1
|
Almeida FS, da Silva AMM, Mendes GAC, Sato ACK, Cunha RL. Almond protein as Pickering emulsion stabilizer: Impact of microgel fabrication method and pH on emulsion stability. Int J Biol Macromol 2024; 280:135812. [PMID: 39306185 DOI: 10.1016/j.ijbiomac.2024.135812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
We evaluated the ability of almond proteins to produce Pickering emulsions (EM) stabilized by microgels (MG) fabricated by three different methods (heat treatment-HT, crosslinking with transglutaminase-TG or calcium-CA), at two pH levels (pH 3 or 7). Compared to pH 7, acidic pH significantly denatured almond proteins (ellipticity ∼0 mdeg), decreased absolute zeta potential values (10.5 to 18.6 mV at pH 3 and - 24.6 to -32.6 mV at pH 7), and free thiol content (114.64-131.60 μmol SH/g protein at pH 3 and 129.46-148.17 μmol SH/g protein at pH 7 - except in CA-crosslinked microgels, p > 0.05). These changes led to larger microgel sizes (D3,2pH3: 26.3-39.5 μm vs. D3,2pH7: 5.9-9.0 μm) with lower polydispersity (SpanpH3: ∼ 1.94 vs. SpanpH7: 2.32, excluding CA-based samples). Consequently, the Turbiscan Stability Index (TSI) was higher in acidic conditions for all emulsions, except for the calcium-containing formulation (EM_CApH3), emphasizing the critical role of calcium binding in maintaining emulsion stability in acidic environments. Microgels prepared via the traditional heat treatment method produced emulsions with intermediate stability (TSI ranging from 3.4 % to 5.1 % at 28 days of storage). Conversely, TG-crosslinked microgels led to unstable emulsions at pH 3, likely due to the lowest zeta potential (+4.2 mV), whereas at pH 7, the greatest stability was attributed to bridging flocculation that created a stable gel-like structure. Indeed, emulsions with lower TSI (EM_CApH3 = 1.8 %, EM_CApH7 = 2.3 % and EM_TGpH7 = 1.0 %, at 28 days of storage) also exhibited higher elastic modulus (G') over frequency sweep, indicating that the strong elastic network was relevant for emulsion stability (up to 28 days). This study, for the first time, demonstrated the production of stable almond-based Pickering emulsions, with properties modulated by the pH and method used to fabricate the microgels.
Collapse
Affiliation(s)
- Flávia Souza Almeida
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Aurenice Maria Mota da Silva
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Gabriel Augusto Campos Mendes
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Ana Carla Kawazoe Sato
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Rosiane Lopes Cunha
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil.
| |
Collapse
|
2
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
3
|
Tian L, You X, Zhang S, Zhu Z, Yi J, Jin G. Enhancing Functional Properties and Protein Structure of Almond Protein Isolate Using High-Power Ultrasound Treatment. Molecules 2024; 29:3590. [PMID: 39124994 PMCID: PMC11313724 DOI: 10.3390/molecules29153590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The suitability of a given protein for use in food products depends heavily on characteristics such as foaming capacity, emulsifiability, and solubility, all of which are affected by the protein structure. Notably, protein structure, and thus characteristics related to food applications, can be altered by treatment with high-power ultrasound (HUS). Almonds are a promising source of high-quality vegetable protein for food products, but their physicochemical and functional properties remain largely unexplored, limiting their current applications in foods. Here, we tested the use of HUS on almond protein isolate (API) to determine the effects of this treatment on API functional properties. Aqueous almond protein suspensions were sonicated at varying power levels (200, 400, or 600 W) for two durations (15 or 30 min). The molecular structure, protein microstructure, solubility, and emulsifying and foaming properties of the resulting samples were then measured. The results showed that HUS treatment did not break API covalent bonds, but there were notable changes in the secondary protein structure composition, with the treated proteins showing a decrease in α-helices and β-turns, and an increase in random coil structures as the result of protein unfolding. HUS treatment also increased the number of surface free sulfhydryl groups and decreased the intrinsic fluorescence intensity, indicating that the treatment also led to alterations in the tertiary protein structures. The particle size in aqueous suspensions was decreased in treated samples, indicating that HUS caused the dissociation of API aggregates. Finally, treated samples showed increased water solubility, emulsifying activity, emulsifying stability, foaming capacity, and foaming stability. This study demonstrated that HUS altered key physicochemical characteristics of API, improving critical functional properties including solubility and foaming and emulsifying capacities. This study also validated HUS as a safe and environmentally responsible tool for enhancing desirable functional characteristics of almond proteins, promoting their use in the food industry as a high-quality plant-based protein.
