1
|
Liu F, Zhang Y, Zeng M, Duan F, Wang J. Quantified low voltage electrostatic field: The effects of intensity on cherry tomato preservation and mechanism. Food Chem 2025; 463:141100. [PMID: 39244993 DOI: 10.1016/j.foodchem.2024.141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Low voltage electrostatic field (LVEF), a novel non-thermal processing technology, shows promise for food preservation. However, the absence of clear definition and quantification of the core concept "low voltage" obstructs the effective application of LVEF. This study assessed the efficiency of various LVEF intensities (100, 200, 300 V) on cherry tomato preservation, revealing significant differences in preservation efficiency. Compared to the control, samples treated with different intensities showed varied reductions in weight loss (6.26-25.45 %), firmness changes (5.17-28.91 %), and decay incidence (47.91-70.89 %). Quantitative analysis elucidated that the differential preservation efficiency may arise from a dose-response relationship between electric field strength and hydrogen peroxide (H2O2) content, identifying an optimal H2O2 content range of 21.18-27.01 mmol kg-1 for the effective preservation of cherry tomatoes under LVEF. These findings highlight the importance of precise LVEF intensity control for effective food preservation and offer insights for developing optimal LVEF treatment intensities for diverse produce.
Collapse
Affiliation(s)
- Fengyi Liu
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Yijie Zhang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Min Zeng
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China
| | - Fang Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| | - Jun Wang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Department of Packaging Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Zhou M, Liu Y, Ye C, Liu L, Chen L, Lan L, Bi S, Liu Y, Wang K, Liu M, Zhu Q. The impact of electrical stimulation on NaCl diffusion in tenderloin and the quality of dry-cured loin during the marination process. Food Chem X 2024; 24:102000. [PMID: 39634526 PMCID: PMC11615611 DOI: 10.1016/j.fochx.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
The effects of electrical stimulation (ES) during the post-processing stage on NaCl diffusion, microstructure, and overall quality in the dry curing of pork tenderloin were investigated. ES treatment significantly increased the salt content in pork tenderloin, with the A2ES group (ES applied after 2 h of curing) showing a 28.32 % increase compared to the control group. Energy spectrum analysis revealed that NaCl distribution in the meat tissue was most concentrated following ES treatment. Binarized images of NaCl permeation in pork loin clearly demonstrated that ES enhanced NaCl permeation. Additionally, microscopic analysis showed that ES caused cell disintegration, and the combined effect of ES and NaCl damaged muscle tissue. The results indicate that ES enhanced NaCl diffusion and shortened the curing time, while improving meat tenderness and reducing bitter and astringent flavors. This study offers new insights and techniques to accelerate the marination process of meat products.
Collapse
Affiliation(s)
- Mixin Zhou
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yuanyuan Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Chun Ye
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Linggao Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Li Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Lisha Lan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Shenghui Bi
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Yehua Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Keshan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Minfei Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
| | - Qiujin Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, China
- Key Laboratory Mountain Plateau Animals Genetics and Breeding, Ministry of Education, Guiyang 550025, China
| |
Collapse
|
3
|
Chen Y, Yang C, Yang Y, Lin H, Cui L, Zhen Z, Li X, Zhang C, Li X, Li J. Evaluation of the water state and protein characteristics of Tibetan pork under the storage conditions of modified atmosphere packaging: Effect of oxygen concentration. Food Chem X 2024; 24:101825. [PMID: 39314539 PMCID: PMC11417229 DOI: 10.1016/j.fochx.2024.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
To explore the changes in water status and protein characteristics of Tibetan pork (TP) under modified atmosphere packaging (MAP) with different oxygen concentrations compared to Duroc×Landrace×Yorkshire pork (DLY), the water holding capacity (WHC), water distribution, protein oxidation, and conformation of both types were determined. Results indicate that under MAP, TP pork and DLY pork exhibited higher water retention and lower protein oxidation compared to air packaging. However, with increased oxygen concentration in the MAP, protein oxidation intensified, leading to reduced WHC in the pork. Compared to DLY pork, TP pork in different packaging conditions maintained the integrity of protein secondary and tertiary structures, reducing protein cross-linking aggregation. The lower content of P 3 in the two-dimensional relaxation spectra, shorter T 1 and T 2 relaxation times, and higher proton density suggest better water retention properties in Tibetan pork. These findings support the development of long-distance preservation and transportation technologies for TP pork.
