1
|
Pirrone A, Naselli V, Prestianni R, Gugino IM, Viola E, Amato F, Porrello A, Todaro A, Maggio A, Bruno M, Settanni L, Radici C, Guzzon R, Schicchi R, Moschetti G, Francesca N, Alfonzo A. Exploring the diversity of native Lachancea thermotolerans strains isolated by sugary extracts from manna ash to modulate the flavour of sour beers. Food Res Int 2025; 199:115328. [PMID: 39658188 DOI: 10.1016/j.foodres.2024.115328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024]
Abstract
The craft beer industry is becoming increasingly interested in the production of innovative beers. A novel approach, designated as "primary souring," employs diverse yeast species, including Lachancea thermotolerans, to produce sour beers. Furthermore, there is a growing interest in utilising unconventional yeasts to produce beers with distinctive flavours. For the first time, yeast strains of L. thermotolerans, isolated from sugar extracts of manna ash, were evaluated for their ability to produce and improve the sensory properties of sour beers. In particular, five strains exhibited notable resistance to ethanol, sugar and hops, as well as comparable lactic acid production (ranging from 0.33 to 0.45 g/L). Experimental beers produced using MNF105 (T1) were perceived as the most "fruity". This is the first study to examine the impact of this novel indigenous strain, derived from unconventional matrixes such as manna, on the organoleptic quality of craft sour beers. Consequently, elevated levels of ethyl decanoate, ethyl hexanoate, ethyl octanoate and ethyl nonanoate were found in T1 beer, exceeding the perception threshold. The ability of this strain to perform light bio-acidification is a valuable feature for the development of new brewing techniques, particularly for the creation of sour beers with balanced acidity and innovative flavours. The yeast L. thermotolerans MNF105, which is related to manna, has excellent technological properties and is a promising starter for beer production with the ability to light bio-acidify and modulate flavour.
Collapse
Affiliation(s)
- Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Rosario Prestianni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Enrico Viola
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Filippo Amato
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Porrello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Antonella Maggio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, Parco d'Orleans II, Palermo, Bldg. 17, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Carmelo Radici
- Birra Epica, Area Artigianale, C/da Filippello 98069, SINAGRA (ME), Sicily, Italy
| | - Raffaele Guzzon
- Fondazione Edmund Mach, Via Mach 1, TN, San Michele all'Adige 38010, Italy
| | - Rosario Schicchi
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy.
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze Bldg. 5, Ent. C, 90128 Palermo, Italy
| |
Collapse
|
2
|
Iara Gomes de Oliveira L, Karoline Almeida da Costa W, de Candido de Oliveira F, França Bezerril F, Priscila Alves Maciel Eireli L, Dos Santos Lima M, Fontes Noronha M, Cabral L, Wagner R, Colombo Pimentel T, Magnani M. Ginger beer derived from back-slopping: Volatile compounds, microbial communities on activation and fermentation, metabolites and sensory characteristics. Food Chem 2024; 435:137640. [PMID: 37804728 DOI: 10.1016/j.foodchem.2023.137640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Physicochemical parameters, microbial diversity using sequencing and amplicon, and metabolite concentrations from Ginger Bug and Ginger Beer were characterized. Furthermore, the sensory aspects of the beverage were determined. The longer ginger bug activation time (96 h) resulted in higher production of organic acids and alcohols, increased phenolic and volatile compounds concentration, greater microbial diversity, and increased lactic acid bacteria and yeasts. In the same way, the longer fermentation time (14 days) of ginger beer resulted in higher ethanol content, volatile compounds, and phenolic compounds, in addition to better sensory characteristics. Our results showed that ginger beer produced with ginger bug and fermented for 14 days showed better volatile and phenolic compound profiles, physicochemical parameters, microbial diversity, and sensory characteristics.