Collapse
Affiliation(s)
- Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (L.T.); (X.Y.); (S.Z.)
| | - Xinyong You
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (L.T.); (X.Y.); (S.Z.)
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China; (L.T.); (X.Y.); (S.Z.)
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Gang Jin
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| |
Collapse
|
4
|
Wang X, Wang N, Wu D, Wang L, Zhang N, Yu D. Effect of ultrasonic power on delivery of quercetin in emulsions stabilized using octenyl succinic anhydride (OSA) modified broken japonica rice starch. Int J Biol Macromol 2024; 267:131557. [PMID: 38614171 DOI: 10.1016/j.ijbiomac.2024.131557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
In this study, emulsions stabilized by octenyl succinic anhydride-modified broken japonica rice starch (OSA-BJRS) were prepared at different ultrasonic power intensities for the delivery, controlled release, and improved bioavailability of quercetin. The OSA-BJRS emulsions ultrasonicated at 400 W exhibited the highest encapsulation efficiency (89.37 %) and loading efficiency (58.34 %) of quercetin, the smallest volume-average droplet diameter (0.51 μm) and polydispersity index (0.19), the highest absolute value of the ζ-potential (26.73 mV), and the highest apparent viscosity and viscoelasticity. The oxidation stability, storage stability, thermal stability, and salt ion stability of the emulsions were also notably improved by the ultrasonication treatment. In addition, the results of the simulated in vitro digestion demonstrated that the ultrasonicated OSA-BJRS emulsions had an enhanced quercetin delivery performance and could stably transport quercetin to the small intestine for digestion. The OSA-BJRS emulsion ultrasonicated at 400 W exhibited the highest cumulative release rate (95.91 %) and the highest bioavailability (30.48 %) of quercetin. This suggests that OSA-BJRS emulsions prepared by ultrasonication can be considered effective delivery systems for hydrophobic functional components.
Collapse
Affiliation(s)
- Xue Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Ning Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dandan Wu
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Liqi Wang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
5
|
Han SH, Zhu JK, Shao L, Yue CH, Li PY, Bai ZY, Luo DL. Effects of Ultrasonic Treatment on Physical Stability of Lily Juice: Rheological Behavior, Particle Size, and Microstructure. Foods 2024; 13:1276. [PMID: 38672948 PMCID: PMC11048927 DOI: 10.3390/foods13081276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to investigate the rheological properties, particle size distribution, color change, and stability of lily juice under different ultrasonic treatment conditions (152 W, 304 W, 456 W, 608 W, and 760 W). The results showed that the lily juice exhibited non-Newtonian shear thinning behavior, and the viscosity decreased with the increase in ultrasonic power. Under ultrasonic treatment conditions, there was no significant change in the pH value and zeta potential value of the samples. The content of cloudy value and total soluble solids (TSS) increased gradually. However, both the sedimentation components and centrifugal sedimentation rate showed a downward trend and an asymptotic behavior. In addition, high-power ultrasound changed the color index (L* value decreased, a* value increased), tissue structure, and particle distribution of the sample, and small particles increased significantly. To sum up, ultrasonic treatment has great potential in improving the physical properties and suspension stability of lily juice.
Collapse
Affiliation(s)
- Si-Hai Han
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Luoyang 471023, China
| | - Jun-Kun Zhu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Lei Shao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chong-Hui Yue
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Luoyang 471023, China
| | - Pei-Yan Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhou-Ya Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Luoyang 471023, China
| | - Deng-Lin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
- Henan Food Raw Material Engineering Technology Research Center, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
6
|
Li D, Wang R, Ma Y, Yu D. Covalent modification of (+)-catechin to improve the physicochemical, rheological, and oxidative stability properties of rice bran protein emulsion. Int J Biol Macromol 2023; 249:126003. [PMID: 37517762 DOI: 10.1016/j.ijbiomac.2023.126003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The aim of this study is the effects of (+)-catechin (CC) covalent cross-linking (CCCI) (0.05-0.25 %, w/v) on the physicochemical properties, rheological properties, and oxidative stability of rice bran protein (RBP) emulsion. Analysis of particle size, ζ-potential, circular dichroism, fluorescence spectroscopy, surface hydrophobicity, and emulsifying properties demonstrated that a concentration of 0.15 % (w/v) CCCI facilitated protein structure unfolding, resulting in reduced particle size, enhanced electrostatic repulsion, and improved emulsion stability. Moreover, the covalent complexes of RBP-0.15 %CC (w/v) exhibited increased viscosity and shear stress, reflected by the highest G' and G″ values, ultimately enhancing the oxidative stability. Furthermore, analysis using atomic force microscopy and confocal laser scanning microscopy revealed that the RBP-0.15 %CC complexes exhibited the smallest particle size (164 nm) and displayed greater homogeneity. An increase in CC concentration to 0.25 % (w/v) resulted in a higher emulsion aggregation. The emulsions stabilized by CCCI exhibited superior rheological properties and enhanced oxidation stability compared to the control. In conclusion, an appropriate amount of CC can enhance the rheology and oxidation stability of the RBP emulsion, while CCCI treatment holds potential for expanding the utility of RBP in various applications.