Collapse
Affiliation(s)
- Yong Chen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yiping Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Liye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xinfu Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| |
Collapse
|
4
|
Zhang Y, Liu G. Electrostatically-enhanced two-stage low-temperature tempering: Effects on the quality of frozen tan mutton. Food Chem X 2024; 24:101926. [PMID: 39525067 PMCID: PMC11550020 DOI: 10.1016/j.fochx.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The two-stage low-temperature tempering (TLT) and TLT assisted by electrostatic fields (TLT-1500/2000/2500/3000) were developed to investigate their effects on the quality of frozen Tan mutton. The results demonstrated that both TLT and TLT-1500/2000/2500/3000 significantly (P < 0.05) enhanced the tempering rate compared to refrigerator tempering (4 °C, RT). The analysis of tempering, cooking, and centrifugal losses, along with the evaluation of electrical conductivity, pH, and TVB-N, showed that the water retention capacity and freshness of Tan mutton treated with TLT-2500 were closest to those of fresh Tan mutton. Scanning electron microscopy analysis demonstrated that TLT-2500 best maintained the tissue integrity of Tan mutton, while low-field nuclear magnetic resonance analysis revealed it contained the highest immobile water and least free water. Furthermore, Tan mutton treated with TLT-2000 and TLT-2500 exhibited minimal lipid oxidation and color change. In contrast, the most significant changes in all indicators were observed after RT.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| |
Collapse
|
5
|
Lin H, Cui L, Chen Y, Yang Y, Chen X, Chisoro P, Li X, Blecker C, Zhang C. Integrating multiple microstructure and water distribution visual analysis to reveal the moisture release and quality deterioration of precooked beef during freezing-thawing-reheating processes. Food Chem 2024; 461:140878. [PMID: 39154461 DOI: 10.1016/j.foodchem.2024.140878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Prepared dishes are becoming an increasingly important part of diets, while most studies focus on the flavor. In this study, the moisture loss induced by structure changes of precooked beef during freezing-thawing-reheating process was investigated. The myowater trapped and released by 'myenteric channels' and 'water reservoir' were observed by integrated multiple microstructure and water distribution visual analysis. X-ray results showed an increase in total porosity and the close porosity transfer to open porosity during freezing-thawing-reheating. The weight loss of frozen-reheated (FR) and frozen-thawed-reheated (FTR) samples was 6.34% and 7.69%, respectively. Although freezing-thawing did not significantly affect the moisture loss, magnetic resonance image (MRI) showed that the 'free water' temporarily existed in interfibrous spaces after thawing and leaked out during reheating. Directly reheating avoided the myowater redistribution and muscle extension mediated, which reduced moisture loss. These results provide a reference for quality control of prepared dishes during the industrial supply chain.
Collapse
Affiliation(s)
- Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Liye Cui
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yong Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Yiping Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xiangning Chen
- Key Laboratory of Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Food Science and Engineering College, Beijing University of Agriculture, Beijing, 102206, China
| | - Prince Chisoro
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| | | | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China; Shandong Ledajia Biotechnology Co., Ltd, Yantai, Shandong, 261400, China.
| |
Collapse
|
6
|
Guo X, Liu W, Zhang L, Wang X, Mi S. A Combined Impact of Low-Voltage Electrostatic Field and Essential Oil on the Postharvest Properties of Chili Pepper: Insights into Related Molecular Mechanisms. Foods 2024; 13:3686. [PMID: 39594101 PMCID: PMC11593519 DOI: 10.3390/foods13223686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
This research is intended to ascertain the impact of low-voltage electrostatic field (LVEF) together with chili pepper leaf essential oil (CLEO) on the storage quality of chili pepper. Four groups of samples were investigated, namely, control (CK), CLEO, LVEF, and CLEO + LVEF. Chili pepper from the CLEO + LVEF group reduced the weight loss and malondialdehyde content but improved the ascorbic acid contents, antioxidant potential, firmness, and color attributes. CLEO and LVEF could maintain the integral structure and stability of the cell wall by suppressing the activities of hydrolases of pectin, cellulose, and hemicellulose. The positive role of CLEO + LVEF on the color quality was explained by the significantly higher chlorophyll content and lower activities of chlorophyllase, pheophytinase, and Mg-dechelatase compared to the CK group. Taken together, all data provide supporting evidence for a synergistic effect of CLEO and LVEF on the enhancement of postharvest traits of chili peppers.
Collapse
Affiliation(s)
- Xiaoqian Guo
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Weihua Liu
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Liyong Zhang
- Fenghe Agriculture Co., Ltd., Qinhuangdao 066408, China;
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| | - Si Mi
- College of Food Science and Technology, Hebei Agricultural University, No. 2596 Lekai South Road, Baoding 071000, China; (X.G.); (W.L.); (X.W.)
| |
Collapse
|
7
|
Liu J, Li X, Geng F, Li X, Huang Y, Wu Y, Luo Z, Huang Q, Shang P, Liu Z. Ultrasound-assisted improvement of thawing quality of Tibetan pork by inhibiting oxidation. ULTRASONICS SONOCHEMISTRY 2024; 110:107029. [PMID: 39163693 PMCID: PMC11381469 DOI: 10.1016/j.ultsonch.2024.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The challenge of meat quality degradation due to transportation difficulties in high-altitude plateaus underscores the importance of an efficient thawing process for Tibetan pork to ensure its quality. This study compared four thawing methods ultrasound thawing (UT), refrigerator thawing (RT), hydrostatic thawing (HT), and microwave thawing (MT) to assess their impact on the quality of Tibetan pork, focusing on thawing loss, tenderness, color variation, and alterations in protein secondary structure and moisture content. Additionally, the study examined the impact of thawing on the metabolites of Tibetan pork using metabolomics techniques. The results indicated that UT yielded the highest quality samples. UT significantly accelerated the thawing rate and had minimal impact on tenderness compared to traditional thawing methods. Moreover, protein and lipid oxidation levels were reduced by UT treatment. Furthermore, it enhanced the binding capacity of protein and water molecules, reduced drip loss, and maintained meat color stability. What's more, amino acid metabolites such as l-glutamic acid, l-proline, oxidized glutathione, and 1-methylhistidine played a significant role in thawing oxidation in Tibetan pork, exhibiting a positive correlation with protein oxidation. UT resulted in a notable decrease in the levels of hypoxanthine and 2-aminomethylpyrimidine, contributing to the reduction of bitterness in the thawed meat and consequently enhancing the freshness of Tibetan pork. This study offers novel insights into understanding the biological changes occurring during the thawing process, while also furnishing a theoretical framework and technical assistance to improve the quality of Tibetan pork and propel advancements in food processing technology.
