1
|
Sun H, Fan R, Fang R, Shen S, Wang Y, Fu J, Hou R, Sun R, Bao S, Chen Q, Yue P, Gao X. Dynamics changes in metabolites and pancreatic lipase inhibitory ability of instant dark tea during liquid-state fermentation by Aspergillus niger. Food Chem 2024; 448:139136. [PMID: 38581964 DOI: 10.1016/j.foodchem.2024.139136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Instant dark tea (IDT), prepared by liquid-state fermentation using Aspergillus niger, is known for its high theabrownins content and lipid-lowering effect. To explore the impact of fungal fermentation on IDT compositions and its pancreatic lipase inhibitory ability (PLIA), untargeted and targeted metabolomic analysis were applied to track the changes of metabolites over a 9-day fermentation period, and correlation analysis was then conducted between metabolites and PLIA of IDT. There were 54 differential metabolites exhibited significant changes from day 3 to day 5 of fermentation. The concentrations of theabrownins and caffeine increased during fermentation, while phenols and free amino acids decreased. The PLIA of IDT samples significantly increased from day 5 to day 9 of fermentation. Theabrownins not only positively correlated with the PLIA but also exhibited a high inhibition rate. These findings provide a theoretical basis to optimize the production of IDT as functional food ingredient.
Collapse
Affiliation(s)
- Haoran Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Ranqin Fan
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jialin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rui Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Runchen Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shinuo Bao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Pengxiang Yue
- Damin Foodstuff (Zhangzhou) Co., Ltd., Zhangzhou, Fujian 363000, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
2
|
Zhou H, Liu Y, Wu Q, Zhang X, Wang H, Lei P. The manufacturing process provides green teas with differentiated nonvolatile profiles and influences the deterioration of flavor during storage at room temperature. Food Chem X 2024; 22:101371. [PMID: 38633742 PMCID: PMC11021834 DOI: 10.1016/j.fochx.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Hundreds of green tea products are available on the tea market and exhibit different characteristics. In the present study, seven types of green tea were processed, and their nonvolatile profiles were analyzed by liquid chromatography-mass spectrometry. Non-spreading green tea contained higher concentrations of catechins and flavonoid glycosides, but lower concentrations of amino acids, caffeine, and theaflavins. Non-rolling green teas with a straight appearance contained higher concentrations of flavonoid glycosides and theaflavins. In contrast, leaf-rolling green teas contained much lower concentrations of flavonoid glycosides and catechins. These seven green tea qualities all decreased following prolonged storage, concurrent with increasing concentrations of proanthocyanidins, catechins dimers, theaflavins, and organic acids. The leaf-rolling green teas exhibited reduced levels of deterioration during storage in terms of their nonvolatile profile and sensory quality. Findings show that moderate destruction on tea leaves during green tea processing is beneficial to both tea flavor and quality maintenance during storage.
Collapse
Affiliation(s)
- Hanchen Zhou
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Yaqin Liu
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Qiong Wu
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei 230022, China
| | - Xiaolei Zhang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Hui Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Pandeng Lei
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| |
Collapse
|
3
|
Sun Q, Wu F, Wu W, Yu W, Zhang G, Huang X, Hao Y, Luo L. Identification and quality evaluation of Lushan Yunwu tea from different geographical origins based on metabolomics. Food Res Int 2024; 186:114379. [PMID: 38729702 DOI: 10.1016/j.foodres.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.
Collapse
Affiliation(s)
- Qifang Sun
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Furu Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wei Wu
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Wenjie Yu
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Xueyong Huang
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang 330031 China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health (School of Food and Health, Beijing Technology and Business University), Ministry of Education, Beijing 100048, China.
