1
|
Rehman A, Khalifa I, Rasheed HA, Iqbal MW, Shoaib M, Wang J, Zhao Y, Liang Q, Zhong M, Sun Y, Alsulami T, Ren X, Miao S. Co-encapsulation of borage seed oil and peppermint oil blends within ultrasound-assisted soy protein isolate/purity gum ultra complex nanoparticles: Fabrication, structural interaction mechanisms, and in vitro digestion studies. Food Chem 2025; 463:141239. [PMID: 39278077 DOI: 10.1016/j.foodchem.2024.141239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
This study aimed at co-encapsulating borage seed oil (BSO)- and peppermint oil (PO) blends in ultrasound-assisted complex nanoparticles stabilized by soy protein isolate (SPI) and purity gum ultra (PGU) in different ratios: SPI/PGU-1:0 (NP1), 0:1 (NP2), 1:1 (NP3), 1:3 (NP4), and 3:1 (NP5). The BSO- and PO-loaded SPI/PGU complex nanoparticles (BP-loaded SPNPs) coded as NP4 (SPI-PGU-1:3) revealed a zeta potential of -33.27 mV, a PDI of 0.14, and the highest encapsulation efficiency (81.38 %). The main interactions observed among SPI, PGU, BSO, PO, and a blend of BSO and PO, as determined by FTIR and molecular docking, involved hydrophobic effects, electrostatic attraction, and H-bonding. These interactions played crucial roles in the production of BP-loaded SPNPs. XRD results validated the alterations in the structure of BP-loaded SPNPs caused by varying proportions of SPI and PGU. The thermal capacity of BP-loaded SPNPs (NP4), as determined by TGA, exhibited the lowest amount of weight loss compared to other BP-loaded SPNPs. Morphological results revealed that NP4 and NP5 exhibited a spherical surface and two distinguishable layers, indicating successful coating of PGU onto the droplet surface. In addition, BP-loaded SPNPs (NP4) exhibited a higher antioxidant effect due to their improved progressive release and prolonged release of co-encapsulated BSO and PO during in vitro digestion. The comprehensive investigation of the co-encapsulation of BSO and PO in complex nanoparticles, dietary supplements, and double-layered emulsified systems provides valuable insights into the development of functional foods.
Collapse
Affiliation(s)
- Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Food Technology Department, Faculty of Agriculture,13736, Moshtohor, Benha University, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, 15551, United Arab Emirates
| | - Hafiz Abdul Rasheed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Muhammad Shoaib
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Junxia Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yongjun Zhao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Mingming Zhong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Yufan Sun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Tawfiq Alsulami
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China.
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
2
|
Krishnamoorthi R, Ganapathy A A, Hari Priya VM, Kumaran A. Future aspects of plant derived bioactive metabolites as therapeutics to combat benign prostatic hyperplasia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118207. [PMID: 38636573 DOI: 10.1016/j.jep.2024.118207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Benign prostatic hyperplasia (BPH), characterized by prostate enlargement due to cell proliferation, is a common urinary disorder in men over 50, manifesting as lower urinary tract symptoms (LUTS). Currently, several therapeutic options are accessible for treating BPH, including medication therapy, surgery and watchful waiting. Conventional drugs such as finasteride and dutasteride are used as 5α-reductase inhibitors for the treatment of BPH. However long-term use of these drugs is restricted due to their unpleasant side effects. Despite the range of available medical therapies, the effective treatment against BPH is still inadequate. Certain therapeutic plants and their phytochemicals have the aforementioned goals and work by regulating this enzyme. AIM OF THE STUDY This review aims to provide a comprehensive insight to advancements in diagnosis of BPH, modern treatment methods and the significance of ethnobotanically relevant medicinal plants as alternative therapeutics for managing BPH. MATERIAL AND METHODS A thorough and systematic literature search was performed using electronic databases and search engines such as PubMed, Web of Science, NCBI and SciFinder till October 2023. Specific keywords such as "benign prostatic hyperplasia", "medicinal plants", "phytochemicals", "pharmacology", "synergy", "ethnobotany", "5-alpha reductase", "alpha blocker" and "toxicology". By include these keywords, a thorough investigation of pertinent papers was assured, and important data about the many facets of BPH could be retrieved. RESULTS After conducting the above investigation, 104 herbal remedies were found to inhibit Phosphodiesterase-5 (PDE-5) inhibition, alpha-blockers, or 5α -reductase inhibition effects which are supported by in vitro, in vivo and clinical trial studies evidence. Of these, 89 plants have ethnobotanical significance as alpha-blockers, alpha-reductase inhibition, or PDE-5 inhibition, and the other fifteen plants were chosen based on their ability to reduce BPH risk factors. Several phytocompounds, including, rutaecarpine, vaccarin, rutin, kaempferol, β-sitosterol, quercetin, dicaffeoylquinic acid, rutaevin, and phytosterol-F have been reported to be useful for the management of BPH. The use of combination therapy offers a strong approach to treating long-term conditions compare to single plant extract drugs. Furthermore, several botanical combinations such as lycopene and curcumin, pumpkin seed oil and saw palmetto oil, combinations of extracts from Funtumia africana (Benth.) Stapf and Abutilon mauritianum (Jacq.) Medik., and Hypselodelphys poggeana (K.Schum.) Milne-Redh. and Spermacoce radiata (DC.) Sieber ex Hiern are also supported through in vitro and in vivo studies for managing BPH through recuperation in patients with chronic long-term illnesses, as measured by the International Prostate Symptom Score. CONCLUSION The review proposes and endorses careful utilization of conventional medications that may be investigated further to discover possible PDE-5, 5 alpha-reductase, an alpha-blocker inhibitor for managing BPH. Even though most conventional formulations, such as 5 alpha-reductase, are readily available, systemic assessment of the effectiveness and mechanism of action of the herbal constituents is still necessary to identify novel chemical moieties that can be further developed for maximum efficacy. However, there exist abundant botanicals and medicinal plants across several regions of Africa, Asia, and the Americas, which can be further studied and developed for utilization as a potential phytotherapeutic for the management of BPH.