Collapse
Affiliation(s)
- Junmei Liu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yujie Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Yingmei Wu
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, Guizhou Medical University, Guiyang 550025, China; Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Peng Shang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet Autonomous Region 860000, China.
| |
Collapse
|
8
|
Zhang Y, Li Y, Guo J, Feng Y, Xie Q, Guo M, Yin J, Liu G. Effect of two-stage low-temperature tempering process assisted by electrostatic field application on physicochemical and structural properties of myofibrillar protein in frozen longissimus dorsi of tan mutton. Food Chem 2024; 456:140001. [PMID: 38852449 DOI: 10.1016/j.foodchem.2024.140001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
The effects of refrigerator tempering, two-stage low-temperature tempering (TLT), and a combination of TLT with electrostatic field tempering (TLT-1500/2000/2500/3000) on the physicochemical and structural properties of the myofibrillar protein (MPs) in Longissimus dorsi of Tan mutton were investigated. The results from differential scanning calorimetry and dynamic rheology indicated that TLT-2000/2500 had the least impact on the thermal stability of MPs. While the carbonyl and dityrosine contents of MPs in TLT-2000/2500 were the lowest, the total sulfhydryl content and Ca2+-ATPase activity were the highest, suggesting that TLT-2000/2500 preserved the properties of MPs more effectively. The smaller and uniformly distributed particle size, highest zeta potential, and SDS-PAGE analysis confirmed that TLT-2000/2500 had minimal impact on the aggregation and degradation of MPs. Additionally, results from surface hydrophobicity, Fourier transform infrared spectroscopy, intrinsic fluorescence, and UV second-derivative absorption spectra suggested that TLT-2000/2500 was more conducive to stabilizing the primary, secondary, and tertiary structures of MPs.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Li
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Jiajun Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yuqin Feng
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qiwen Xie
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Mei Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Junjie Yin
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Guishan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
9
|
Jiang X, Liu Y, Liu L, Bai F, Wang J, Xu H, Dong S, Jiang X, Wu J, Zhao Y, Xu X. Mechanism of low-voltage electrostatic field on flavor retention in refrigerated sturgeon caviar: Insights from phospholipids. Food Chem X 2024; 23:101612. [PMID: 39113737 PMCID: PMC11305003 DOI: 10.1016/j.fochx.2024.101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
This study investigated the effect of low-voltage electrostatic field on the flavor quality changes and generation pathways of refrigerated sturgeon caviar. Research has found that after storage for 3-6 weeks, the physicochemical properties of caviar in the LVEF treatment group are better than those in the control group. The results of two-dimensional gas chromatography-time-of-flight mass spectrometry showed that the contents of hexanal, nonanal, (E,Z)-2,6-nonadienal, (E)-2-octenal and 1-octene-3-one related to the characteristic flavor of caviar (sweet, fruity and green) increased significantly. The lipidomics results indicated that the effects of LVEF on caviar mainly involve glycerophospholipid metabolism, linoleic acid metabolism, and α-Linolenic acid metabolism. Methanophosphatidylcholine (15:0/18:1), phosphatidylcholine (18:0/20:5), and phosphatidylcholine (18,1e/22:6) were significantly correlated with odor formation. Therefore, low-voltage electrostatic field treatment preserved the quality and enhanced the flavor of sturgeon caviar. This study provided a new theoretical basis for the preservation of sturgeon caviar.
Collapse
Affiliation(s)
- Xinyu Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Yihuan Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Li Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Fan Bai
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - Jinlin Wang
- Quzhou Sturgeon Aquatic Food Science and Technology Development Co., Ltd., Quzhou 324002, China
| | - He Xu
- Lianyungang Baohong Marine Technology Co., Ltd., Lianyungang 222000, China
| | - Shiyuan Dong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Xiaoming Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuanhui Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
- Sanya Oceanographic Institution of Ocean University of China, Sanya 572024, China
| | - Xinxing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
10
|
Lin H, Wu G, Hu X, Chisoro P, Yang C, Li Q, Blecker C, Li X, Zhang C. Electric fields as effective strategies for enhancing quality attributes of meat in cold chain logistics: A review. Food Res Int 2024; 193:114839. [PMID: 39160042 DOI: 10.1016/j.foodres.2024.114839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024]
Abstract
Meat quality (MQ) is unstable during cold chain logistics (CCL). Different technologies have been developed to enhance MQ during the CCL process, while most of them cannot cover all the links of the cold chain because of complex environment (especially transportation and distribution), compatibility issues, and their single effect. Electric fields (EFs) have been explored as a novel treatment for different food processing. The effects and potential advantages of EFs for biological cryopreservation have been reported in many publications and some commercial applications in CCL have been realized. However, there is still a lack of a systematic review on the effects of EFs on their quality attributes in meat and its applications in CCL. In this review, the potential mechanisms of EFs on meat physicochemical properties (heat and mass transfer and ice formation and melting) and MQ attributes during different CCL links (freezing, thawing, and refrigeration processes) were summarized. The current applications and limitations of EFs for cryopreserving meat were also discussed. Although high intensity EFs have some detrimental effects on the quality attributes in meat due to electroporation and electro-breakdown effect, EFs present good applicability opportunities in most CCL scenes that have been realized in some commercial applications. Future studies should focus on the biochemical reactions of meat to the different EFs parameters, and break the limitations on equipment, so as to make EFs techniques closer to usability in the production environment and realize cost-effective large-scale application of EFs on CCL.