| |
Collapse
|
4
|
Quan S, Wen M, Xu P, Chu C, Zhang H, Yang K, Tong S. Efficient screening of pancreatic lipase inhibitors from Rheum palmatum by affinity ultrafiltration-high-performance liquid chromatography combined with high-resolution inhibition profiling. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:540-551. [PMID: 38053479 DOI: 10.1002/pca.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Pancreatic lipase is one of the most important key targets in the treatment of obesity. Inhibition of pancreatic lipase can effectively reduce lipid absorption and treat obesity and other related metabolic disorders. OBJECTIVES The goal of this study is the efficient screening of pancreatic lipase inhibitors in the root and rhizome of Rheum palmatum using affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) combined with high-resolution inhibition profiling (HRIP). METHODS Potential pancreatic lipase ligands and pancreatic lipase inhibitors in ethyl acetate fraction of R. palmatum were screened using AUF-HPLC and HRIP, respectively. All screened compounds were identified by HPLC- quadrupole time-of-flight (Q-TOF)/MS. Eight compounds were screened out by both AUF-HPLC and HRIP, and six compounds were screened out by either AUF-HPLC or HRIP alone. The pancreatic lipase inhibitory activities of all screened compounds were verified by enzyme inhibition assay and molecular docking. RESULTS Five new potent pancreatic lipase inhibitors were discovered, namely procyanidin B5 3,3'-di-O-gallate (IC50 = 0.06 ± 0.01 μM), 1,6-di-O-galloyl-2-O-cinnamoyl-β-D-glucoside (IC50 = 12.83 ± 0.67 μM), 1-O-(1,3,5-trihydroxy)phenyl-2-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 17.84 ± 1.33 μM), 1,2-di-O-galloyl-6-O-cinnamoyl-β-D-glucoside (IC50 = 18.39 ± 1.52 μM), and 4-(4'-hydroxyphenyl)-2-butanone-4'-O-β-D-(2"-O-galloyl-6"-O-cinnamoyl)-glucoside (IC50 = 2.91 ± 0.40 μM). It was found that procyanidin B5 3,3'-di-O-gallate showed higher pancreatic lipase inhibitory activity than the positive control orlistat (IC50 = 0.12 ± 0.02 μM). CONCLUSION The combination of affinity ultrafiltration-high-performance liquid chromatography (AUF-HPLC) and high-resolution inhibition profiling (HRIP) could reduce the risk of false-negative screening and missed screening and could achieve more efficient screening of bioactive compounds in complex natural products.
Collapse
Affiliation(s)
- Sihua Quan
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Mengyi Wen
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Ping Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Hui Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| | - Kai Yang
- College of Food Science and Engineering, Zhejiang University of Technology, Huzhou, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou, China
| |
Collapse
|
5
|
Qingyang W, Ziwei Z, Jihang H, Suhui Z, Shuling R, Xiaochun L, Shuirong Y, Yun S. Analysis of aroma precursors in Jinmudan fresh tea leaves and dynamic change of fatty acid volatile during black tea processing. Food Chem X 2024; 21:101155. [PMID: 38370302 PMCID: PMC10869310 DOI: 10.1016/j.fochx.2024.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Aroma is an important factor affecting the quality of tea. Fatty acids are one of precursors and their derived contributes to tea aroma considerably. In this study, we analyzed the fatty acids of Jinmudan fresh tea leaves in different stalk position. It was found that with shoot maturity increased, the content of PUFAs (Polyunsaturated fatty acids) was increased while the content of SFAs (Saturated fatty acids) and MUFAs (Monounsaturated fatty acids) gradually decreased. During the processing period, totally 704 kinds of compounds were identified, among them, 27 kinds of fatty acid-derived volatile compounds were selected including 6 kinds of aldehydes, 8 kinds of alcohols, 13 kinds of esters and their dynamic change were revealed. Finally, the character of aroma during main processing stages and processed tea was concluded by using a flavor wheel. This study results provide a theoretical basis for the improvement of processing and quality in Jinmudan black tea.