Collapse
Affiliation(s)
- Raman Krishnamoorthi
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India
| | - Anand Ganapathy A
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - V M Hari Priya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alaganandam Kumaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Das S, Maurya A, Singh VK, Chaudhari AK, Singh BK, Dwivedy AK, Dubey NK. Chitosan nanoemulsion incorporated with Carum carvi essential oil as ecofriendly alternative for mitigation of aflatoxin B 1 contamination in stored herbal raw materials. Int J Biol Macromol 2024; 270:132248. [PMID: 38729502 DOI: 10.1016/j.ijbiomac.2024.132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India.
| | - Akash Maurya
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; Department of Botany, Shri Murli Manohar Town Post Graduate College, Ballia 277001, Uttar Pradesh, India
| | - Vipin Kumar Singh
- Department of Botany, K. S. Saket P. G. College, Ayodhya 224123, Uttar Pradesh, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur 233001, Uttar Pradesh, India
| | | | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
4
|
Rasheed HA, Rehman A, Li C, Bai M, Karim A, Dai J, Cui H, Lin L. Fabrication of Citrus bergamia essential oil-loaded sodium caseinate/peach gum nanocomplexes: Physicochemical, spectral, and structural characterization. Int J Biol Macromol 2024; 260:129475. [PMID: 38262830 DOI: 10.1016/j.ijbiomac.2024.129475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
`The objective of current research was to encapsulate citrus bergamia essential oil (CBEO) in nanocomplexes composed of sodium caseinate (SC) and peach gum polysaccharide (PG) in various ratios (SC/PG-1:0, 0:1, 1:1, 1:3, and 3:1). The nanocomplexes formed by the combination of SC and PG in a ratio of 1:3 exhibited a zeta potential of -21.36 mV and a PDI of 0.25. The CBEO-loaded SC/PG (1:3) nanocomplexes revealed the maximum encapsulation efficiency (82.47 %) and loading capacity (1.85 %). FTIR also confirmed the secondary structure variations in response to different ratios of CBEO-loaded SC/PG nanocomplexes. In addition, the XRD and fluorescence spectroscopy analysis also revealed structural changes among CBEO nanocomplexes. The thermal capability of CBEO-loaded SC/PG (1:3) nanocomplexes via TGA showed the minimum weight loss among other complexes. SEM and CLSM analysis demonstrated the uniform distribution and spherical morphology of CBEO-loaded SC/PG (1:3) nanocomplexes. The antioxidant activity of free CBEO was significantly improved in CBEO-loaded nanocomplexes. Likewise, the inhibitory activity of CBEO-loaded nanocomplexes exhibited significantly higher antibacterial action against S. aureus and E. coli. The aforementioned perspective suggests that SC/PG nanocomplexes have potent potential to serve as highly effective nanocarriers with a broad spectrum of uses in the pharmaceutical and food sectors.
Collapse
Affiliation(s)
- Hafiz Abdul Rasheed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Abdur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Mei Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jinming Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
5
|
Weisany W, Yousefi S, Soufiani SP, Pashang D, McClements DJ, Ghasemlou M. Mesoporous silica nanoparticles: A versatile platform for encapsulation and delivery of essential oils for food applications. Adv Colloid Interface Sci 2024; 325:103116. [PMID: 38430728 DOI: 10.1016/j.cis.2024.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Essential oils (EOs) are biologically active and volatile substances that have found widespread applications in the food, cosmetics, and pharmaceutical industries. However, there are some challenges to their commercial utilization due to their high volatility, susceptibility to degradation, and hydrophobicity. In their free form, EOs can quickly evaporate, as well as undergo degradation reactions like oxidation, isomerization, dehydrogenation, or polymerization when exposed to light, heat, or air. Encapsulating EOs within mesoporous silica nanoparticles (MSNPs) could overcome these limitations and thereby broaden their usage. MSNPs may endow protection and slow-release properties to EOs, thereby extending their stability, enhancing their efficacy, and improving their dispersion in aqueous environments. This review explores and compares the design and development of different MSNP-based nanoplatforms to encapsulate, protect, and release EOs. Initially, a brief overview of the various types of available MSNPs, their properties, and their synthesis methods is given to better understand their roles as carriers for EOs. Several encapsulation technologies are then examined, including solvent-based and solvent-free methods. The suitability of each technology for EO encapsulation, as well as its impact on their stability and release, is discussed in detail. Opportunities and challenges for using EO-loaded MSNPs as preservatives, flavor enhancers, and antimicrobial agents in the food industry are then highlighted. Overall, this review aims to bridge a knowledge gap by providing a thorough understanding of EO encapsulation within MSNPs, which should facilitate the application of this technology in the food industry.
