1
|
Chen M, Li Y, Liu X. A review of the role of bioactive components in legumes in the prevention and treatment of cardiovascular diseases. Food Funct 2025; 16:797-814. [PMID: 39785824 DOI: 10.1039/d4fo04969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Cardiovascular diseases (CVD) represent a primary global health challenge. Poor dietary choices and lifestyle factors significantly increase the risk of developing CVD. Legumes, recognized as functional foods, contain various bioactive components such as active peptides, protease inhibitors, saponins, isoflavones, lectins, phytates, and tannins. Studies have demonstrated that several of these compounds are associated with the prevention and treatment of cardiovascular diseases, notably active peptides, saponins, isoflavones, and tannins. This review aims to analyze and summarize the relationship between bioactive compounds in legumes and cardiovascular health. It elaborates on the mechanisms through which active ingredients in legumes interact with risk factors for cardiovascular diseases, such as hypertension, hypercholesterolemia, endothelial dysfunction, and atherosclerosis. These mechanisms include, but are not limited to, lowering blood pressure, regulating lipid levels, promoting anticoagulation, enhancing endothelial function, and modulating TLR4 and NF-κB signaling pathways. Together, these mechanisms emphasize the potential of legumes in improving cardiovascular health. Additionally, the limitations of bioactive components in legumes and their practical applications, with the goal of fostering further advancements in this area were discussed.
Collapse
Affiliation(s)
- Mengqian Chen
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - You Li
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xinqi Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University; National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Haq M, Ali MS, Park JS, Kim JW, Zhang W, Chun BS. Atlantic salmon (Salmo salar) waste as a unique source of biofunctional protein hydrolysates: Emerging productions, promising applications, and challenges mitigation. Food Chem 2025; 462:141017. [PMID: 39216379 DOI: 10.1016/j.foodchem.2024.141017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The Atlantic salmon is an extremely popular fish for its nutritional value and unique taste among several fish species. Researchers are focusing on the utilization of Atlantic salmon waste for generating protein hydrolysates rich in peptides and amino acids and investigating their health benefits. Several technological approaches, including enzymatic, chemical, and the recently developed subcritical water hydrolysis, are currently used for the production of Atlantic salmon waste protein hydrolysates. Hydrolyzing various wastes, e.g., heads, bones, skin, viscera, and trimmings, possessing antioxidant, blood pressure regulatory, antidiabetic, and anti-inflammatory properties, resulting in applications in human foods and nutraceuticals, animal farming, pharmaceuticals, cell culture, and cosmetics industries. Furthermore, future applications, constraints several challenges associated with industrial hydrolysate production, including sensory, safety, and economic constraints, which could be overcome by suggested techno processing measures. Further studies are recommended for developing large-scale, commercially viable production methods, focusing on eradicating sensory constraints and facilitating large-scale application.
Collapse
Affiliation(s)
- Monjurul Haq
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Jang-Woo Kim
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Jo DM, Khan F, Park SK, Ko SC, Kim KW, Yang D, Kim JY, Oh GW, Choi G, Lee DS, Kim YM. From Sea to Lab: Angiotensin I-Converting Enzyme Inhibition by Marine Peptides-Mechanisms and Applications. Mar Drugs 2024; 22:449. [PMID: 39452857 PMCID: PMC11509120 DOI: 10.3390/md22100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
To reveal potent ACE inhibitors, researchers screen various bioactive peptides from several sources, and more attention has been given to aquatic sources. This review summarizes the recent research achievements on marine peptides with ACE-inhibitory action and application. Marine peptides are considered excellent bioactives due to their large structural diversity and unusual bioactivities. The mechanisms by which these marine peptides inhibit ACE include competitive binding to ACEs' active site, interfering with ACE conformational changes, and avoiding the identification of substrates. The unique 3D attributes of marine peptides confer inhibition advantages toward ACE activity. Because IC50 values of marine peptides' interaction with ACE are low, structure-based research assumes that the interaction between ACE and peptides increased the therapeutic application. Numerous studies on marine peptides focused on the sustainable extraction of ACE-inhibitory peptides produced from several fish, mollusks, algae, and sponges. Meanwhile, their potential applications and medical benefits are worth investigating and considering. Due to these peptides exhibiting antioxidant, antihypertensive, and even antimicrobial properties simultaneously, their therapeutic potential for cardiovascular disease and other illnesses only increases. In addition, as marine peptides show better pharmacological benefits, they have increased absorption rates and low toxicity and could perhaps be modified for better stability and bioefficacy. Biotechnological advances in peptide synthesis and formulation have greatly facilitated the generation of peptide-based ACE inhibitors from marine sources, which subsequently offer new treatment models. This article gives a complete assessment of the present state of knowledge about marine organism peptides as ACE inhibitors. In addition, it emphasizes the relevance of additional investigation into their mechanisms of action, the optimization of manufacturing processes, and assessment in in vivo, preclinical, and clinical settings, underlining the urgency and value of this study. Using marine peptides for ACE inhibition not only broadens the repertory of bioactive compounds but also shows promise for tackling the global health burden caused by cardiovascular diseases.