Collapse
Affiliation(s)
- Louise Iara Gomes de Oliveira
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | - Whyara Karoline Almeida da Costa
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Fabrícia França Bezerril
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, Brazil
| | - Melline Fontes Noronha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Lucélia Cabral
- Institute of Biosciences, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Roger Wagner
- Department of Food Science and Technology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
3
|
Moreira-Ramos S, Saavedra-Torrico J, G-Poblete C, Godoy Olivares L, Sangorrin M, Ganga MA. Screening of native Saccharomyces cerevisiae strains from Chile for beer production. Front Microbiol 2024; 15:1345324. [PMID: 38404599 PMCID: PMC10884464 DOI: 10.3389/fmicb.2024.1345324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Beer is one of the most consumed alcoholic drinks in the world, and this industry is a growing market that demands different properties to satisfy new consumers. The yeasts are used in different fermented beverages to contribute to new flavors. However, yeast strains used in the beer industry are limited so far, thus the diversity of flavors is very restricted. Therefore, the use of native yeast strains has been taking more importance with the purpose of conferring differentiated organoleptic properties to the product. Based on this observation the potentiality of native Saccharomyces cerevisiae strains obtained from different localities in Chile was researched. Methods In this work was selected those strains that produced the highest ethanol concentration (nearly 6% v/v), consumed the highest amounts of sugars, and produced the lowest amounts of organic acids in the resulting beers. Finally, we did a beer tasting to select those strains that added different flavors to the final beer compared with a commercial strain used. Results and discussion In this study, two native strains that produced fruity descriptors are described, which could be used in the future in brewing, craft or industrial production.
Collapse
Affiliation(s)
- Sandra Moreira-Ramos
- Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Camila G-Poblete
- Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| | - Liliana Godoy Olivares
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcela Sangorrin
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN), Consejo Nacional de Investigaciones Científicas y Tecnológicas- Universidad Nacional del Comahue, Neuquén, Argentina
| | - María Angélica Ganga
- Departamento en Ciencia y Tecnología de los Alimentos, Facultad Tecnológica, Estación Central, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
4
|
Jiang L, Song J, Qi M, Cao Y, Li Y, Xu M, Li L, Zhang D, Wang C, Li H. Carbon and nitrogen sources consumption by ale and lager yeast strains: a comparative study during fermentation. Appl Microbiol Biotechnol 2023; 107:6937-6947. [PMID: 37704770 DOI: 10.1007/s00253-023-12778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The rapid and efficient consumption of carbon and nitrogen sources by brewer's yeast is critical for the fermentation process in the brewing industry. The comparison of the growth characterizations of typical ale and lager yeast, as well as their consumption preference to carbon and nitrogen sources were investigated in this study. Results showed that the ale strain grew faster and had a more extended stationary phase than the lager strain. However, the lager strain was more tolerant to the stressful environment in the later stage of fermentation. Meanwhile, the ale and lager yeast strains possessed varying preferences for metabolizing the specific fermentable sugar or free amino acid involved in the wort medium. The lager strain had a strong capacity to synthesize the extracellular invertase required for hydrolyzing sucrose as well as a strong capability to metabolize glucose and fructose. Furthermore, the lager strain had an advantage in consuming Lys, Arg, Val, and Phe, whereas the ale strain had a higher assimilation rate in consuming Tyr. These findings provide valuable insights into selecting the appropriate brewer's yeast strain based on the wort components for the industrial fermentation process. KEY POINTS: • The lager strain is more tolerant to the stressful environment. • The lager strain has the great capability to synthesize the extracellular invertase. • The assimilation efficiency of free amino acid varies between ale and lager.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yuechao Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Yueming Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Mei Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, China.
