of hybrid gels constructed with iota-carrageenan and Ala-Lys dipeptide. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Gao B, Hu X, Xue H, Li R, Liu H, Han T, Ruan D, Tu Y, Zhao Y. Isolation and screening of umami peptides from preserved egg yolk by nano-HPLC-MS/MS and molecular docking. Food Chem 2022; 377:131996. [PMID: 34998156 DOI: 10.1016/j.foodchem.2021.131996] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/27/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022]
Abstract
The material basis leading to the rich umami flavor of preserved egg yolk is poorly understood. This study used nano-high-performance liquid chromatography - tandem mass spectrometry (nano-HPLC-MS/MS) to isolate, identify, and screen umami peptides from preserved egg yolk. Five novel umami peptides-AGFMPLP, APYSGY, PPMF, SLSSLMK, and VAMNPVDHPH-were identified. Molecular docking showed that Phe527 on the taste receptor T1R1/T1R3 (T1R1, taste receptor type 1 member 1; T1R3, taste receptor type 1 member 3) was the key interaction site. Hydrogen bonding, electrostatic interactions, and hydrophobic interactions were the main binding forces between T1R1/T1R3 and umami peptides. These results contribute to understanding the umami peptides in preserved egg yolk and the interaction mechanism between umami peptides and umami receptors.
Collapse
Affiliation(s)
- Binghong Gao
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Xue
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Ruiling Li
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Huilan Liu
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Tianfeng Han
- Engineering Research Center of Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Dandan Ruan
- Hubei Shendan Health Food Co. Ltd, Xiaogan 430000, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
23
|
Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products including Commercialization and Legislation. Foods 2022; 11:foods11091270. [PMID: 35563993 PMCID: PMC9101964 DOI: 10.3390/foods11091270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Recent research has revealed the potential of peptides derived from dairy products preventing cardiovascular disorders, one of the main causes of death worldwide. This review provides an overview of the main cardioprotective effects (assayed in vitro, in vivo, and ex vivo) of bioactive peptides derived from different dairy processing methods (fermentation and enzymatic hydrolysis) and dairy products (yogurt, cheese, and kefir), as well as the beneficial or detrimental effects of the process of gastrointestinal digestion following oral consumption on the biological activities of dairy-derived peptides. The main literature available on the structure–function relationship of dairy bioactive peptides, such as molecular docking and quantitative structure–activity relationships, and their allergenicity and toxicity will also be covered together with the main legislative frameworks governing the commercialization of these compounds. The current products and companies currently commercializing their products as a source of bioactive peptides will also be summarized, emphasizing the main challenges and opportunities for the industrial exploitation of dairy bioactive peptides in the market of functional food and nutraceuticals.
Collapse
|
24
|
Sun J, Zhou C, Cao J, He J, Sun Y, Dang Y, Pan D, Xia Q. Purification and Characterization of Novel Antioxidative Peptides From Duck Liver Protein Hydrolysate as Well as Their Cytoprotection Against Oxidative Stress in HepG2 Cells. Front Nutr 2022; 9:848289. [PMID: 35369059 PMCID: PMC8965237 DOI: 10.3389/fnut.2022.848289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed at mining antioxidant peptides derived from duck liver as a strategy for valorizing poultry byproducts utilization via the isolation and characterization of peptide molecules with great antioxidant potential and cytoprotective effects against hydrogen peroxide-induced oxidative stress. Six novel peptides, including GEHGDSSVPVWSGVN, HLDYYLGK, HLTPWIGK, DTYIRQPW, WDDMEKIWHH, and MYPGIAD were isolated and purified by Sephadex G-15 and reverse-phase high-performance liquid chromatography, followed by the identification with liquid chromatography-tandem mass spectrometry. Among the hydrolysates from different enzymes, the alcalase-originated peptides presented the strongest antioxidant capacity as revealed by DPPH and ABTS assays. The synthesized peptides were used to validate the antioxidant activities, identifying that DTYIRQPW and WDDMEKIWHH were the major antioxidative peptides capable of protecting HepG2 cells from H2O2-induced oxidative damage via stimulating antioxidant enzymes such as superoxide dismutase and catalase to eliminate free radicals and to decrease lipid peroxidation products. Molecular docking suggested that the antioxidative properties of the isolated peptides were related to the site and number of hydrogen bonds. This investigation indicated the great potential of duck liver protein hydrolysates as a base material for producing and developing dietary bioactive peptides.