Collapse
Affiliation(s)
- Weria Weisany
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Shima Yousefi
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Solmaz Pourbarghi Soufiani
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danial Pashang
- Department of Agriculture and Food Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - David Julian McClements
- Biopolymers & Colloids Research Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, VIC 3083, Australia; Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| |
Collapse
|
6
|
Akhlaq A, Ashraf M, Omer MO, Altaf I. Carvacrol-Fabricated Chitosan Nanoparticle Synergistic Potential with Topoisomerase Inhibitors on Breast and Cervical Cancer Cells. ACS OMEGA 2023; 8:31826-31838. [PMID: 37692253 PMCID: PMC10483689 DOI: 10.1021/acsomega.3c03337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/15/2023] [Indexed: 09/12/2023]
Abstract
Breast and cervical cancers are the most common heterogeneous malignancies in women. Chemotherapy with conventional drug delivery systems having several limitations along with development of multidrug resistance compelled us to seek out targeted therapeutics. Nanoparticles are suitable substitutes to circumvent multidrug resistance for the targeted treatment of cancer. The current study was aimed to investigate the anticancer effect of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors. The average size of carvacrol-loaded chitosan nanoparticles was found to be 80 nm with 24.7 mV ζ-potential, and maximum absorbance was observed at 275 nm. Among all drug combinations, the carvacrol nanoparticles with the doxorubicin combination group exerted greater dose-dependent growth inhibition of both MCF-7 and HeLa cells as compared to single carvacrol nanoparticles and doxorubicin. Combination index values of carvacrol nanoparticles and the doxorubicin combination group showed a strong synergistic effect as they were found to be between 0.2 and 0.4, 0.31 for MCF-7 and 0.34 for HeLa cells. The carvacrol nanoparticles in combination with doxorubicin on MCF-7 cells reduced the dose 16.32-fold for carvacrol nanoparticles and 4.09-fold for doxorubicin at 6.23 μg/mL IC50, while on HeLa cells, this combination reduced the dose 13.18-fold for carvacrol nanoparticles and 3.83-fold for doxorubicin at 9.33 μg/mL IC50. As the dose reduction values were greater than 1, they indicated favorable dose reduction. It was concluded that the combination of carvacrol-loaded chitosan nanoparticles with topoisomerase inhibitors may represent an innovative and promising strategy to improve the efficacy, resistance, and targeted delivery of chemotherapeutics in cancer.
Collapse
Affiliation(s)
- Amina Akhlaq
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ashraf
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department
of Pharmacology and Toxicology, University
of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Imran Altaf
- Institute
of Microbiology, University of Veterinary
and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Caicedo Chacon WD, Verruck S, Monteiro AR, Valencia GA. The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: A review. Food Res Int 2023; 168:112728. [PMID: 37120194 DOI: 10.1016/j.foodres.2023.112728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The anti-solvent precipitation method has been investigated to produce biopolymeric nanoparticles in recent years. Biopolymeric nanoparticles have better water solubility and stability when compared with unmodified biopolymers. This review article focuses on the analysis of the state of the art available in the last ten years about the production mechanism and biopolymer type, as well as the used of these nanomaterials to encapsulate biological compounds, and the potential applications of biopolymeric nanoparticles in food sector. The revised literature revealed the importance to understand the anti-solvent precipitation mechanism since biopolymer and solvent types, as well as anti-solvent and surfactants used, can alter the biopolymeric nanoparticles properties. In general, these nanoparticles have been produced using polysaccharides and proteins as biopolymers, especially starch, chitosan and zein. Finally, it was identified that those biopolymers produced by anti-solvent precipitation were used to stabilize essential oils, plant extracts, pigments, and nutraceutical compounds, promoting their application in functional foods.