Collapse
Affiliation(s)
- Du-Min Jo
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Seul-Ki Park
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea;
| | - Seok-Chun Ko
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Kyung Woo Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dongwoo Yang
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Ji-Yul Kim
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Gun-Woo Oh
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Grace Choi
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Dae-Sung Lee
- National Marine Biodiversity of Korea (MABIK), Seochun 33662, Republic of Korea; (D.-M.J.); (S.-C.K.); (K.W.K.); (D.Y.); (J.-Y.K.); (G.-W.O.); (G.C.); (D.-S.L.)
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Ichim N, Marín F, Orenes-Piñero E. Potential Impact of Bioactive Peptides from Foods in the Treatment of Hypertension. Mol Nutr Food Res 2024; 68:e2400084. [PMID: 38923775 DOI: 10.1002/mnfr.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/09/2024] [Indexed: 06/28/2024]
Abstract
SCOPE High blood pressure (BP) is the main preventable risk factor for cardiovascular diseases (CVDs). Much research is aimed at finding natural alternatives to control or prevent hypertension (HT), since some hypertensive patients do not respond to current pharmacological treatments or show undesirable side effects. METHODS AND RESULTS Forty relevant articles have been selected from various scientific literature databases. The results reveal that angiotensin-converting enzyme (ACE) inhibition is the most reported mechanism of action of antihypertensive peptides. The active peptides have a great variety of origins. Biopeptides with a molecular weight of <3 kDa, short chain <20 amino acids, and a hydrophobic amino acid sequence at the C- and N-terminus exhibit higher antihypertensive activity. They also show good stability to enzymatic hydrolysis and gastrointestinal digestion, and no toxicity. To determine antihypertensive effectiveness, in vitro and in vivo animal studies are the most frequent developed, with few in silico studies and only one human clinical trial. CONCLUSION There is interesting potential for antihypertensive peptides as promising natural candidates for the development of functional foods, nutraceuticals and drugs for preventive or therapeutic treatment of hypertension. The aim of this review is to study the role of food-derived bioactive peptides in HT.
Collapse
Affiliation(s)
- Natalia Ichim
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, 30071, Spain
| | - Francisco Marín
- Department of Cardiology, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, 30120, Spain
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, Murcia, 30071, Spain
- Proteomic Unit, Instituto Murciano de Investigaciones Biosanitarias Pascual Parrilla (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
5
|
Liu W, Ren J, Qin X, Zhang X, Wu H, Han LJ. Structural identification and combination mechanism of iron (II)-chelating Atlantic salmon ( Salmo salar L.) skin active peptides. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:340-352. [PMID: 38196720 PMCID: PMC10772038 DOI: 10.1007/s13197-023-05845-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/21/2023] [Accepted: 09/11/2023] [Indexed: 01/11/2024]
Abstract
In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 μg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.