Collapse
Affiliation(s)
- Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium
| | - Guangyu Wu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojia Hu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Prince Chisoro
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chuan Yang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qingqing Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Yang N, Yao H, Zhang A, Jin Y, Zhang X, Xu X. Effect of constant-current pulsed electric field thawing on proteins and water-holding capacity of frozen porcine longissimus muscle. Food Chem 2024; 454:139784. [PMID: 38815321 DOI: 10.1016/j.foodchem.2024.139784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
This study explored the effect of constant-current pulsed electric field thawing (CC-T) on the proteins and water-holding capacity of pork. Fresh meat (FM), and frozen meat after constant-voltage thawing (CV-T), air thawing (AT) and water immersion thawing (WT) were considered as controls. The results indicated that CC-T had a higher thawing rate than conventional thawing during ice-crystal melting stage (-5 to -1 °C). It also showed a lower water migration and thawing loss, maintaining pH and shear force closer to FM. Meanwhile, CC-T decreased myoglobin oxidation, resulting in a favorable surface color. The results of protein solubility, differential scanning calorimetry, total sulfhydryl, carbonyl and surface hydrophobicity demonstrated that CC-T reduced myofibrillar protein oxidative denaturation by suppressing the formation of disulfide and carbonyl bonds, thus enhancing solubility and thermal stability. Additionally, microstructural observation found that CC-T maintained a relatively intact muscle fiber structure by reducing muscle damage and myosin filament denaturation.
Collapse
Affiliation(s)
- Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Huangbing Yao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Ankun Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xiao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Cao Y, Wu L, Xia Q, Yi K, Li Y. Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods 2024; 13:1554. [PMID: 38790854 PMCID: PMC11120273 DOI: 10.3390/foods13101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Edible fungi are well known for their rich nutrition and unique flavor. However, their post-harvest shelf-life is relatively short, and effective post-harvest preservation techniques are crucial for maintaining their quality. In recent years, many new technologies have been used for the preservation of edible fungi. These technologies include cold plasma treatment, electrostatic field treatment, active packaging, edible coatings, antimicrobial photodynamic therapy, and genetic editing, among others. This paper reviews the new methods for post-harvest preservation of mainstream edible fungi. By comprehensively evaluating the relative advantages and limitations of these new technologies, their potential and challenges in practical applications are inferred. The paper also proposes directions and suggestions for the future development of edible fungi preservation, aiming to provide reference and guidance for improving the quality of edible fungi products and extending their shelf-life.
Collapse
Affiliation(s)
- Yuping Cao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Li Wu
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| | - Qing Xia
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Kexin Yi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (Q.X.); (K.Y.)
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
- National R&D Center for Edible Fungi Processing, Fuzhou 350003, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou 350003, China
- Fujian Province Key Laboratory of Agricultural Products (Food) Processing Technology, Fuzhou 350003, China
| |
Collapse
|
13
|
Xu Y, Leng D, Li X, Wang D, Chai X, Schroyen M, Zhang D, Hou C. Effects of different electrostatic field intensities assisted controlled freezing point storage on water holding capacity of fresh meat during the early postmortem period. Food Chem 2024; 439:138096. [PMID: 38039609 DOI: 10.1016/j.foodchem.2023.138096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
In this study, the effect of different intensity electrostatic fields on the water holding capacity (WHC) of fresh meat during the early postmortem period in controlled freezing point storage (CFPS) were investigated. Significantly lower cooking loss were found in low voltage electrostatic field (LVEF) and high voltage electrostatic field (HVEF) compared to the control group (CK) (p < 0.05). The myofibril fragmentation index and microstructure results suggested that the sample under HVEF treatment remained relatively intact. It has been revealed that the changes in actomyosin properties under electrostatic field treatment groups were due to the combination and dissociation of actomyosin binding into myofilament concentration, which consequently affects the muscle WHC. The study further demonstrated that the electrostatic field, especially HVEF, might increase the WHC of fresh meat by affecting the distribution of water molecules and physiochemical properties of actomyosin during the early postmortem period.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dongmei Leng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Debao Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xiaoyu Chai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
14
|
Wang W, Lin H, Guan W, Song Y, He X, Zhang D. Effect of static magnetic field-assisted thawing on the quality, water status, and myofibrillar protein characteristics of frozen beef steaks. Food Chem 2024; 436:137709. [PMID: 37857201 DOI: 10.1016/j.foodchem.2023.137709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
This study investigated the effect of static magnetic field-assisted thawing (SMAT) at varying intensities (0, 1, 2, and 3 mT) on the quality, water status, and myofibrillar protein (MP) characteristics of frozen beef steaks. The thawing times of SMAT-1, 2, and 3 treatments could be shortened by approximately 10.9 %, 20.0 %, and 8.5 %, respectively, compared to the control. The results indicated that SMAT treatment significantly decreased thawing loss, maintained color stability, and reduced the degree of lipid oxidation in beef steaks compared to the control group (P < 0.05). Low-field nuclear magnetic resonance results confirmed that SMAT treatment enhanced the water-holding capacity of muscle. Furthermore, SMAT-2 treatment protected the muscle microstructure, decreased carbonyl content, and increased total sulfhydryl content (P < 0.05) compared to the control group. In conclusion, SMAT treatment effectively improved the beef quality and the characteristics of MP after thawing, especially in 2 mT.