Collapse
Affiliation(s)
- Dan Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
7
|
Can Karaca A, Assadpour E, Jafari SM. Plant protein-based emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 316:102918. [PMID: 37172542 DOI: 10.1016/j.cis.2023.102918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Emulsion-based delivery systems (EBDSs) can be used as effective carriers for bioactive compounds (bioactives). Recent studies have shown that plant proteins (PLPs) have the potential to be utilized as stabilizers of emulsions for loading, protection and delivery of bioactives. Different strategies combining physical, chemical and biological techniques can be applied for alteration of the structural characteristics and improving the emulsification and encapsulation performance of PLPs. The stability, release, and bioavailability of the encapsulated bioactives can be tailored via optimizing the processing conditions and formulation of the emulsions. This paper presents cutting-edge information on PLP-based emulsions carrying bioactives in terms of their preparation methods, physicochemical characteristics, stability, encapsulation efficiency and release behavior of bioactives. Strategies applied for improvement of emulsifying and encapsulation properties of PLPs used in EBDSs are also reviewed. Special emphasis is given to the use of PLP-carbohydrate complexes for stabilizing bioactive-loaded emulsions.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
8
|
Gao Z, Ji Z, Wang L, Deng Q, Quek SY, Liu L, Dong X. Improvement of Oxidative Stability of Fish Oil-in-Water Emulsions through Partitioning of Sesamol at the Interface. Foods 2023; 12:foods12061287. [PMID: 36981213 PMCID: PMC10048168 DOI: 10.3390/foods12061287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The susceptibility of polyunsaturated fatty acids to oxidation severely limits their application in functional emulsified foods. In this study, the effect of sesamol concentration on the physicochemical properties of WPI-stabilized fish oil emulsions was investigated, focusing on the relationship between sesamol-WPI interactions and interfacial behavior. The results relating to particle size, zeta-potential, microstructure, and appearance showed that 0.09% (w/v) sesamol promoted the formation of small oil droplets and inhibited oil droplet aggregation. Furthermore, the addition of sesamol significantly reduced the formation of hydrogen peroxide, generation of secondary reaction products during storage, and degree of protein oxidation in the emulsions. Molecular docking and isothermal titration calorimetry showed that the interaction between sesamol and β-LG was mainly mediated by hydrogen bonds and hydrophobic interactions. Our results show that sesamol binds to interfacial proteins mainly through hydrogen bonding, and increasing the interfacial sesamol content reduces the interfacial tension and improves the physical and oxidative stability of the emulsion.