Collapse
|
8
|
Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int J Biol Macromol 2023; 236:123954. [PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Collapse
|
9
|
Hadidi M, Tan C, Assadpour E, Kharazmi MS, Jafari SM. Emerging plant proteins as nanocarriers of bioactive compounds. J Control Release 2023; 355:327-342. [PMID: 36731801 DOI: 10.1016/j.jconrel.2023.01.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The high prevalence of chronic illnesses, including cancer, diabetes, obesity, and cardiovascular diseases has become a growing concern for modern society. Recently, various bioactive compounds (bioactives) are shown to have a diversity of health-beneficial impacts on a wide range of disorders. But the application of these bioactives in food and pharmaceutical formulations is limited due to their poor water solubility and low bioaccessibility/bioavailability. Plant proteins are green alternatives for designing biopolymeric nanoparticles as appropriate nanocarriers thanks to their amphiphilic nature compatible with many bioactives and unique functional properties. Recently, emerging plant proteins (EPPs) are employed as nanocarriers for protection and targeted delivery of bioactives and also improving their stability and shelf-life. EPPs could enhance the solubility, stability, and bioavailability of bioactives by different types of delivery systems. In addition, the use of EPPs in combination with other biopolymers like polysaccharides was found to make a favorable wall material for food bioactives. This review article covers the various sources and importance of EPPs along with different encapsulation techniques of bioactives. Characterization of EPPs for encapsulation is also investigated. Furthermore, the focus is on the application of EPPs as nanocarriers for food bioactives.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
10
|
Song Q, Guan W, Wei C, Liu W, Cai L. Microencapsulation of tomato seed oil using phlorotannins-adducted pea protein isolate-chitosan and pea protein isolate-chitosan complex coacervates. Food Chem 2023; 419:136091. [PMID: 37027975 DOI: 10.1016/j.foodchem.2023.136091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/09/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Pea protein isolates (PPI)/phlorotannins (PT)/chitosan (CS) ternary complex and PPI/CS binary complex were synthesized to prepare tomato seed oil (TSO) microcapsules. The concentration of PT was determined to be 0.025% (w/w) based on the solubility, emulsification, and UV-visible spectrum of PPI-PT complex. Subsequently, the optimal pHs associated with the formation of PPI/CS and PPI-PT/CS complex coacervates were determined to be pH 6.6 and 6.1, while the optimal ratios were 9:1 and 6:1, respectively. The coacervate microcapsules were successfully produced by freeze-dried method and those formulated with PPI-PT/CS displayed significantly lower surface oil content (14.57 ± 0.22%), higher encapsulation efficiency (70.54 ± 0.13%), lower particle size (5.97 ± 0.16 μm), and PDI (0.25 ± 0.02) than PPI/CS. The microcapsules were characterized by scanning electron microscopy and Fourier Transform infrared spectroscopy. Furthermore, the encapsulated TSO exhibited enhanced thermal and oxidative stability than that of free oil, along with microcapsules fabricated with PPI-PT/CS ternary complex showed better protection than that of free PT. Overall, PPI-PT/CS complex as an effective wall material in delivery system presented great potential.
Collapse
|
11
|
Wang SY, Herrera-Balandrano DD, Jiang YH, Shi XC, Chen X, Liu FQ, Laborda P. Application of chitosan nanoparticles in quality and preservation of postharvest fruits and vegetables: A review. Compr Rev Food Sci Food Saf 2023; 22:1722-1762. [PMID: 36856034 DOI: 10.1111/1541-4337.13128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/22/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023]
Abstract
Chitosan is an interesting alternative material for packaging development due to its biodegradability. However, its poor mechanical properties and low permeability limit its actual applications. Chitosan nanoparticles (CHNPs) have emerged as a suitable solution to overcome these intrinsic limitations. In this review, all studies regarding the use of CHNPs to extend the shelf life and improve the quality of postharvest products are covered. The characteristics of CHNPs and their combinations with essential oils and metals, along with their effects on postharvest products, are compared and discussed throughout the manuscript. CHNPs enhanced postharvest antioxidant capacity, extended shelf life, increased nutritional quality, and promoted tolerance to chilling stress. Additionally, the CHNPs reduced the incidence of postharvest phytopathogens. In most instances, smaller CHNPs (<150 nm) conferred higher benefits than larger ones (>150 nm). This was likely a result of the greater plant tissue penetrability and surface area of the smaller CHNPs. The CHNPs were either applied after preparing an emulsion or incorporated into a film, with the latter often exhibiting greater antioxidant and antimicrobial activities. CHNPs were used to encapsulate essential oils, which could be released over time and may enhance the antioxidant and antimicrobial properties of the CHNPs. Even though most applications were performed after harvest, preharvest application had longer lasting effects.
Collapse
Affiliation(s)
- Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin Chen
- School of Life Sciences, Nantong University, Nantong, China
| | - Feng-Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
12
|
Zhang M, Li Z, Dai M, He H, Liang B, Sun C, Li X, Ji C. Fabrication and Characterization of Chitosan-Pea Protein Isolate Nanoparticles. Molecules 2022; 27:6913. [PMID: 36296504 PMCID: PMC9611140 DOI: 10.3390/molecules27206913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Chitosan (CS) and pea protein isolate (PPI) were used as raw materials to prepare nanoparticles. The structures and functional properties of the nanoparticles with three ratios (1:1, 1:2 1:3, CS:PPI) were evaluated. The particle sizes of chitosan-pea protein isolate (CS-PPI) nanoparticles with the ratios of 1:1, 1:2, and 1:3 were 802.95 ± 71.94, 807.10 ± 86.22, and 767.75 ± 110.10 nm, respectively, and there were no significant differences. Through the analysis of turbidity, endogenous fluorescence spectroscopy and Fourier transform infrared spectroscopy, the interaction between CS and PPI was mainly caused by electrostatic mutual attraction and hydrogen bonding. In terms of interface properties, the contact angles of nanoparticles with the ratio of 1:1, 1:2, and 1:3 were 119.2°, 112.3°, and 107.0°, respectively. The emulsifying activity (EAI) of the nanoparticles was related to the proportion of protein. The nanoparticle with the ratio of 1:1 had the highest potential and the best thermal stability. From the observation of their morphology by transmission electron microscopy, it could be seen that the nanoparticles with a ratio of 1:3 were the closest to spherical. This study provides a theoretical basis for the design of CS-PPI nanoparticles and their applications in promoting emulsion stabilization and the delivery of active substances using emulsions.