Collapse
Affiliation(s)
- Wenxin Wang
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Hengxun Lin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yu Song
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Xingxing He
- Tianjin Key Laboratory of Food Biotechnology, Tianjin University of Commerce, Tianjin 300134, China
| | - Dequan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
15
|
Zhao Y, Wang D, Xu J, Tu D, Zhuang W, Tian Y. Effect of polysaccharide concentration on heat-induced Tremella fuciformis polysaccharide-soy protein isolation gels: Gel properties and interactions. Int J Biol Macromol 2024; 262:129782. [PMID: 38281520 DOI: 10.1016/j.ijbiomac.2024.129782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/30/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024]
Abstract
The formation of a single soybean protein isolate (SPI) gel is limited by the processing conditions, and has the disadvantages of poor gel property, and it is usually necessary to add other biomacromolecules to improve its property. In this study, we investigated the effects of polysaccharide concentration on gel properties and interaction mechanisms of Tremella fuciformis polysaccharide (TFP)-SPI complexes. It was found that (1) the rheological properties, texture properties, water-holding properties, and thermal stability of TFP-SPI composite gels were improved with the addition of TFP (0.25-2.0 %, w/v) in a concentration-dependent manner; (2) hydrogen bond, the electrostatic interaction, hydrophobic interaction, and disulfide bond in the gel system increased with the increase of TFP concentration; (3) the electrostatic and hydrophobic interactions played an important role in the formation of the TFP-SPI composite gel while hydrogen bond formation was the least contributor to the binary composite gel network. Overall, TFP is not only a critical health food but also a promising structural component for improving the gel properties of SPI.
Collapse
Affiliation(s)
- Yingting Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Danni Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingxin Xu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongkun Tu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuting Tian
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
16
|
Gao Z, Zhou Y, Zhang D, Wu R, Ma J, He J, Wang Z. Improving the Edible and Nutritional Quality of Roasted Duck Breasts through Variable Pressure Salting: Implications for Protein Anabolism and Digestion in Rats. Foods 2024; 13:402. [PMID: 38338538 PMCID: PMC10855416 DOI: 10.3390/foods13030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Variable pressure salting (VPS) is considered a novel salting approach to improve meat quality. This study aimed to investigate the effects of roasted duck's edible and nutritional quality after VPS through serum biochemical indicators and in vivo digestion properties in rats. The results show that roasted duck after VPS led to an increase in the total protein content (57.24 g/L) and blood glucose levels (6.87 mmol/L), as well as a decrease in the blood urea nitrogen content (11.81 mmol/L), in rats. Compared to rats fed base diets and roasted duck after static wet salting (SWS), those ingesting roasted duck after VPS exhibited higher values of apparent protein digestibility (51.24%), pepsin activity (2.40 U/mg), and trypsin activity (389.80 U/mg). Furthermore, VPS treatment improved the textural properties and microstructure of duck breasts shown by a higher immobilized water relaxation area and more ordered protein structures (α-helixes and β-sheets). These improvements enhanced the protein anabolism capacity and in vivo digestion properties in rats. Therefore, VPS represents a beneficial salting method for promoting effective digestion and absorption in rats.
Collapse
Affiliation(s)
- Ziwu Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yinna Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Ruiyun Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jiale Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinhua He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhenyu Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.G.); (Y.Z.); (R.W.); (J.M.); (J.H.); (Z.W.)
- Integrated Laboratory of Processing Technology for Chinese Meat and Dish Products, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
17
|
Wu G, Yang C, Lin H, Hu F, Li X, Xia S, Bruce HL, Roy BC, Huang F, Zhang C. To What Extent Do Low-Voltage Electrostatic Fields Play a Role in the Physicochemical Properties of Pork during Freezing and Storage? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1721-1733. [PMID: 38206806 DOI: 10.1021/acs.jafc.3c08470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Low-voltage electrostatic fields (LVEF) are recognized as a new technology that can improve the quality of frozen meat. To determine the extent to which LVEF assistance affects the quality of frozen pork for long-term storage, pork was frozen and stored at -18 and -38 °C for up to 5 months. Water-holding capacity, muscle microstructure, and protein properties were investigated after up to 5 months of frozen storage with and without LVEF assistance. In comparison to traditional -18 and -38 °C frozen storage, LVEF treatment inhibited water migration during frozen storage and thawing. As a result, thawing losses were reduced by 15.97% (-18 °C) and 3.38% (-38 °C) in LVEF-assisted compared to conventional freezing methods. LVEF helped to maintain the muscle fiber microstructure and reduce muscle protein denaturation by miniaturizing ice crystal formation by freezing. As a result of this study, LVEF is more suitable for freezing or short-term frozen storage, while a lower temperature plays a more significant role in long-term frozen storage.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Hengxun Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Feifei Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Shuangmei Xia
- Testing Center for Quality Supervision on Agro-Products and Foods, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Feng Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, P. R. China
- Institute of Western Agriculture, The Chinese Academy of Agricultural Sciences, Changji 831100, P. R. China
| |
Collapse
|
18
|
Chen Y, Lan D, Wang W, Zhang W, Wang Y. Quality characteristics of peanut protein-based patties produced with pre-emulsified olive oil as a fat replacer: Influence of acylglycerol type. Int J Biol Macromol 2023; 252:126262. [PMID: 37567535 DOI: 10.1016/j.ijbiomac.2023.126262] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The emulsion (O/W) may be used as a fat replacer to develop healthier meat analogs. The purpose of this work was to evaluate the effects of oil incorporation methods (direct oil addition and emulsion addition) and oil types [triacylglycerol (TAG) and diacylglycerol (DAG)] on the quality characteristics of peanut protein-based patties crosslinked by transglutaminase (TGase). The patties formulated with emulsions showed larger texture parameters (springiness, cohesiveness and gumminess), lower cooking loss and higher acceptability compared with directly adding oil. The rheological results confirmed that the presence of emulsions strengthened the gel structure in patties, which allowed the patties containing emulsions to stabilize free water. Whereas, TAG-based emulsion was more effective than DAG-based emulsion in improving quality of products, possibly because the competitive adsorption at oil-water interface of DAG reduced the crosslinking between the interfacial protein and adjacent protein molecules. This study revealed the relationship between the acylglycerol type in emulsion and the patty quality, providing a reference for the development of plant-based patties.