Collapse
Affiliation(s)
- Wu Qingyang
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhou Ziwei
- College of Life Science, Ningde Normal University, Ningde 352000, China
| | - He Jihang
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhao Suhui
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruan Shuling
- College of Life Science, Ningde Normal University, Ningde 352000, China
| | - Liu Xiaochun
- Fujian Xiangliangge Tea Ltd. Fuan, 355000, China
| | - Yu Shuirong
- Fujian Nongke Chaye Ltd. Fuan, 355000, China
| | - Sun Yun
- Key Laboratory of Tea Science in Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Wang Z, Chen B, Zhao X, Li S, Fang Z, Liu Y, Zeng Z, Li C, Chen H. Probing the binding mechanism of tea polyphenols from different processing methods to anti-obesity and TMAO production-related enzymes through in silico molecular docking. Food Chem X 2024; 21:101053. [PMID: 38187945 PMCID: PMC10767370 DOI: 10.1016/j.fochx.2023.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Tea polyphenols possess anti-obesity properties and reduce TMAO levels. However, the variability of tea polyphenols under different processing methods and their preventive efficacy requires further exploration. This study systematically evaluated the antioxidant, hypoglycemic, and hypolipotropic enzyme capacities of GT, YT and DT through UPLC-ESI-MS/MS analysis of catechin profiles. OPLS, correlation analysis, and molecular docking were employed to investigate the compounds and inhibitory mechanisms targeting hypoglycemic, hypolipidemic, and TMAO-producing enzymes. GT exhibited significantly lower IC50 values for biological activity and higher catechins contents compared to YT and DT (p < 0.05). Strong positive correlations were observed between EGCG, CG, and ECG and biological activities (r ≥ 7.4, p < 0.001). Molecular docking results highlighted the establishment of stable hydrogen bonds and hydrophobic interactions between EGCG, CG, ECG, and the receptor. These findings contribute novel insights into the mechanisms by which tea polyphenols prevent obesity and inhibit TMAO production.
Collapse
Affiliation(s)
- Zhuo Wang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Bin Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xinyi Zhao
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| |
Collapse
|
7
|
Zou D, Yin XL, Gu HW, Peng ZX, Ding B, Li Z, Hu XC, Long W, Fu H, She Y. Insight into the effect of cultivar and altitude on the identification of EnshiYulu tea grade in untargeted metabolomics analysis. Food Chem 2024; 436:137768. [PMID: 37862999 DOI: 10.1016/j.foodchem.2023.137768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/24/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
The accurate identification of tea grade is crucial to the quality control of tea. However, existing methods lack sufficient generalization ability in identifying tea grades due to the effect of temporal and spatial factors. In this study, we analyzed the effect of cultivar and altitude on EnshiYulu (ESYL) tea grades and established a robust model to evaluate their quality. Principal component analysis (PCA) revealed that differences in variety and elevation can mask grade differences. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) was used for grade identification of samples from different altitudes. For ESYL tea samples above and below 800 m altitude, 75 and 35 grade differentiated metabolites were discovered, with 14 common differentiated metabolites. Based on reconstructed OPLS-DA models, the grades of multi-altitude sources ESYL were discriminated with a rate > 85%. These results demonstrate the potential of a grade discrimination model based on common differential metabolites, which exhibits generalization ability.
Collapse
Affiliation(s)
- Dan Zou
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiao-Li Yin
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| | - Hui-Wen Gu
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhi-Xin Peng
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Baomiao Ding
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Zhenshun Li
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xian-Chun Hu
- College of Life Sciences, College of Chemistry and Environmental Engineering, College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Mei S, Chen X. Combination of HPLC–orbitrap‐MS/MS and network pharmacology to identify the anti‐inflammatory phytochemicals in the coffee leaf extracts. FOOD FRONTIERS 2023; 4:1395-1412. [DOI: 10.1002/fft2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIn this study, we investigated the phytochemical compositions and the associated anti‐inflammatory activity of coffee leaf fractions prepared by sequential solvent extraction using high‐performance liquid chromatography–orbitrap‐tandem mass spectrometry (HPLC–orbitrap‐MS/MS) combined with network pharmacology. The results showed that the ethyl acetate fraction (EAC‐L) had the highest nitric oxide (NO), ABTS, and DPPH free radical scavenging abilities due to the higher concentrations of mangiferin, rutin, 3,5‐dicaffeoylquinic acid (3,5‐diCQA), and 4,5‐diCQA. The extraction solvents had the greatest impact on the anti‐inflammatory activity of coffee leaf fractions, whereas the processing method had the most significant effect on the antioxidant activity of these fractions. Untargeted metabolomics analysis using HPLC–orbitrap‐MS/MS indicated that palmitic acid, 3,4‐dihydroxybenzaldehyde, and caffeic acid may be involved in the anti‐inflammatory activity of EAC‐L fraction obtained from fresh coffee leaves. On the other hand, processed coffee leaf fraction exhibited anti‐inflammatory activity that was attributed to the presence of 9S,13R‐12‐oxophytodienoic acid, pinocembrin, and quercetin, which have high degree values associated with the inflammation network. Gene ontology and Kyoto encyclopedia of genes and genomes enrichment of network pharmacology analysis showed that these 35 differential compounds in the coffee leaf fractions affect cell transcription, apoptosis, phosphorylation, NO synthesis, phosphatidylinositide 3‐kinases‐protein kinase B (PI3K‐Akt) signaling pathway, focal adhesion, hypoxia‐inducible factor‐1, hepatitis, cancer, and so on. This result indicated that coffee leaf extract may also function as an inhibitor for inflammation‐related cancers. The findings of our research are valuable in guiding the extraction of anti‐inflammatory components from coffee leaves.