Collapse
Affiliation(s)
- Man Zhang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Zikun Li
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Mengqi Dai
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongjun He
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Bin Liang
- College of Food Engineering, Ludong University, Yantai 264025, China
| | - Chanchan Sun
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Changjian Ji
- Department of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
| |
Collapse
|
13
|
Effects of different recovered sarcoplasmic proteins on the gel performance, water distribution and network structure of silver carp surimi. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Pea protein based nanocarriers for lipophilic polyphenols: Spectroscopic analysis, characterization, chemical stability, antioxidant and molecular docking. Food Res Int 2022; 160:111713. [DOI: 10.1016/j.foodres.2022.111713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023]
|
15
|
Phenolics from Defatted Black Cumin Seeds ( Nigella sativa L.): Ultrasound-Assisted Extraction Optimization, Comparison, and Antioxidant Activity. Biomolecules 2022; 12:biom12091311. [PMID: 36139150 PMCID: PMC9496517 DOI: 10.3390/biom12091311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
An ultrasound-assisted method was used for the extraction of phenolics from defatted black cumin seeds (Nigella sativa L.), and the effects of several extraction factors on the total phenolic content and DPPH radical scavenging activity were investigated. To improve the extraction efficiency of phenolics from black cumin seed by ultrasonic-assisted extraction, the optimal extraction conditions were determined as follows: ethanol concentration of 59.1%, extraction temperature of 44.6 °C and extraction time of 32.5 min. Under these conditions, the total phenolic content and DPPH radical scavenging activity increased by about 70% and 38%, respectively, compared with conventional extraction. Furthermore, a complementary quantitative analysis of individual phenolic compounds was carried out using the HPLC-UV technique. The phenolic composition revealed high amounts of epicatechin (1.88–2.37 mg/g) and rutin (0.96–1.21 mg/g) in the black cumin seed extracts. Ultrasonic-assisted extraction can be a useful extraction method for the recovery of polyphenols from defatted black cumin seeds.
Collapse
|
16
|
Hadidi M, Rostamabadi H, Moreno A, Jafari SM. Nanoencapsulation of essential oils from industrial hemp (Cannabis sativa L.) by-products into alfalfa protein nanoparticles. Food Chem 2022; 386:132765. [PMID: 35509161 DOI: 10.1016/j.foodchem.2022.132765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/27/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
Abstract
Essential oils of industrial hemp (Cannabis sativa L.) by-products (HBEO) were characterized by gas chromatography-mass spectrometry (GC-MS); then, encapsulated in alfalfa protein isolate nanoparticles (API-NPs) as a novel nanocarrier. A desirable retention (45.5-63.4%) of HBEO within API-NPs was confirmed. These nanoparticles exhibited a shrunk and globular shape with a size range of 156.9-325.9 nm as indicated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermal analyses corroborated that HBEO was successfully encapsulated within API NPs in an amorphous form without specific chemical interaction with the carrier matrix. The antioxidant activity of loaded HBEO into API-NPs was higher than free HBEO implying that encapsulation of HBEO in API-NPs was an efficient strategy for improving its stability and functionality. HBEO-loaded API-NPs is a promising candidate to be used in future foods and supplements for novel applications.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
17
|
Weisany W, Yousefi S, Tahir NAR, Golestanehzadeh N, McClements DJ, Adhikari B, Ghasemlou M. Targeted delivery and controlled released of essential oils using nanoencapsulation: A review. Adv Colloid Interface Sci 2022; 303:102655. [PMID: 35364434 DOI: 10.1016/j.cis.2022.102655] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Essential oils (EOs) contain a complex mixture of volatile and non-volatile molecules with diverse biological activities, including flavoring, antioxidant, antimicrobial, and nutraceutical properties. As a result, EOs have numerous potential applications in the agriculture, food, and pharmaceutical industries. However, their hydrophobicity, chemical instability, and volatility pose a challenge for many of their applications. These challenges can often be overcome by encapsulation EOs in colloidal delivery systems. Over the last decade or so, nanoencapsulation and microencapsulation technologies have been widely explored for their potential to improve the handling, dispersibility, and stability of hydrophobic substances, as well as to control their release profiles (e.g., targeted, triggered, sustained, or burst release). These technologies include emulsification, coacervation, precipitation, spray-drying, spray-cooling, freeze-drying, fluidized bed coating, and extrusion. This article reviews some of the most important developments in EOs encapsulation, the physicochemical mechanisms underlying the behavior of encapsulated EOs, current challenges, and potential applications in the food and biomedical sciences. This review has found that nanoencapsulation has countless of potential advantages for the utilization of EOs in the food industry and can improve their water-dispersibility, food matrix compatibility, chemical stability, volatility, and bioactivity.
Collapse
|
18
|
Majidiyan N, Hadidi M, Azadikhah D, Moreno A. Protein complex nanoparticles reinforced with industrial hemp essential oil: Characterization and application for shelf-life extension of Rainbow trout fillets. Food Chem X 2022; 13:100202. [PMID: 35499007 PMCID: PMC9039897 DOI: 10.1016/j.fochx.2021.100202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/19/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Essential oil of industrial hemp (Cannabis sativa L.) (IHEO) was reinforced in complexation of whey protein nanofibrils and mung bean protein nanoparticles (WPNF-MBP NPs) as a novel nano-carrier. A desirable retention rate range of 50.9-90.4% was confirmed for IHEO reinforced in WPNF-MBP NPs. Fourier transform infrared (FTIR) spectroscopy revealed that IHEO was successfully loaded within WPNF-MBP NPs without specific chemical interaction with the carrier matrix. The results indicated that incorporation of IHEO-reinforced WPNF-MBP NPs into active material coatings having acceptable inhibition activity against total viable and psychrotrophic bacteria. The coated fishes also retarded the increase of PV (peroxide value), TBA (thiobarbituric acid) and TVB-N (total volatile basic nitrogen) values during storage. The IHEO-reinforced WPNF-MBP NPs coating led to an extension in the shelf life of Rainbow trout fillets within 8-14 days of storage. Accordingly, IHEO-reinforced WPNF-MBP NPs can be suggested as a natural preservative for coating fishes.