| |
Collapse
|
5
|
Rodriquez-Saavedra M, Tamargo A, Molinero N, Relaño de la Guía E, Jiménez-Arroyo C, Bartolomé B, González de Llano D, Victoria Moreno-Arribas M. Simulated gastrointestinal digestion of beer using the simgi® model. Investigation of colonic phenolic metabolism and impact on human gut microbiota. Food Res Int 2023; 173:113228. [PMID: 37803545 DOI: 10.1016/j.foodres.2023.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Beer is a source of bioactive compounds, mainly polyphenols, which can reach the large intestine and interact with colonic microbiota. However, the effects of beer consumption in the gastrointestinal function have scarcely been studied. This paper reports, for the first time, the in vitro digestion of beer and its impact on intestinal microbiota metabolism. Three commercial beers of different styles were subjected to gastrointestinal digestion using the simgi® model, and the digested fluids were further fermented in triplicate with faecal microbiota from a healthy volunteer. The effect of digested beer on human gut microbiota was evaluated in terms of microbial metabolism (short-chain fatty acids (SCFAs) and ammonium ion), microbial diversity and bacterial populations (plate counting and 16S rRNA gene sequencing). Monitoring beer polyphenols through the different digestion phases showed their extensive metabolism, mainly at the colonic stage. In addition, a higher abundance of taxa related to gut health, especially Bacteroides, Bifidobacterium, Mitsuokella and Succinilasticum at the genus level, and the Ruminococcaceae and Prevotellaceae families were found in the presence of beers. Regarding microbial metabolism, beer feeding significantly increased microbial SCFA production (mainly butyric acid) and decreased ammonium content. Overall, these results evidence the positive actions of moderate beer consumption on the metabolic activity of colonic microbiota, suggesting that the raw materials and brewing methods used may affect the beer gut effects.
Collapse
Affiliation(s)
| | - Alba Tamargo
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Natalia Molinero
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | - Cristina Jiménez-Arroyo
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Begoña Bartolomé
- Institute of Food Science Research (CIAL), CSIC-UAM, c/ Nicolás Cabrera 9, 28049 Madrid, Spain
| | | | | |
Collapse
|
6
|
Cirlincione F, Pirrone A, Gugino IM, Todaro A, Naselli V, Francesca N, Alfonzo A, Mirabile G, Ferraro V, Balenzano G, Gargano ML. Technological and Organoleptic Parameters of Craft Beer Fortified with Powder of the Culinary-Medicinal Mushroom Pleurotus eryngii. J Fungi (Basel) 2023; 9:1000. [PMID: 37888256 PMCID: PMC10608011 DOI: 10.3390/jof9101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Beer is one of the oldest and most popular alcoholic beverages and is currently consumed worldwide. The various components used in the brewing process have a physiological impact on the consumer and current research aims to improve its technological and functional properties through the addition of natural compounds (plants or mushrooms). In this work, the addition of two different amounts (5 and 10 g/L) of Pleurotus eryngii var. eryngii in powder form added at different production stages (PRE and POST alcoholic fermentation) showed the improvement in yeast viability during the alcoholic fermentation, increased the alcoholic content, and improved the sensorial profile. Regarding the organoleptic profile in the experimental samples, cocoa/chocolate and mushroom aromas were found and the samples PRE10 and POST5 received the best ratings with respect to all evaluated parameters.
Collapse
Affiliation(s)
- Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Antonino Pirrone
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Vincenzo Naselli
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Antonio Alfonzo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Giulia Mirabile
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (F.C.); (A.P.); (I.M.G.); (A.T.); (V.N.); (N.F.); (A.A.)