Collapse
Affiliation(s)
- Suhuan Mei
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu P. R. China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri‐Products Processing Jiangsu University Zhenjiang P. R. China
| |
Collapse
|
9
|
Jiang N, Hou S, Liu Y, Ren P, Xie N, Yuan Y, Hao Q, Liu M, Zhao Z. Combined LC-MS-based metabolomics and GC-IMS analysis reveal changes in chemical components and aroma components of Jujube leaf tea during processing. FRONTIERS IN PLANT SCIENCE 2023; 14:1179553. [PMID: 37265633 PMCID: PMC10231682 DOI: 10.3389/fpls.2023.1179553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 06/03/2023]
Abstract
Making tea from jujube leaves changed the chemical composition and aroma composition of jujube leaves. Here, Through LC-MS, GC-IMS, and GC-MS technology, we have revealed the effect of jujube leaf processing changes on metabolites. LC-MS identified 468 non-volatile metabolites, while GC-IMS and GC-MS detected 52 and 24 volatile metabolites, respectively. 109 non-volatile metabolites exhibiting more pronounced differences were screened. Most lipids and lipid-like molecules, organic acids, amino acids, and flavonoids increased significantly after processing. GC-IMS and GC-MS analysis revealed that the contents of aldehydes and ketones were significantly increased, while esters and partial alcohols were decreased after processing into jujube leaf tea. The main flavor substances of fresh jujube leaf and jujube leaf tea were eugenol and (E) - 2-Hexenal, respectively. Furthermore, amino acids and lipids were closely linked to the formation of volatile metabolites. Our study provided new insights into the changes in metabolites of jujube leaves processed into jujube leaf tea, and had great potential for industrial application. It laid a foundation for further research on fruit tree leaf tea.
Collapse
Affiliation(s)
- Nan Jiang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Shujuan Hou
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Yuye Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Peixing Ren
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Nuoyu Xie
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
| | - Qing Hao
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhihui Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, China
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, China
| |
Collapse
|
10
|
Li Q, Stautemas J, Omondi Onyango S, De Mey M, Duchi D, Tuenter E, Hermans N, Calders P, Van de Wiele T. Human gut microbiota stratified by (+)-catechin metabolism dynamics reveals colon region-dependent metabolic profile. Food Chem 2023; 408:135203. [PMID: 36565551 DOI: 10.1016/j.foodchem.2022.135203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Catechins have proven to have several health benefits, yet a huge interindividual variability occurs. The metabolic potency of the colonic microbiota towards catechin is a key determinant of this variability. Microbiota from two donors - previously characterized as a fast and a slow converter- were incubated with (+)-catechin in vitro. The robustness of in vitro metabolic profiles was verified by well-fitted human trials. The colon region-dependent and donor-dependent patterns were reflected in both metabolic features and colonic microbiota composition. Upstream and downstream metabolites were mainly detected in the proximal and distal colons, respectively, and were considered important explanatory variables for microbiota clustering in the corresponding colon regions. Higher abundances of two catechin-metabolizing bacteria, Eggerthella and Flavonifractor were found in the distal colon compared to the proximal colon and in slow converter than fast converter. Additionally, these two bacteria were enriched in treatment samples compared to sham treatment samples.