Collapse
Affiliation(s)
- Jin Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
| | - Changyu Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jun He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yangying Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yali Dang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
25
|
Vidal-Limon A, Aguilar-Toalá JE, Liceaga AM. Integration of Molecular Docking Analysis and Molecular Dynamics Simulations for Studying Food Proteins and Bioactive Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:934-943. [PMID: 34990125 DOI: 10.1021/acs.jafc.1c06110] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In silico tools, such as molecular docking, are widely applied to study interactions and binding affinity of biological activity of proteins and peptides. However, restricted sampling of both ligand and receptor conformations and use of approximated scoring functions can produce results that do not correlate with actual experimental binding affinities. Molecular dynamics simulations (MDS) can provide valuable information in deciphering functional mechanisms of proteins/peptides and other biomolecules, overcoming the rigid sampling limitations in docking analysis. This review will discuss the information related to the traditional use of in silico models, such as molecular docking, and its application for studying food proteins and bioactive peptides, followed by an in-depth introduction to the theory of MDS and description of why these molecular simulation techniques are important in the theoretical prediction of structural and functional dynamics of food proteins and bioactive peptides. Applications, limitations, and future prospects of MDS will also be discussed.
Collapse
Affiliation(s)
- Abraham Vidal-Limon
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec 351, El Haya, Xalapa, Veracruz 91073, Mexico
| | - José E Aguilar-Toalá
- Departamento de Ciencias de la Alimentación, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Lerma, Avenida de las Garzas 10, Colonia El Panteón, Lerma de Villada, Estado de México 52005, Mexico
| | - Andrea M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory. Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Mudgil P, Baba WN, Alneyadi M, Ali Redha A, Maqsood S. Production, characterization, and bioactivity of novel camel milk-based infant formula in comparison to bovine and commercial sources. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
da Silva JR, de Cerqueira e Silva MB, Philadelpho BO, de Souza VC, dos Santos JEM, Castilho MS, de Souza Ferreira E, Cilli EM. PyrGF and GSTLN peptides enhance pravastatin's inhibition of 3-hydroxy-3-methyl-glutaryl coenzyme. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Wang S, Zhang P, Xue Y, Yan Q, Li X, Jiang Z. Characterization of a Novel Aspartic Protease from Rhizomucor miehei Expressed in Aspergillus niger and Its Application in Production of ACE-Inhibitory Peptides. Foods 2021; 10:foods10122949. [PMID: 34945499 PMCID: PMC8701012 DOI: 10.3390/foods10122949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rhizomucor miehei is an important fungus that produces aspartic proteases suitable for cheese processing. In this study, a novel aspartic protease gene (RmproB) was cloned from R. miehei CAU432 and expressed in Aspergillus niger. The amino acid sequence of RmproB shared the highest identity of 58.2% with the saccharopepsin PEP4 from Saccharomyces cerevisiae. High protease activity of 1242.2 U/mL was obtained through high density fermentation in 5 L fermentor. RmproB showed the optimal activity at pH 2.5 and 40 °C, respectively. It was stable within pH 1.5-6.5 and up to 45 °C. RmproB exhibited broad substrate specificity and had Km values of 3.16, 5.88, 5.43, and 1.56 mg/mL for casein, hemoglobin, myoglobin, and bovine serum albumin, respectively. RmproB also showed remarkable milk-clotting activity of 3894.1 SU/mg and identified the cleavage of Lys21-Ile22, Leu32-Ser33, Lys63-Pro64, Leu79-Ser80, Phe105-Met106, and Asp148-Ser149 bonds in κ-casein. Moreover, duck hemoglobin was hydrolyzed by RmproB to prepare angiotensin-I-converting enzyme (ACE) inhibitory peptides with high ACE-inhibitory activity (IC50 of 0.195 mg/mL). The duck hemoglobin peptides were further produced at kilo-scale with a yield of 62.5%. High-level expression and favorable biochemical characterization of RmproB make it a promising candidate for cheese processing and production of ACE-inhibitory peptides.
Collapse
Affiliation(s)
- Shounan Wang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (Y.X.)
| | - Peng Zhang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (X.L.)
| | - Yibin Xue
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (Y.X.)
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (X.L.)
- Correspondence: (Q.Y.); (Z.J.); Tel.: +86-10-6273-7689 (Z.J.); Fax: +86-10-8238-8508 (Z.J.)
| | - Xue Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, Beijing 100083, China; (P.Z.); (X.L.)
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (S.W.); (Y.X.)