Collapse
Affiliation(s)
- Wen–Ying Liu
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| | - Jie Ren
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xiu–Yuan Qin
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Xin–Xue Zhang
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Han–Shuo Wu
- Beijing Engineering Research Center of Protein and Functional Peptides, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015 People’s Republic of China
| | - Lu-Jia Han
- Engineering Laboratory for Agro Biomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
6
|
Yan Y, Li M, Wei Y, Jia F, Zheng Y, Tao G, Xiong F. Oyster-derived dipeptides RI, IR, and VR promote testosterone synthesis by reducing oxidative stress in TM3 cells. Food Sci Nutr 2023; 11:6470-6482. [PMID: 37823097 PMCID: PMC10563733 DOI: 10.1002/fsn3.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Short peptides have gained widespread utilization as functional constituents in the development of functional foods due to their remarkable biological activity. Previous investigations have established the positive influence of oysters on testosterone biosynthesis, although the underlying mechanism remains elusive. This study aims to assess the impact of three dipeptides derived from oysters on the oxidative stress state of TM3 cells induced by AAPH while concurrently examining alterations in cellular testosterone biosynthesis capacity. The investigation encompasses an analysis of reactive oxygen species (ROS) content, antioxidant enzyme activity, apoptotic status, and expression levels of crucial enzymes involved in the testosterone synthesis pathway within TM3 cells, thus evaluating the physiological activity of the three dipeptides. Additionally, molecular docking was employed to investigate the inhibitory activity of the three dipeptides against ACE. The outcomes of this study imply that the oxidative stress state of cells impedes the synthesis of testosterone by inhibiting the expression of essential proteins in the testosterone synthesis pathway. These three dipeptides derived from oysters ameliorate cellular oxidative stress by directly scavenging excess ROS or reducing ROS production rather than enhancing cellular antioxidant capacity through modulation of antioxidant enzyme activity. These findings introduce a novel avenue for developing and utilizing antioxidant peptides derived from food sources.
Collapse
Affiliation(s)
- Yongqiu Yan
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
- Ningbo Yuyi Biotechnology Co., Ltd.NingboChina
| | - Mingliang Li
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Wei
- Department of Food Science and EngineeringBeijing University of AgricultureBeijingChina
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
| | - Yanying Zheng
- Department of Food Science and EngineeringBeijing University of AgricultureBeijingChina
| | - Gang Tao
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
- Ningbo Yuyi Biotechnology Co., Ltd.NingboChina
| |
Collapse
|
7
|
Zhu WY, Wang YM, Ge MX, Wu HW, Zheng SL, Zheng HY, Wang B. Production, identification, in silico analysis, and cytoprotection on H 2O 2-induced HUVECs of novel angiotensin-I-converting enzyme inhibitory peptides from Skipjack tuna roes. Front Nutr 2023; 10:1197382. [PMID: 37502715 PMCID: PMC10369073 DOI: 10.3389/fnut.2023.1197382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Background Exceeding 50% tuna catches are regarded as byproducts in the production of cans. Given the high amount of tuna byproducts and their environmental effects induced by disposal and elimination, the valorization of nutritional ingredients from these by-products receives increasing attention. Objective This study was to identify the angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) peptides from roe hydrolysate of Skipjack tuna (Katsuwonus pelamis) and evaluate their protection functions on H2O2-induced human umbilical vein endothelial cells (HUVECs). Methods Protein hydrolysate of tuna roes with high ACEi activity was prepared using flavourzyme, and ACEi peptides were isolated from the roe hydrolysate using ultrafiltration and chromatography methods and identified by ESI/MS and Procise Protein/Peptide Sequencer for the N-terminal amino acid sequence. The activity and mechanism of action of isolated ACEi peptides were investigated through molecular docking and cellular experiments. Results Four ACEi peptides were identified as WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12), respectively. The affinity of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) with ACE was -8.590, -9.703, -9.325, and -8.036 kcal/mol, respectively. The molecular docking experiment elucidated that the significant ACEi ability of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) was mostly owed to their tight bond with ACE's active sites/pockets via hydrophobic interaction, electrostatic force and hydrogen bonding. Additionally, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could dramatically elevate the Nitric Oxide (NO) production and bring down endothelin-1 (ET-1) secretion in HUVECs, but also abolish the opposite impact of norepinephrine (0.5 μM) on the production of NO and ET-1. Moreover, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could lower the oxidative damage and apoptosis rate of H2O2-induced HUVECs, and the mechanism indicated that they could increase the content of NO and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the generation of reactive oxygen species (ROS) and malondialdehyde (MDA). Conclusion WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) are beneficial ingredients for healthy products ameliorating hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Wang-Yu Zhu