Collapse
Affiliation(s)
- Zhihui Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhongyan Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Leixi Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Siew Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- Riddet Institute, Palmerston North 4474, New Zealand
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Xuyan Dong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Shi LS, Yang XY, Gong T, Hu CY, Shen YH, Meng YH. Ultrasonic treatment improves physical and oxidative stabilities of walnut protein isolate-based emulsion by changing protein structure. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Strategy and Mechanism of Rice Bran Protein Emulsion Stability Based on Rancidity-Induced Protein Oxidation: An Ultrasonic Case Study. Foods 2022; 11:foods11233896. [PMID: 36496706 PMCID: PMC9736135 DOI: 10.3390/foods11233896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
To provide a strategy for improving the stability of rice bran protein emulsion (RBPE), rice bran proteins (RBPs) with different oxidation extents were prepared from fresh rice bran (RB) stored for different times (0, 1, 3, 5, 10 d), and RBPE was prepared with ultrasonic treatment. The ultrasonic conditions were optimized according to the results of the RBPE’s stability (when RB stored for 0, 1, 3, 5, 10 d, the optimal ultrasonic treatment conditions of RBPE were 500 w and 50 min, 400 w and 30 min, 400 w and 30 min, 300 w and 20 min, 500 w and 50 min, respectively). Additionally, the structural characteristics and the flexibility of RBPE interface protein were characterized, and the results showed that compared with native protein and excessive oxidized protein, the unfolded structure content and flexibility of interface protein of RBPE prepared by moderate oxidized protein under optimal ultrasonic intensity was higher. Furthermore, the correlation analysis showed that the RBPE stability was significantly correlated with the structural characteristics and flexibility of the RBPE interface protein (p < 0.05). In summary, ultrasonic treatment affected the interface protein’s structural characteristics and flexibility, improving the stability of RBPE prepared from oxidized RBP.
Collapse
|
11
|
Zhang M, Fan L, Liu Y, Li J. Relationship between protein native conformation and ultrasound efficiency: For improving the physicochemical stability of water–in–oil emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ultrasound-Assisted High-Voltage Cold Atmospheric Plasma Treatment on the Inactivation and Structure of Lysozyme: Effect of Treatment Voltage. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02842-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Yu Y, Wang T, Gong Y, Wang W, Wang X, Yu D, Wu F, Wang L. Effect of ultrasound on the structural characteristics and oxidative stability of walnut oil oleogel coated with soy protein isolate-phosphatidylserine. ULTRASONICS SONOCHEMISTRY 2022; 83:105945. [PMID: 35149379 PMCID: PMC8841881 DOI: 10.1016/j.ultsonch.2022.105945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 05/24/2023]
Abstract
In this study, the three-dimensional network system formed by rice bran wax (RBW) was used as the internal structure, and the external structure formed by soybean protein isolate (SPI) and phosphatidylserine (PS) was added on the basis of the internal structure to prepare walnut oil oleogel (SPI-PS-WOG). Ultrasonic treatment was applied to the mixed solution to make SPI-PS-WOG, on the basis, the effects of ultrasonic treatment on SPI-PS-WOG were investigated. The results showed that both β and β' crystalline forms were present in all SPI-PS-WOG samples. When the ultrasonic power was 450 W, the first weight loss peak in the thermogravimetric (TGA) curve appeared at 326 °C, which was shifted to the right compared to the peak that occurred when the ultrasonic power was 0 W, indicating that the thermal stability of the SPI-PS-WOG was improved by the ultrasonic treatment. Moreover, when the ultrasonic power was 450 W, the oil holding capacity (OHC) reached 95.3 %, which was the best compared with other groups. Both confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) showed that the ultrasonic treatment of appropriate power succeeded in making the SPI-PS-WOG samples more evenly dispersed in the internal structure and denser in the external structure. In terms of oxidative stability, it was found that the peroxide value of SPI-PS-WOG remained at 9.8 mmol/kg oil for 50 days under 450 W ultrasonic power treatment, which was significantly improved compared with liquid walnut oil (WO). These results provide a new idea for the preparation of oleogels, and also lay a theoretical foundation for the application of ultrasonic treatment in oleogels.
Collapse
Affiliation(s)
- Yingjie Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yuhang Gong
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Weining Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Wu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
14
|
Tian L, Zhang S, Yi J, Zhu Z, Cui L, Decker EA, McClements DJ. Factors impacting the antioxidant/prooxidant activity of tea polyphenols on lipids and proteins in oil-in-water emulsions. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Tian L, Zhang S, Yi J, Zhu Z, Li M, Decker EA, McClements DJ. Formation of Antioxidant Multilayered Coatings for the Prevention of Lipid and Protein Oxidation in Oil-in-Water Emulsions: Lycium barbarum Polysaccharides and Whey Proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15691-15698. [PMID: 34930004 DOI: 10.1021/acs.jafc.1c06585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The impact of Lycium barbarum polysaccharides (LBPs) on the physical and chemical stability of oil-in-water emulsions coated by a whey protein isolate (WPI) was investigated. At pH 3.0, the anionic LBP (0.2-0.6 wt %) molecules were electrostatically deposited onto the cationic surfaces of the WPI-coated oil droplets, leading to the formation of stable multilayered emulsions containing WPI-/LBP-coated oil droplets. However, increasing the LBP concentration to 0.8 wt % led to oil droplet aggregation, which was attributed to charge neutralization, bridging flocculation, and/or depletion flocculation. For subsequent experiments, a low (0.2%) and an intermediate (0.6%) LBP dose was used to prepare the secondary emulsions, and then their physical and oxidative stability was studied during 8 days of storage at 37 °C. The presence of the multilayer WPI/LBP coatings around the oil droplets inhibited lipid oxidation (reduced levels of lipid hydroperoxides and 2-thiobarbituric acid-reactive substances), as well as protein oxidation (reduced levels of carbonyl formation, sulfhydryl consumption, molecular weight modifications, intrinsic fluorescence loss, and Schiff-base fluorescence gain). The antioxidant effects of the multilayer coatings were greater at the higher LBP concentration. These results suggest that LBP, a natural plant-based polysaccharide isolated from a traditional Chinese medicine, can be used to improve the quality of emulsion-based foods. However, the level used should be optimized to ensure good physical and oxidative stability of the emulsions.