Collapse
Affiliation(s)
- Ying Chen
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Weifei Wang
- Sericultural and Agrifood Res Inst, Guangdong Academy of Agricultural Sciences, Guangzhou 510610, China
| | - Weiqian Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- Department of Food Science and Engineering, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
19
|
Xu Y, Zhang D, Xie F, Li X, Schroyen M, Chen L, Hou C. Changes in water holding capacity of chilled fresh pork in controlled freezing-point storage assisted by different modes of electrostatic field action. Meat Sci 2023; 204:109269. [PMID: 37394351 DOI: 10.1016/j.meatsci.2023.109269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Electrostatic field-assisted low-temperature preservation is considered a novel technology, which provides an effective means of extending the shelf-life of meat. This study aimed to investigate the effects of different output time modes of a high voltage electrostatic field (HVEF) on the water holding capacity (WHC) of chilled fresh pork during controlled freezing-point storage. Under a direct current HVEF generator, chilled fresh pork samples were treated by the single, interval, or continuous HVEF treatment, with a control check group receiving no HVEF treatment. It was determined that the WHC of the continuous HVEF treatment higher than the control check group. This difference was proven by analyzing the moisture content, storage loss, centrifugal loss, cooking loss, and nuclear magnetic resonance imaging. Furthermore, the mechanism behind HVEF-assisted controlled freezing-point storage reduced the moisture loss was conducted by examining the changes in the hydration characteristics of myofibrillar protein. The study revealed that myofibrillar proteins exhibit high solubility and low surface hydrophobicity under continuous HVEF. Additionally, continuous HVEF has been demonstrated to effectively maintain the higher WHC and lower hardness of myofibrillar protein gel by inhibiting the water molecule migration. The demonstration of these results showcases the effectiveness of electrostatic fields for the future physical preservation of meat.
Collapse
Affiliation(s)
- Yuqian Xu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium.
| | - Dequan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Feifei Xie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage de Déportés 2, Gembloux, Belgium
| | - Li Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Chengli Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
20
|
Zhu M, Xing Y, Zhang J, Li H, Kang Z, Ma H, Zhao S, Jiao L. Low-frequency alternating magnetic field thawing of frozen pork meat: Effects of intensity on quality properties and microstructure of meat and structure of myofibrillar proteins. Meat Sci 2023; 204:109241. [PMID: 37321052 DOI: 10.1016/j.meatsci.2023.109241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/14/2023] [Accepted: 06/02/2023] [Indexed: 06/17/2023]
Abstract
The purpose of the study was to evaluate the changes in quality properties and microstructure of pork meat as well as structural variation in myofibrillar proteins (MPs) after low-frequency alternating magnetic field thawing (LF-MFT) with different intensities (1-5 mT). LF-MFT at 3-5 mT shortened the thawing time. LF-MFT treatment significantly influenced the quality properties of meat and notably improved the structure of MPs (P < 0.05), compared to atmosphere thawing (AT). Especially, among the thawing treatments, LF-MFT-4 (LF-MFT at 4 mT) had the lowest values of thawing loss and drip loss, and the least changes in the color and myoglobin content. Regarding the results of rheological properties and micrographs, an optimal gel structure and a more compact muscle fiber arrangement formed during LF-MFT-4. Moreover, LF-MFT-4 was beneficial for improving the conformation of MPs. Therefore, LF-MFT-4 reduced the deterioration of porcine quality by protecting MPs structure, indicating a potential use in the meat thawing industry.
Collapse
Affiliation(s)
- Mingming Zhu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Province Engineering Technology Research Center of Animal Products Intensive Processing and Quality Safety Control, Henan Institute of Science and Technology, Xinxiang 453003, China; National Pork Processing Technology Research and Development Professional Center, Xinxiang 453003, China.