Collapse
Affiliation(s)
- Nava Majidiyan
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Dariush Azadikhah
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
19
|
Refaey MS, Abouelela ME, El-Shoura EAM, Alkhalidi HM, Fadil SA, Elhady SS, Abdelhameed RFA. In Vitro Anti-Inflammatory Activity of Cotula&nbsp; anthemoides Essential Oil and In Silico Molecular Docking of Its Bioactives. Molecules 2022; 27:1994. [PMID: 35335356 PMCID: PMC8953163 DOI: 10.3390/molecules27061994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
The genus Cotula (Asteraceae) comprises about 80 species, amongst them Cotula anthemoides L. It is a wild plant growing in Egypt that possesses many traditional uses as a headache, colic, and chest cold remedy. In our study, the chemical composition of C. anthemoides essential oils was analyzed using GC-MS spectroscopy. Sixteen components of leave and stem oils and thirteen components of flower oils were characterized. The main components in both essential oil parts were camphor (88.79% and 86.45%) and trans-thujone (5.14% and 10.40%) in the leaves and stems and the flowers, respectively. The anti-inflammatory activity of the oils in lipopolysaccharide-stimulated RAW 264.7 macrophage cells was evaluated. The flower oil showed its predominant effect in the amelioration of proinflammatory cytokines and tumor necrosis factor-α, as well as cyclooxygenase-2. The bornyl acetate showed the highest affinity for the cyclooxygenase-2 receptor, while compound cis-p-menth-2-ene-1-ol had the best affinity for the tumor necrosis factor receptor, according to the results of molecular docking. In addition, the molecule cis-β-farnesene showed promising dual affinity for both studied receptors. Our findings show that essential oils from C. anthemoides have anti-inflammatory properties through their control over the generation of inflammatory mediators. These findings suggest that C. anthemoides essential oils could lead to the discovery of novel sources of anti-inflammatory treatments.
Collapse
Affiliation(s)
- Mohamed S. Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| | - Ehab A. M. El-Shoura
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt;
| | - Hala M. Alkhalidi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sana A. Fadil
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Reda F. A. Abdelhameed
- Department of Pharmacognosy, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt;
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
20
|
Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022; 12:65. [PMID: 35186662 PMCID: PMC8828840 DOI: 10.1007/s13205-021-03108-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Nanotechnology is one of the most emerging fields of research within recent decades and is based upon the exploitation of nano-sized materials (e.g., nanoparticles, nanotubes, nanomembranes, nanowires, nanofibers and so on) in various operational fields. Nanomaterials have multiple advantages, including high stability, target selectivity, and plasticity. Diverse biotic (e.g., Capsid of viruses and algae) and abiotic (e.g., Carbon, silver, gold and etc.) materials can be utilized in the synthesis process of nanomaterials. "Nanobiotechnology" is the combination of nanotechnology and biotechnology disciplines. Nano-based approaches are developed to improve the traditional biotechnological methods and overcome their limitations, such as the side effects caused by conventional therapies. Several studies have reported that nanobiotechnology has remarkably enhanced the efficiency of various techniques, including drug delivery, water and soil remediation, and enzymatic processes. In this review, techniques that benefit the most from nano-biotechnological approaches, are categorized into four major fields: medical, industrial, agricultural, and environmental.
Collapse
Affiliation(s)
- Nikta Shahcheraghi
- Department of Engineering, University of Science and Culture, Tehran, Iran
| | - Hasti Golchin
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Zahra Sadri
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Yasaman Tabari
- Faculty of Sciences and Advanced Technologies, Science and Culture University, 1461968151 Tehran, Iran
| | - Forough Borhanifar
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, No.43.South Moffateh Ave., 15719-14911 Tehran, Iran
| |
Collapse
|
21
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Facile Fabrication of Nanoformulated Cinnamomum glaucescens Essential Oil as a Novel Green Strategy to Boost Potency Against Food Borne Fungi, Aflatoxin Synthesis, and Lipid Oxidation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Hesami S, Safi S, Larijani K, Badi HN, Abdossi V, Hadidi M. Synthesis and characterization of chitosan nanoparticles loaded with greater celandine (Chelidonium majus L.) essential oil as an anticancer agent on MCF-7 cell line. Int J Biol Macromol 2022; 194:974-981. [PMID: 34856216 DOI: 10.1016/j.ijbiomac.2021.11.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/22/2021] [Indexed: 11/05/2022]
Abstract
Essential oils (EOs) of greater celandine (GC) roots and leaves were extracted, and gas chromatography-mass spectrometry (GC-MS) was used for analyzing them. Then they were loaded into chitosan nanoparticles (CNPs) using emulsion-ionic gelation method. CNPs loaded with greater celandine root essential oil (GCREO) and leave essential oil (GCLEO) were synthesized (size 76.5-115.3 nm) using an emulsion-ionic gelation method. Fourier Transform Infrared (FT-IR), spectroscopy, scanning electron microscope (SEM), and dynamic light scattering (DLS) were used for characterization of the formed NPs. Good encapsulation efficiency was confirmed for GCREO (62.5%) and GCLEO (69.1%) in CNPs. According to the MTT results, the synthesized NPs showed a dose-dependent effect on MCF-7 cell line. The inhibitory concentration (IC50) values for GCREO, GCLEO, CSNRs-GCREO and CNPs-GCLEO samples were 126.4, 90.2, 77.6, and 41.5 μg/mL, respectively. The highest rate of apoptosis was obtained in the CNPs-GCLEO group (63.73%). The results revealed that the cytotoxicity of CSNRs-GCREO and CNPs-GCLEO against MCF-7 cell line was significantly higher than that of their free form, implying that encapsulation of GCREO and GCLEO in CNPs is an efficient technique for improving their anti-cancer activity against MCF-7 cell line.