Collapse
Affiliation(s)
- Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road, Anyang, Henan 455000, P. R. China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road, Anyang, Henan 455000, P. R. China
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, P. R. China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, P. R. China
| | - Meili Li
- Yulin Food Inspection and Testing Center, Changxing Road, Yulin, Shaanxi 719000, P. R. China
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
16
|
Tian L, Zhang S, Yi J, Zhu Z, Cui L, Andrew Decker E, Julian McClements D. Antioxidant and prooxidant activities of tea polyphenols in oil-in-water emulsions depend on the level used and the location of proteins. Food Chem 2021; 375:131672. [PMID: 34865927 DOI: 10.1016/j.foodchem.2021.131672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/01/2021] [Accepted: 11/21/2021] [Indexed: 11/18/2022]
Abstract
We studied the impacts of protein location (interface or aqueous phase) on the antioxidant and prooxidant activities of tea polyphenols (TP) in model oil-in-water emulsions (pH 7) at a low (0.01% w/v) or high (0.04 % w/v) concentration. TP at 0.01% reduced the levels of both lipid and protein oxidation markers in emulsions, independent of the protein location. However, TP were more potent when proteins were located at the interface. At 0.04%, TP were only weakly antioxidant towards lipids but were prooxidant towards proteins in emulsions with proteins at the interface, whereas they were still somewhat antioxidant for aqueous phase proteins. These results indicate that TP may act as either antioxidants or prooxidants depending on their concentration and also on the location of the proteins in emulsions. The level of TP should be optimized for emulsion-based foods or beverages to achieve optimum antioxidant activity.
Collapse
Affiliation(s)
- Li Tian
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road An yang, Henan 455000, PR China
| | - Shulin Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Huanghe Road An yang, Henan 455000, PR China
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, PR China.
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xuefu Road, Xi'an, Shaanxi 710021, PR China
| | - Leqi Cui
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Eric Andrew Decker
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
17
|
Ding Q, Tian G, Wang X, Deng W, Mao K, Sang Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). ULTRASONICS SONOCHEMISTRY 2021; 79:105770. [PMID: 34598102 PMCID: PMC8487091 DOI: 10.1016/j.ultsonch.2021.105770] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
In this study, scallop mantle protein was treated by ultrasound at different powers, and then analyzed by ANS fluorescent probes, circular dichroism spectroscopy, endogenous fluorescence spectrum, DNTB colorimetry and in-vitro digestion model to elucidate the structure-function relationship. The results indicated that ultrasound can significantly affect the secondary structure of scallop mantle protein like enhancing hydrophobicity, lowering the particle size, increasing the relative contents of α-helix and decreasing contents of β-pleated sheet, β-turn and random coil, as well as altering intrinsic fluorescence intensity with blue shift of maximum fluorescence peak. But ultrasound had no effect on its primary structure. Moreover, the functions of scallop mantle protein were regulated by modifying its structures by ultrasound. Specifically, the protein had the highest performance in foaming property and in-vitro digestibility under ultrasonic power of 100 W, oil binding capacity under 100 W, water binding capacity under 300 W, solubility and emulsification capacity under 400 W, and emulsion stability under 600 W. These results prove ultrasonic treatment has the potential to effectively improve functional properties and quality of scallop mantle protein, benefiting in comprehensive utilization of scallop mantles.
Collapse
Affiliation(s)
- Qiuyue Ding
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenyi Deng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|