| | - Yi Xing
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Juan Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Huijie Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhuangli Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hanjun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shengming Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
21
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
22
|
Jia W, Wu X. Potential biomarkers analysis and protein internal mechanisms by cold plasma treatment: Is proteomics effective to elucidate protein-protein interaction network and biochemical pathway? Food Chem 2023; 426:136664. [PMID: 37352708 DOI: 10.1016/j.foodchem.2023.136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
New market trends of meat flavor, tenderness, and color quality indicators have prompted the research on meat preservation as a crucial topic to received attention. Present research about the effects of irradiation, cold plasma technology on meat is incomplete. There are strongly recommended that proteomics techniques be jointly to enhance the coverage of internal meat molecules for meat research. By identifying meat proteins, detecting biological functions, and quantifying the protein segments of specific meat biomarkers, which can be provided for the information of diagnostic components in preservative technologies. The current review provides scientific findings on various control strategies: (i) combine the data-independent acquisition to provide a reference for the meat molecular mechanism and rapid identification; (ii) design molecular networks biological functions assessment model; (iii) molecular investigations of cold plasma techniques and underlying mechanisms; (iv) explore the X-rays and γ-rays treatment in meat preservation and myoglobin change mechanism more comprehensively.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| | - Xinyu Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
23
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of alternating electric field during freezing and thawing on beef quality. Food Chem 2023; 419:135987. [PMID: 37027972 DOI: 10.1016/j.foodchem.2023.135987] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/12/2023] [Accepted: 03/17/2023] [Indexed: 04/09/2023]
Abstract
Alternating electric field (AEF) technology was used during freezing-thawing-aging (FA) of beef aged for 0, 1, 3, 5 and 7 days. Color, lipid oxidation, purge loss, cooking loss, tenderness, and T2 relaxation time were determined for frozen-thawed-aged beef with AEF (AEF + FA) or without AEF (FA) and compared to aged only (OA) controls. FA increased purge loss, cooking loss, shear force values and lipid oxidation (P < 0.05) but decreased a* values compared with AEF + FA treatment. It also exacerbated the spaces between muscle fibers and contributed to the transformation of immobile water to free water. AEF served to maintain meat quality by reducing purge loss, cooking loss and increasing meat tenderness and maintaining color and lipid oxidation only in steak that was frozen before aging. This most likely occurred due to AEF increasing the speed of freezing and thawing and by reducing the space between muscle fibers compared to FA alone.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
24
|
Yang C, Wu G, Li Y, Zhang C, Liu C, Li X. Effect of Low-Voltage Electrostatic Field on Oxidative Denaturation of Myofibrillar Protein from Lamb-Subjected Freeze–Thaw Cycles. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
25
|
Change of the frozen storage quality of concentrated Mongolian milk curd under the synergistic action of ultra-high pressure and electric field. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
26
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. A comprehensive review of the principles, key factors, application, and assessment of thawing technologies for muscle foods. Compr Rev Food Sci Food Saf 2023; 22:107-134. [PMID: 36318404 DOI: 10.1111/1541-4337.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
For years, various thawing technologies based on pressure, ultrasound, electromagnetic energy, and electric field energy have been actively investigated to minimize the amount of drip and reduce the quality deterioration of muscle foods during thawing. However, existing thawing technologies have limitations in practical applications due to their high costs and technical defects. Therefore, key factors of thawing technologies must be comprehensively analyzed, and their effects must be systematically evaluated by the quality indexes of muscle foods. In this review, the principles and key factors of thawing techniques are discussed, with an emphasis on combinations of thawing technologies. Furthermore, the application effects of thawing technologies in muscle foods are systematically evaluated from the viewpoints of eating quality and microbial and chemical stability. Finally, the disadvantages of the existing thawing technologies and the development prospects of tempering technologies are highlighted. This review can be highly instrumental in achieving more ideal thawing goals.
Collapse
Affiliation(s)
- Yuanlv Zhang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- School of Food & Wine, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
27
|
Han J, Sun Y, Zhang T, Wang C, Xiong L, Ma Y, Zhu Y, Gao R, Wang L, Jiang N. The preservable effects of ultrasound-assisted alginate oligosaccharide soaking on cooked crayfish subjected to Freeze-Thaw cycles. ULTRASONICS SONOCHEMISTRY 2023; 92:106259. [PMID: 36502681 PMCID: PMC9758566 DOI: 10.1016/j.ultsonch.2022.106259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 05/31/2023]
Abstract
To improve the quality of cooked and frozen crayfish after repeated freeze-thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze-thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 μm2 and 113.73 μm2, and average diameter of the ice crystals was 5.83 μm and 8.14 μm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..
Collapse
Affiliation(s)
- Jiping Han
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yingjie Sun
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Tao Zhang
- College of Food Science and Engineering, Nanjing University of Finance & Economics, Nanjing 210014, China.
| | - Cheng Wang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Lingming Xiong
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yanhong Ma
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Yongzhi Zhu
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China
| | - Ruichang Gao
- College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China
| | - Ning Jiang
- Institute of Farm Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; College of Food and Bioengineering, Jiangsu University, Zhenjiang 212013, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Areas, Nanjing 210014, China.
| |
Collapse
|
28
|
Role of Intramuscular Connective Tissue in Water Holding Capacity of Porcine Muscles. Foods 2022; 11:foods11233835. [PMID: 36496643 PMCID: PMC9738884 DOI: 10.3390/foods11233835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This study evaluated the influence of intramuscular connective tissue (IMCT) on structural shrinkage and water loss during cooking. Longissimus thoracis (LT), semimembranosus (SM) and semitendinosus (ST) muscles were cut and boiled for 30 min in boiling water, followed by detection of water holding capacity (WHC), tenderness, fiber volume shrinkage and protein denaturation. RESULTS Compared with LT and SM, ST had the best WHC and lowest WBSF and area shrinkage ratio. The mobility of immobilized water (T22) was key to holding the water of meat. ST contained the highest content of total and heat-soluble collagen. On the contrary, ST showed the lowest content of cross-links and decorin, which indicate the IMCT strength of ST is weaker than the other two. The heat-soluble collagen is positively correlated to T22. CONCLUSIONS The shrinkage of heat-insoluble IMCT on WHC and WBSF may partly depend on the structural strength changes of IMCT components rather than solely caused by quantitative changes of IMCT.