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ming-Xue Ge
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hua-Wei Wu
- Ningbo Today Food Co., Ltd., Ningbo, China
| | - Shuo-Lei Zheng
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Huai-Yu Zheng
- Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhejiang Province, Zhoushan, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
8
|
Zhao Y, Zhang T, Ning Y, Wang D, Li F, Fan Y, Yao J, Ren G, Zhang B. Identification and molecular mechanism of novel tyrosinase inhibitory peptides from the hydrolysate of 'Fengdan' peony (Paeonia ostii) seed meal proteins: Peptidomics and in silico analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Wang X, Deng Y, Xie P, Liu L, Zhang C, Cheng J, Zhang Y, Liu Y, Huang L, Jiang J. Novel bioactive peptides from ginkgo biloba seed protein and evaluation of their α-glucosidase inhibition activity. Food Chem 2023; 404:134481. [DOI: 10.1016/j.foodchem.2022.134481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022]
|
10
|
Shao J, Wang M, Zhang G, Zhang B, Hao Z. Preparation and characterization of sesame peptide-calcium chelate with different molecular weight. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jiawei Shao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Minghui Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Guixiang Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Bingwen Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhenghong Hao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
| |
Collapse
|
11
|
Screening and Mechanism of Novel Angiotensin-I-Converting Enzyme Inhibitory Peptides in X. sorbifolia Seed Meal: A Computer-Assisted Experimental Study Method. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248792. [PMID: 36557925 PMCID: PMC9785712 DOI: 10.3390/molecules27248792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitors are used extensively to control hypertension. In this study, a computer-assisted experimental approach was used to screen ACE-inhibiting peptides from X. sorbifolum seed meal (XSM). The process conditions for XSM hydrolysis were optimized through the orthogonal experimental method combined with a database. The optimal conditions for ACE inhibition included an alkaline protease dose of 5%, 45 °C, 15 min and pH 9.5. The hydrolysate was analyzed by LC-MS/MS, and 10 optimal peptides were screened. Molecular docking results revealed four peptides (GGLPGFDPA, IMAVLAIVL, ETYFIVR, and INPILLPK) with ACE inhibitory potential. At 0.1 mg/mL, the synthetic peptides GGLPGFDPA, ETYFIVR, and INPILLPK provided ACE inhibition rates of 24.89%, 67.02%, and 4.19%, respectively. GGLPGFDPA and ETYFIVR maintained high inhibitory activities during in vitro digestions. Therefore, the XSM protein may be a suitable material for preparing ACE inhibitory peptides, and computer-assisted experimental screening is an effective, accurate and promising method for discovering new active peptides.
Collapse
|
12
|
A novel Atlantic salmon (Salmo salar) bone collagen peptide delays osteoarthritis development by inhibiting cartilage matrix degradation and anti-inflammatory. Food Res Int 2022; 162:112148. [PMID: 36461366 DOI: 10.1016/j.foodres.2022.112148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Nowadays, the biological activity of collagen peptides has been revealed, but the effect of Atlantic salmon (Salmo salar) bone-derived collagen peptide (CPs) on osteoarthritis remains unclear. In this study, CPs was identified as a small molecular weight peptide rich in Gly-X-Y structure. Meanwhile, interleukin-1β (IL-1β)-induced hypertrophic chondrocytes and partial medial meniscectomy (pMMx) surgery model in rats were performed. In IL-1β stimulated chondrocytes, CPs significantly increased the type-II collagen content, reduced the type-X collagen abundance and chondrocytes apoptosis. Meanwhile, CPs reversed the increased expression of matrix metalloproteinase, metalloproteinase with thrombospondin motifs and RUNX family transcription factor 2 in chondrocytes induced by IL-1β. In vivo, CPs increased pain tolerance of rats and without organ toxicity at 1.6 g/kg.bw. CPs significantly decreased the levels of COMP and Helix-II in serum. Furthermore, a significant decrease of IL-1β in synovial fluid and cartilage tissue were observed by CPs intervention. From Micro-CT, CPs (0.8 g/kg.bw) significantly decreased Tb.sp and SMI value. Meanwhile, the expression of tumor necrosis factor and interleukin-6 were reduced by CPs administration both in vitro and in vivo. Together, CPs showed potential to be a novel and safe dietary supplement for helping anti-inflammatory and cartilage regeneration, ultimately hindering osteoarthritis development. However, the clear mechanism of CPs's positive effect on osteoarthritis needs to be further explored.