Collapse
Affiliation(s)
- Sadra Hesami
- Department of Horticulture Science (Medicinal Plants), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahabeddin Safi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Kambiz Larijani
- Department of Chemistry, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Vahid Abdossi
- Department of Horticulture Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Ciudad Real, Spain.
| |
Collapse
|
23
|
Maurya A, Singh VK, Das S, Prasad J, Kedia A, Upadhyay N, Dubey NK, Dwivedy AK. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiol 2021; 12:751062. [PMID: 34912311 PMCID: PMC8667777 DOI: 10.3389/fmicb.2021.751062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes are the biggest shareholder for the quantitative and qualitative deterioration of food commodities at different stages of production, transportation, and storage, along with the secretion of toxic secondary metabolites. Indiscriminate application of synthetic preservatives may develop resistance in microbial strains and associated complications in human health with broad-spectrum environmental non-sustainability. The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the preservation of foods has been of present interest and growing consumer demand in the current generation. However, the loss in bioactivity of EOs from fluctuating environmental conditions is a major limitation during their practical application, which could be overcome by encapsulating them in a suitable biodegradable and biocompatible polymer matrix with enhancement to their efficacy and stability. Among different nanoencapsulated systems, nanoemulsions effectively contribute to the practical applications of EOs by expanding their dispersibility and foster their controlled delivery in food systems. In line with the above background, this review aims to present the practical application of nanoemulsions (a) by addressing their direct and indirect (EO nanoemulsion coating leading to active packaging) consistent support in a real food system, (b) biochemical actions related to antimicrobial mechanisms, (c) effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability, (d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges and future opportunities.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Prasad
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Kedia
- Government General Degree College, Mangalkote, Burdwan, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
24
|
Editorial overview: "emerging processing technologies to improve the safety and quality of foods". Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lelis CA, de Carvalho APA, Conte Junior CA. A Systematic Review on Nanoencapsulation Natural Antimicrobials in Foods: In Vitro versus In Situ Evaluation, Mechanisms of Action and Implications on Physical-Chemical Quality. Int J Mol Sci 2021; 22:12055. [PMID: 34769485 PMCID: PMC8584738 DOI: 10.3390/ijms222112055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
Natural antimicrobials (NA) have stood out in the last decade due to the growing demand for reducing chemical preservatives in food. Once solubility, stability, and changes in sensory attributes could limit their applications in foods, several studies were published suggesting micro-/nanoencapsulation to overcome such challenges. Thus, for our systematic review the Science Direct, Web of Science, Scopus, and Pub Med databases were chosen to recover papers published from 2010 to 2020. After reviewing all titles/abstracts and keywords for the full-text papers, key data were extracted and synthesized. The systematic review proposed to compare the antimicrobial efficacy between nanoencapsulated NA (nNA) and its free form in vitro and in situ studies, since although in vitro studies are often used in studies, they present characteristics and properties that are different from those found in foods; providing a comprehensive understanding of primary mechanisms of action of the nNA in foods; and analyzing the effects on quality parameters of foods. Essential oils and nanoemulsions (10.9-100 nm) have received significant attention and showed higher antimicrobial efficacy without sensory impairments compared to free NA. Regarding nNA mechanisms: (i) nanoencapsulation provides a slow-prolonged release to promote antimicrobial action over time, and (ii) prevents interactions with food constituents that in turn impair antimicrobial action. Besides in vitro antifungal and antibacterial, nNA also demonstrated antioxidant activity-potential to shelf life extension in food. However, of the studies involving nanoencapsulated natural antimicrobials used in this review, little attention was placed on proximate composition, sensory, and rheological evaluation. We encourage further in situ studies once data differ from in vitro assay, suggesting food matrix greatly influences NA mechanisms.
Collapse
Affiliation(s)
- Carini Aparecida Lelis
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
| | - Anna Paula Azevedo de Carvalho
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
| | - Carlos Adam Conte Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil; (C.A.L.); (A.P.A.d.C.)