Collapse
|
29
|
On the emerging of thawing drip: Role of myofibrillar protein renaturation. Food Chem 2022; 393:133398. [PMID: 35689925 DOI: 10.1016/j.foodchem.2022.133398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/22/2022]
Abstract
This study aimed to facilitate the understanding on the origin of thawing drip under different freezing rate. Eventually we observed significantly greater thaw loss produced by slow freezing (8.58%) as compared to fast freezing (6.41%) after 24 h of thawing. Back to the freezing, ice crystallization induced decline in pH and the cold denaturation of myofibrillar protein. However, independent of freezing rate, we noticed protein renaturation with pH restoring during thawing, evidenced by the decreasing surface hydrophobicity, increasing solubility and thermal stability, and gradually stabilized secondary structure. Meanwhile, the water-holding of myofibrils increased with thawing process along with the rising water mobility. Under fast freezing, the results indicated less extensive protein cold denaturation and lower water mobility during thawing. Besides, we proposed that the microenvironment of lower ionic strength in fast freezing should benefit the protein renaturation and water re-absorption, ultimately contributed to lower thaw loss.
Collapse
|
30
|
Wu G, Yang C, Bruce HL, Roy BC, Li X, Zhang C. Effects of Alternating Electric Field Assisted Freezing-Thawing-Aging Sequence on Data-Independent Acquisition Quantitative Proteomics of Longissimus dorsi Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12990-13001. [PMID: 36166831 DOI: 10.1021/acs.jafc.2c04207] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This study was designed to investigate the differences in the proteomes of bovine Longissimus dorsi (LD) muscle during an alternating electric field (AEF)-assisted freezing-thawing-aging sequence based on a data-independent acquisition strategy. When compared to that of the only postmortem aging (OA) group, the meat quality of the freezing-thawing-aging sequence (FA) and AEF-assisted freezing-thawing-aging sequence (EA) groups showed a declining trend. However, the group assisted by AEF was significantly enhanced in color, water-holding capacity, and tenderness. Three hundred fifty-two proteins in LD muscle were differentially abundant proteins (DAPs) among FA, EA, and OA treatments. Furthermore, among the 40 DAPs in the FA versus EA comparison, 5 DAPs with variable importance in projection scores higher than 1 were identified as biochemical markers of beef quality. Bioinformatic analysis revealed that most of these proteins were involved in structural constituents of ribosome and catalytic activity. These results provide a basis for further understanding the quality of beef following a freezing-thawing-aging sequence assisted by AEF.
Collapse
Affiliation(s)
- Guangyu Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Chuan Yang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Heather L Bruce
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Bimol C Roy
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AlbertaT6G 2P5, Canada
| | - Xia Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| | - Chunhui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing100193, P.R. China
| |
Collapse
|
31
|
Zhu M, Li H, Xing Y, Ma C, Peng Z, Jiao L, Kang Z, Zhao S, Ma H. Understanding the influence of fluctuated low-temperature combined with high-humidity thawing on gelling properties of pork myofibrillar proteins. Food Chem 2022; 404:134238. [DOI: 10.1016/j.foodchem.2022.134238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
|
32
|
Qian S, Li X, Liu C, Zhang C, Blecker C. Proteomic changes involved in water holding capacity of frozen bovine longissimus dorsi muscles based on DIA strategy. J Food Biochem 2022; 46:e14330. [PMID: 35848392 DOI: 10.1111/jfbc.14330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
As freeze/thaw procedure leads to inevitable drip loss, elucidation of mechanism on dynamic changes in water holding capacity (WHC) of muscle is urgently needed. In this study, the proteomic profile by DIA-based strategy, muscle microstructure, water mobility, and WHC indices of bovine longissimus dorsi muscles were investigated under different freezing conditions as well as the correlations among them. Results indicated that slow freezing (SF) sample exhibited significantly higher water mobility, thaw loss, total loss, and shear force value than the samples subjected to fast freezing (FF) and non-frozen control (CON). According to the protein profile, we have identified 272 differential abundance proteins (DAPs), in which more significant proteome changes were found in SF/CON samples as compared with FF/CON. Among the 132 DAPs in FF/SF comparison, correlation analysis revealed that MYL3, DES, SYNE2, EXR, RPL35A, RPS6, and Hsp40 were closely correlated with T23 , thaw loss, and total loss. Accordingly, we considered those seven proteins as potential biomarkers related to WHC of frozen muscle. Our study should give a further understanding on mechanisms behind the various WHC of muscle when subjected to different freezing conditions. PRACTICAL APPLICATIONS: Freezing plays a key role in the preservation method for meat and meat products. However, the drip loss during freezing and subsequent thawing procedure causes considerable economic and nutritional losses. To minimize the losses, elucidation of mechanism on the mechanism of thaw loss formation is urgently needed. DIA-based proteomics is a novel, robust method that provides further understanding on the mechanisms behind the dynamic changes in water holding capacity of muscle. The screened protein biomarkers in frozen muscle would play key roles in the development of WHC, especially for the thaw loss formation. Through this perspective, we can explain the origin of thaw loss and the variation under different freezing conditions, which should provide the meat industries with theoretical basis for reducing losses.
Collapse
Affiliation(s)
- Shuyi Qian
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China.,Unit of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Xia Li
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China
| | - Chengjiang Liu
- Institute of Agro-Products Processing Science and Technology, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Chunhui Zhang
- Chinese Academy of Agricultural Sciences, Institute of Food Science and Technology, Beijing, China
| | - Christophe Blecker
- Unit of Food Science and Formulation, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
33
|
Ultrasonic-assisted flowing water thawing of frozen beef with different frequency modes: Effects on thawing efficiency, quality characteristics and microstructure. Food Res Int 2022; 157:111484. [DOI: 10.1016/j.foodres.2022.111484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/24/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022]
|
34
|
A Novel Synergistic Freezing Assisted by Infrared Pre-dehydration Combined with Magnetic Field: Effect on Freezing Efficiency and Thawed Product Qualities of Beef. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02825-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|