Collapse
|
13
|
Renjuan L, Xiuli Z, Liping S, Yongliang Z. Identification, in silico screening, and molecular docking of novel ACE inhibitory peptides isolated from the edible symbiot Boletus griseus-Hypomyces chrysospermus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Suo SK, Zheng SL, Chi CF, Luo HY, Wang B. Novel angiotensin-converting enzyme inhibitory peptides from tuna byproducts—milts: Preparation, characterization, molecular docking study, and antioxidant function on H2O2-damaged human umbilical vein endothelial cells. Front Nutr 2022; 9:957778. [PMID: 35938100 PMCID: PMC9355146 DOI: 10.3389/fnut.2022.957778] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/28/2022] [Indexed: 01/12/2023] Open
Abstract
To prepare peptides with high angiotensin-converting enzyme (ACE) inhibitory (ACEi) activity, Alcalase was screened from five proteases and employed to prepare protein hydrolysate (TMH) of skipjack tuna (Katsuwonus pelamis) milts. Subsequently, 10 novel ACEi peptides were isolated from the high-ACEi activity TMH and identified as Tyr-Asp-Asp (YDD), Thr-Arg-Glu (TRE), Arg-Asp-Tyr (RDY), Thr-Glu-Arg-Met (TERM), Asp-Arg-Arg-Tyr-Gly (DRRYG), Ile-Cys-Tyr (ICY), Leu-Ser-Phe-Arg (LSFR), Gly-Val-Arg-Phe (GVRF), Lys-Leu-Tyr-Ala-Leu-Phe (KLYALF), and Ile-Tyr-Ser-Pro (IYSP) with molecular weights of 411.35, 404.41, 452.45, 535.60, 665.69, 397.48, 521.61, 477.55, 753.91, and 478.53 Da, respectively. Among them, the IC50 values of ICY, LSFR, and IYSP on ACE were 0.48, 0.59, and 0.76 mg/mL, respectively. The significant ACEi activity of ICY, LSFR, and IYSP with affinities of −7.0, −8.5, and −8.3 kcal/mol mainly attributed to effectively combining with the ACEi active sites through hydrogen bonding, electrostatic force, and hydrophobic interaction. Moreover, ICY, LSFR, and IYSP could positively influence the production of nitric oxide (NO) and endothelin-1 (ET-1) secretion in human umbilical vein endothelial cells (HUVECs) and weaken the adverse impact of norepinephrine (NE) on the production of NO and ET-1. In addition, ICY, LSFR, and IYSP could provide significant protection to HUVECs against H2O2 damage by increasing antioxidase levels to decrease the contents of reactive oxide species and malondialdehyde. Therefore, the ACEi peptides of ICY, LSFR, and IYSP are beneficial functional molecules for healthy foods against hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Shi-Kun Suo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Shuo-Lei Zheng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Hong-Yu Luo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Hong-Yu Luo
| | - Bin Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Bin Wang ;
| |
Collapse
|
15
|
Wang CX, Song CC, Liu XT, Qiao BW, Song S, Fu YH. ACE inhibitory activities of two peptides derived from Volutharpa Ampullacea Perryi hydrolysate and their protective effects on H2O2 induced HUVECs injury. Food Res Int 2022; 157:111402. [DOI: 10.1016/j.foodres.2022.111402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/04/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
|