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, Brazil
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, Brazil
- Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
- Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-901, Brazil
| |
Collapse
|
26
|
Hadidi M, Jafarzadeh S, Ibarz A. Modified mung bean protein: Optimization of microwave-assisted phosphorylation and its functional and structural characterizations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Mahmoudzadeh P, Aliakbarlu J, Moradi M. Preparation and antibacterial performance of cinnamon essential oil nanoemulsion on milk foodborne pathogens. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Peyman Mahmoudzadeh
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Urmia University Urmia Iran
| |
Collapse
|
28
|
Hadidi M, Majidiyan N, Jelyani AZ, Moreno A, Hadian Z, Mousavi Khanegah A. Alginate/Fish Gelatin-Encapsulated Lactobacillus acidophilus: A Study on Viability and Technological Quality of Bread during Baking and Storage. Foods 2021; 10:foods10092215. [PMID: 34574325 PMCID: PMC8472050 DOI: 10.3390/foods10092215] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/26/2023] Open
Abstract
In the present study, Lactobacillus acidophilus LA-5 was microencapsulated in sodium alginate, followed by fish gelatin coating (0.5, 1.5, and 3%). The survival of L. acidophilus in bread before and after encapsulation in alginate/fish gelatin during the baking and 7-day storage was investigated. Moreover, the effect of alginate/fish gelatin-encapsulated L. acidophilus on the technological properties of bread (hardness, staling rate, water content, oven spring, specific volume, and internal texture structure) was evaluated. Compared with control (free bacteria), encapsulated L. acidophilus in alginate/fish gelatin showed an increase in the viability of bread until 2.49 and 3.07 log CFU/g during baking and storage, respectively. Good viability of (106 CFU/g) for probiotic in encapsulated L. acidophilus in alginate/fish gelatin (1.5 and 3%, respectively) after 4-day storage was achieved. Fish gelatin as a second-layer carrier of the bacteria had a positive effect on improving the technical quality of bread. Furthermore, the staling rate of bread containing encapsulated L. acidophilus alginate/fish gelatin 0.5, 1.5, and 3% decreased by 19.5, 25.8, and 31.7%, respectively. Overall, the findings suggested encapsulation of L. acidophilus in alginate/fish gelatin capsule had great potential to improve probiotic bacteria’s survival during baking and storage and to serve as an effective bread enhancer.
Collapse
Affiliation(s)
- Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
- Correspondence: (M.H.); (A.M.K.)
| | - Nava Majidiyan
- Department of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia 57169-63896, Iran;
| | - Aniseh Zarei Jelyani
- Food Control Laboratory, Department of Food and Drug, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Zahra Hadian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 19395-4741, Iran;
| | - Amin Mousavi Khanegah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, São Paulo 13083-852, Brazil
- Correspondence: (M.H.); (A.M.K.)
| |
Collapse
|
29
|
Amoli PI, Hadidi M, Hasiri Z, Rouhafza A, Jelyani AZ, Hadian Z, Khaneghah AM, Lorenzo JM. Incorporation of Low Molecular Weight Chitosan in a Low-Fat Beef Burger: Assessment of Technological Quality and Oxidative Stability. Foods 2021; 10:foods10081959. [PMID: 34441736 PMCID: PMC8391418 DOI: 10.3390/foods10081959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
In the present work, incorporating low molecular weight chitosan (LMWCH) (0, 0.5, 1, and 2%) as a fat replacer into low-fat beef burgers and technological, textural, and oxidative stability were investigated. The weight loss and shrinkage of samples decreased with the increase of LMWCH concentration. In contrast, the water-holding capacity and color of burgers were enhanced by the addition of LMWCH. The instrumental TPA results indicated an increase in the LMWCH levels, significantly increasing the hardness, springiness, and gumminess but decreasing the cohesiveness of low-fat beef burgers. The TBARS and peroxide values and free fatty acid content in the burgers supplemented with LMWCH increase slower than the control sample during refrigerated storage.
Collapse
Affiliation(s)
- Pourya Izadi Amoli
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran 14778-93855, Iran;
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran; (Z.H.); (A.R.)
| | - Arman Rouhafza
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran; (Z.H.); (A.R.)
| | - Aniseh Zarei Jelyani
- Food Control Laboratory, Department of Food and Drug, Shiraz University of Medical Science, Shiraz 71348-14336, Iran;
| | - Zahra Hadian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 19816-19573, Iran;
| | - Amin Mousavi Khaneghah
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo 13083-852, Brazil
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnologia de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: (M.H.); or (A.M.K.); (J.M.L.)
| |
Collapse
|
30
|
Hesami G, Darvishi S, Zarei M, Hadidi M. Fabrication of chitosan nanoparticles incorporated with
Pistacia
atlantica
subsp. kurdica hulls’ essential oil as a potential antifungal preservative against strawberry grey mould. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Golnaz Hesami
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
| | - Sholeh Darvishi
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
| | - Mohammad Zarei
- Department of Food Science and Technology Sanandaj Branch, Islamic Azad University Pasdaran St, PO Box 618 Sanandaj Iran
- Department of Food Science and Technology, School of industrial technology, Faculty of applied Sciences Universiti Teknologi MARA shah Alam Selangor 40450 Malaysia
| | - Milad Hadidi
- Department of Food Technology University of Lleida Av. Alcalde Rovira Roure, 191, 25198 Lleida Spain
| |
Collapse
|