- Correspondence: (Q.Y.); (Z.J.); Tel.: +86-10-6273-7689 (Z.J.); Fax: +86-10-8238-8508 (Z.J.)
| |
Collapse
|
29
|
Minj S, Anand S, Martinez-Monteagudo S. Evaluating the effect of conjugation on the bioactivities of whey protein hydrolysates. J Food Sci 2021; 86:5107-5119. [PMID: 34766355 DOI: 10.1111/1750-3841.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022]
Abstract
In this study, the ability of a whey protein hydrolysate to exhibit the antimicrobial, antioxidant, and antihypertensive behavior after combining with a reducing carbohydrate was studied. Whey protein hydrolysates with varying degrees of hydrolysis (WPH10, WPH15, and WPH20) were determined for their antimicrobial, antioxidant, and antihypertensive activities. Of these, hydrolysate (WPH10) exhibited the highest antimicrobial activity (with 10-11.2 mm zone of inhibition) against tested microorganisms: Listeria innocua, Staphylococcus aureus, and Bacillus coagulans. Also, the WPH10 exhibited the highest antioxidant (866.56 TEAC µmol/L) and antihypertensive (67.52%) attributes. Hence, based on the highest bioactivity, hydrolysate WPH10 was selected for conjugation with maltodextrin, and the effect of conjugation on the bioactivities was evaluated. The conjugated WPH10 solution demonstrated higher antimicrobial (17.16 mm) and antioxidant activity (1044.37 TEAC µmol/L), whereas a slight decrease in the antihypertensive activity (65.4%) was observed, as compared to WPH10 alone. The conjugated solution was further spray dried and alternatively, freeze-dried. The dried WPH10 conjugate exhibited even higher antimicrobial (18.5 mm) and antioxidant activity (1268.89 TEAC µmol/L) while retaining the antihypertensive activity (65.6%). Overall, the results indicate the ability of the WPH10-maltodextrin to retain the bioactive behavior after combining with a reduced carbohydrate. PRACTICAL APPLICATION: Whey protein hydrolysates upon conjugation with carbohydrates retain the bioactive properties of whey protein, which provides opportunities for application as an ingredient to develop novel health formulations.
Collapse
Affiliation(s)
- Shayanti Minj
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sanjeev Anand
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| | - Sergio Martinez-Monteagudo
- Midwest Dairy Foods Research Center, South Dakota State University, Brookings, South Dakota, USA.,Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
30
|
Baba WN, Abdelrahman R, Maqsood S. Conjoint application of ultrasonication and redox pair mediated free radical method enhances the functional and bioactive properties of camel whey-quercetin conjugates. ULTRASONICS SONOCHEMISTRY 2021; 79:105784. [PMID: 34638048 PMCID: PMC8515292 DOI: 10.1016/j.ultsonch.2021.105784] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 05/12/2023]
Abstract
Ultrasonication, redox-pair generated free radical method and their combination (Ultrasonication/redox-pair method) was used for production of camel whey-quercetin conjugates. FTIR and SDS-PAGE confirmed successful production of whey-quercetin conjugates using ultrasonication and ultrasonication/redox-pair method. FTIR suggested existence of covalent (appearance of new peak at 3399 cm-1) and non-covalent linkages (shifting of peak at 3271 cm-1, 1655 cm-1 (amide I), 1534 cm-1 and 1422 cm-1 (Amide II)) in the whey-quercetin conjugates. Moreover, SDS-PAGE of conjugates produced by ultrasonication as well redox-pair method indicated shifting of protein bands slightly towards high molecular weight due to increase in the mass of proteins due to the binding of polyphenols. All conjugates showed improved techno-functional and bioactive properties in comparison to whey proteins. Conjugates produced through ultrasonication showed smaller particle size, improved solubility, emulsifying and foaming properties while conjugates produced through ultrasonication/redox-pair method depicted superior antioxidant properties in comparison to whey. Furthermore, conjugated samples showed higher inhibition of enzymatic markers involved in diabetes and obesity with highest potential recorded in conjugates produced using ultrasonication. Therefore, ultrasonication can be successfully used individually as well as in combination with redox-pair for production of whey-quercetin conjugates with enhanced bioactive and techno-functional properties.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Raghad Abdelrahman
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
31
|
Mudgil P, Baba WN, Kamal H, FitzGerald RJ, Hassan HM, Ayoub MA, Gan CY, Maqsood S. A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion. Food Chem 2021; 367:130661. [PMID: 34348197 DOI: 10.1016/j.foodchem.2021.130661] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Cow (CwC) and camel casein (CaC) hydrolysates were generated using Alcalase™ (CwCA and CaCA) and Pronase-E (CwCP and CaCP) each for 3 and 6 h, and investigated for their potential to inhibit key lipid digesting enzymes i.e., pancreatic lipase (PL) and cholesteryl esterase (CE). Results revealed stronger PL and CE inhibition by CaC hydrolysates compared to CwC. Potent hydrolysates (CwCP-3 h and CaCA-6 h) upon simulated gastrointestinal digestion (SGID) showed significant improvement in inhibition of both PL and CE. However, both the SGID hydrolysates showed similar extent of PL and CE inhibition and were further sequenced for peptide identification. Peptides MMML, FDML, HLPGRG from CwC and AAGF, MSNYF, FLWPEYGAL from CaC hydrolysates were predicted to be most active PL inhibitory peptides. Peptide LP found in both CwC and CaC hydrolysates was predicted as active CE inhibitor. Thus, CwC and CaC could be potential source of peptides with promising CE and PL inhibitory properties.