Collapse
Affiliation(s)
- Qiqiong Li
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jan Stautemas
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Stanley Omondi Onyango
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Marjan De Mey
- Center for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Dries Duchi
- Center for Synthetic Biology (CSB), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emmy Tuenter
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Nina Hermans
- Natural Products and Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Calders
- Department of Rehabilitation Sciences, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Authentication of the production season of Xinyang Maojian green tea using two-dimensional fingerprints coupled with chemometric multivariate calibration and pattern recognition analysis. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Zhang XH, Cui HN, Zheng JJ, Qing XD, Yang KL, Zhang YQ, Ren LM, Pan LY, Yin XL. Discrimination of the harvesting season of green tea by alcohol/salt-based aqueous two-phase systems combined with chemometric analysis. Food Res Int 2023; 163:112278. [PMID: 36596188 DOI: 10.1016/j.foodres.2022.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The flavor and aroma quality of green tea are closely related to the harvest season. The aim of this study was to identify the harvesting season of green tea by alcohol/salt-based aqueous two-phase system (ATPS) combined with chemometric analysis. In this paper, the single factor experiments (SFM) and response surface methodology (RSM) optimization were designed to investigate and select the optimal ATPS. A total of 180 green tea samples were studied in this work, including 86 spring tea and 94 autumn tea. After the active components in green tea samples were extracted by the optimal ethanol/(NH4)2SO4 ATPS, the qualitative and quantitative analysis was realized based on HPLC-DAD combined with alternating trilinear decomposition-assisted multivariate curve resolution (ATLD-MCR) algorithm, with satisfactory spiked recoveries (86.00 %-112.45 %). The quantitative results obtained from ATLD-MCR model were subjected to chemometric pattern recognition analysis. The constructed partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) models showed better results than the principal component analysis (PCA) model, and the R2Xcum values (>0.835) and R2Ycum (>0.937) were close to 1, the Q2cum values were greater than 0.75 (>0.933), and the differences between R2Ycum and Q2cum were not larger than 0.2, indicating excellent cross-validation prediction performance of the models. Furthermore, the classification results based on the hierarchical clustering analysis (HCA) were consistent with the PCA, PLS-DA and OPLS-DA results, establishing a good correlation between tea active components and the harvesting seasons of green tea. Overall, the combination of ATPS and chemometric methods is accurate, sensitive, fast and reliable for the qualitative and quantitative determination of tea active components, providing guidance for the quality control of green tea.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China.
| | - Hui-Na Cui
- College of Life Sciences, Yangtze University, Jingzhou 434023, China
| | - Jing-Jing Zheng
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiang-Dong Qing
- Hunan Provincial Key Laboratory of Dark Tea and Jin-hua, College of Materials and Chemical Engineering, Hunan City University, Yiyang 413049, PR China
| | - Kai-Long Yang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Ya-Qian Zhang
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Lu-Meng Ren
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Le-Yuan Pan
- Henan Key Laboratory of Biomarker Based Rapid-detection Technology for Food Safety, Food and Pharmacy College, Xuchang University, Xuchang 461000, PR China
| | - Xiao-Li Yin
- College of Life Sciences, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
13
|
Jiang L, Zheng K. Towards the intelligent antioxidant activity evaluation of green tea products during storage: A joint cyclic voltammetry and machine learning study. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
15
|
Gu WT, Li LY, Rui WJ, Diao ZW, Zhuang GD, Chen XM, Qian ZM, Wang SM, Tang D, Ma HY. Non-targeted metabolomic analysis of variation of volatile fractions of ginseng from different habitats by HS-SPME-GC-MS coupled with chemometrics. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3583-3597. [PMID: 36043471 DOI: 10.1039/d2ay01060g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cultivated ginseng (CG), transplanted ginseng (TG) and mountain cultivated ginseng (MCG) classified by the habitat type all belong to Panax ginseng and were reported to have similar types of secondary metabolites. Nonetheless, owing to the distinctly diverse habitats in which these ginseng types grow, their pharmacological effects differ. In the present study, an emerging analytical approach involving headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was established to effectively distinguish among CG, TG and MCG. First, the volatile components were analysed and identified by using the NIST library combined with measured retention indices (Kovats', RI), and a total of 78 volatile components were finally characterized, which included terpenes, alcohols, esters, aldehydes and alkynols. Furthermore, multivariate statistical approaches, principal component analysis (PCA) and orthogonal partial least-squares discrimination analysis (OPLS-DA) were subsequently utilized to screen for compounds of significance. Under optimized HS-SPME-GC-MS conditions, 12, 16, and 16 differential markers were screened in the CG-TG, CG-MCG and TG-MCG groups, respectively. Our study suggested that HS-SPME-GC-MS analysis combined with metabolomic analytical methods and chemometric techniques can be applied as potent tools to identify chemical marker candidates to distinguish CG, TG and MCG.
Collapse
Affiliation(s)
- Wen-Ting Gu
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Lin-Yuan Li
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
- Hutchison Whampoa Guangzhou Baiyunshan Chinese Medicine Company Limited, Guangzhou 51006, China
| | - Wen-Jing Rui
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhong-Wen Diao
- Guangzhou Forensic Science Institute, Guangzhou 51006, China
| | - Guo-Dong Zhuang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiao-Mei Chen
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | | | - Shu-Mei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Dan Tang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hong-Yan Ma
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM and Engineering & Technology Research Center for Chinese Materia Medica Quality of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Zhang Y, Cai S, Ma S, Zhao S, Yi J, Zhou L. Water Caltrop ( Trapa quadrispinosa Roxb.) Husk Improves Oxidative Stress and Postprandial Blood Glucose in Diabetes: Phenolic Profiles, Antioxidant Activities and α-Glycosidase Inhibition of Different Fractions with In Vitro and In Silico Analyses. Antioxidants (Basel) 2022; 11:antiox11101873. [PMID: 36290596 PMCID: PMC9598876 DOI: 10.3390/antiox11101873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the phenolic profiles, antioxidant activities and α-glycosidase inhibitory activities of three different phenolic fractions from water caltrop (Trapa quadrispinosa Roxb.) husk and to further explore the predominant compounds and their mechanisms on α-glycosidase inhibition by virtual screening and molecular dynamics. A total of 29 substances were identified and quantified in this study. Tannins were the main constituents of water caltrop husk extract. All of the free phenolic (FP), esterified phenolic (EP) and insoluble-bound phenolic (BP) fractions exhibited good antioxidant activities, and the BP had the highest radical scavenging ability with IC50 values of 0.82 ± 0.12 μg/mL (ABTS) and 1.15 ± 0.02 μg/mL (DPPH), respectively (p < 0.05). However, compared with the EP and BP, the FP showed the strongest inhibition towards the α-glycosidase and the IC50 value of FP was 1.43 ± 0.12 μg/mL. The 1,2,6-trigalloylglucose and α-glycosidase complex had better root mean square deviations (RMSD) stability via molecular dynamics simulation study. Results obtained from this study may provide a good potential natural resource for the improvement of oxidative stress injury and blood glucose control in diabetes mellitus, which could expand the use of water caltrop husk and improve its economic value.
Collapse
|
17
|
Liang L, Liu Y, Liu Y, Gan S, Mao X, Wang Y. Untargeted metabolomics analysis based on HS-SPME-GC-MS and UPLC-Q-TOF/MS reveals the contribution of stem to the flavor of Cyclocarya paliurus herbal extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Zhou H, Liu Y, Yang J, Wang H, Ding Y, Lei P. Comprehensive profiling of volatile components in Taiping Houkui green tea. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Sun Z, Chen D, Zhu L, Zhao Y, Lin Z, Li X, Dai W. A comprehensive study of the differences in protein expression and chemical constituents in tea leaves (Camellia sinensis var. sinensis) with different maturity using a combined proteomics and metabolomics method. Food Res Int 2022; 157:111397. [DOI: 10.1016/j.foodres.2022.111397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
20
|
Kuo PC, T. C. Tzen J, Pripdeevech P, Khruengsai S, Li YC, Wang CH. Characterization of Teaghrelin-Like Compounds from Tea Cultivars in Thailand and in silico Study of Their Bioactivity. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|