Collapse
Affiliation(s)
- Priti Mudgil
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Waqas N Baba
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hina Kamal
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | | | - Hassan M Hassan
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
32
|
Zeng P, Yi L, Cheng Q, Liu J, Chen S, Chan KF, Wong KY. An ornithine-rich dodecapeptide with improved proteolytic stability selectively kills gram-negative food-borne pathogens and its action mode on Escherichia coli O157:H7. Int J Food Microbiol 2021; 352:109281. [PMID: 34126526 DOI: 10.1016/j.ijfoodmicro.2021.109281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/15/2021] [Accepted: 06/03/2021] [Indexed: 11/28/2022]
Abstract
Food-borne pathogenic bacteria are dispersed throughout the entire chain of the food industry. However, many food preservatives are limited by poor biocompatibility such as cumulative poisoning. The antimicrobial peptide is increasingly regarded as a promising preservative in food research due to its high bioactivity and low cytotoxicity. In this study, thirteen peptides were designed, synthesized, and screened for application as food preservatives. One of them, termed zp65, whose sequence is GIOAOIIIOIOO-NH2, demonstrated potent bactericidal effect against common Gram-negative strains including enterohemorrhagic Escherichia coli, Salmonella, and Citrobacter freundii. Encouragingly, zp65 showed negligible cytotoxicity to both mammalian cells and Galleria mellonella larvae. Peptide zp65 was prone to form α-helix structure in amphiphilic environments, facilitating its affinity with bacterial membrane. Furthermore, the proteolytic stability of zp65 was much higher than its derivatives consisting of totally natural amino acids. Isothermal titration calorimetry indicated that zp65 has a strong binding affinity to lipopolysaccharide with Kd = 1.3 μM, suggesting its possible action target on the bacterial envelope. Mechanistic studies revealed that this peptide also influenced the membrane potential of E.coli O157:H7 (O157) in a dose-dependent manner. Surprisingly, peptide zp65 did not induce disruption of membrane permeability even at a higher concentration of 4-fold minimal inhibitory concentration. By employing confocal microscopy, peptide zp65 labeled by fluorescein isothiocyanate mainly aggregated on the bacterial membrane. These results suggested that the bactericidal mode of action of zp65 is likely attributed to depolarization of the cell membrane. The minced lean beef experiment indicated that the maximum reduction of O157 reached 1.46 log colony-forming unit (CFU) per gram on day 1 after zp65 treatment at the dosage of 40 μg/g. Compared with the untreated cooked beef sample, the CFU of the zp65-treated group remained at a much lower level after 10-day storage. Subsequently, treatment with zp65 at concentrations above 32 μM also significantly reduced O157 viable counts in fresh tomato juice. And the zp65 treatment could rescue about 40% of Galleria mellonella larvae injected with O157-contaminated tomato juice. The peptide zp65 exhibits great potential and deserves further study as a candidate for food preservative.
Collapse
Affiliation(s)
- Ping Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lanhua Yi
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; College of Food Science, Southwest University, Chongqing, PR China
| | - Qipeng Cheng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jun Liu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kin-Fai Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
33
|
Baba WN, Mudgil P, Baby B, Vijayan R, Gan CY, Maqsood S. New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates: Identification, characterization, and molecular interaction. J Dairy Sci 2021; 104:7393-7405. [PMID: 33934858 DOI: 10.3168/jds.2020-19868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Novel antihypercholesterolemic bioactive peptides (BAP) from peptic camel whey protein hydrolysates (CWPH) were generated at different time, temperature, and enzyme concentration (%). Hydrolysates showed higher pancreatic lipase- (PL; except 3 CWPH) and cholesterol esterase (CE)-inhibiting potential, as depicted by lower half-maximal inhibitory concentration values (IC50 values) compared with nonhydrolyzed camel whey proteins (CWP). Peptide sequencing and in silico data depicted that most BAP from CWPH could bind active site of PL, whereas as only 3 peptides could bind the active site of CE. Based on higher number of reactive residues in the BAP and greater number of substrate binding sites, FCCLGPVPP was identified as a potential CE-inhibitory peptide, and PAGNFLPPVAAAPVM, MLPLMLPFTMGY, and LRFPL were identified as PL inhibitors. Molecular docking of selected peptides showed hydrophilic and hydrophobic interactions between peptides and target enzymes. Thus, peptides derived from CWPH warrant further investigation as potential candidates for adjunct therapy for hypercholesterolemia.
Collapse
Affiliation(s)
- Waqas N Baba
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, 15551 Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, 15551 Al Ain, United Arab Emirates.
| |
Collapse
|