| | - Valeria Ferraro
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, University Campus “Ernesto Quagliariello”, Via E. Orabona 4, 70125 Bari, Italy
| | - Gaetano Balenzano
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| | - Maria Letizia Gargano
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
| |
Collapse
|
7
|
Bezerril FF, Pimentel TC, de Aquino KP, Schabo DC, Rodrigues MHP, Dos Santos Lima M, Schaffner DW, Furlong EB, Magnani M. Wheat craft beer made from AFB 1-contaminated wheat malt contains detectable mycotoxins, retains quality attributes, but differs in some fermentation metabolites. Food Res Int 2023; 172:112774. [PMID: 37689839 DOI: 10.1016/j.foodres.2023.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 09/11/2023]
Abstract
Levels of aflatoxin B1 (AFB1) were measured during the production of wheat craft beer made with wheat malt contaminated with AFB1 (1.23 µg/kg). A wheat craft beer made with non-contaminated wheat malt was produced for comparison purposes. AFB1 was measured after mashing (malt after the mashing process), and in spent grain (spent grains are filtered to collect the wort - remaining sugar-rich liquid), sweet wort, green beer, spent yeast, and in beer. Physicochemical parameters (pH, titratable acidity, color parameters, total soluble solids), sugars, organic acids, alcohols, and phenolics were evaluated after mashing, and in sweet wort, green beer, and beer samples. Density and yeast counts were determined over 120 h of sweet wort fermentation every 24 h. The AFB1 levels in the final beer were 0.22 µg/L, while the spent grains and spent yeasts contained 0.71 ± 0.17 and 0.11 ± 0.03 µg/kg of AFB1, respectively. AFB1 contamination did not influence the final product's physicochemical parameters, density during fermentation, fructose, or glycerol content. Higher yeast counts were observed during the first 48 h of non-contaminated wheat craft beer fermentation, with higher ethanol, citric acid, and propionic acid contents and lower glucose, malic acid, and lactic acid contents compared with beer contaminated with AFB1. Non-contaminated wheat craft beer also had higher concentrations of gallic acid, chlorogenic acid, catechin, procyanidin A2, and procyanidin B1. AFB1 contamination of wheat malt may not affect basic quality parameters in wheat craft beer but can influence the final product's organic acid and phenolic contents. Our findings show that if wheat craft beer is made with contaminated malt, AFB1 can remain in the final product and may pose a risk to consumers.
Collapse
Affiliation(s)
- Fabrícia França Bezerril
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | | | - Karine Peixoto de Aquino
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | - Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado Do Oeste, RO 76993-000, Brazil
| | - Marcy Heli Paiva Rodrigues
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Institute Federal of Sertão Pernambucano, Petrolina, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Eliana B Furlong
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
8
|
Da-Silva JR, Correia-Lima L, Fernandes G, Ribeiro-Filho N, Madruga MS, Lima MDS, Muniz MB. Mandacaru fruit pulp (Cereus jamacaru D.C.) as an adjunct and its influence on Beer properties. Food Chem 2023; 406:135066. [PMID: 36462364 DOI: 10.1016/j.foodchem.2022.135066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Beer is a complex product due to its raw materials (malt, hops, yeast, and water). Beer production can also use other matters as adjuncts. This study investigated the influence of Mandacaru fruit pulp (MFP) as an adjunct on volatile and phenolic compounds, and antioxidant properties of Beer. Worts were produced using four treatments including a control. Fermentations were conducted for 10 days at 18 °C using yeast Lachancea spp, maturated at 3 °C for 15 days, and bottled at 20 °C for 15 days. All compounds were evaluated by HPLC, and GC-MS. Worts' supplementation influenced the volatile and phenolic profile and increased the antioxidant activity of wort and Beer. Beers A (100 g of MFP/L), B (200 g of MFP/L), and C (300 g of MFP/L) presented higher ethanol and glycerol content. Beer C contained the highest antioxidant activity and total phenolic content. Worts' supplemented with MFP increased aroma formation.
Collapse
Affiliation(s)
- José Renato Da-Silva
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Lys Correia-Lima
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Givanildo Fernandes
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Normando Ribeiro-Filho
- DSER and PPGA/Centre for Agrarian Science, Campus II, Federal University of Paraiba, Areia, Paraiba, Brazil.
| | - Marta Suely Madruga
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão Pernambucano, Petrolina, Pernambuco, Brazil
| | - Marcelo Barbosa Muniz
- PPGCTA/Technology Center, Campus I, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| |
Collapse
|
9
|
González-Salitre L, Guillermo González-Olivares L, Antobelli Basilio-Cortes U. Humulus lupulus L. a potential precursor to human health: High hops craft beer. Food Chem 2023; 405:134959. [PMID: 36435101 DOI: 10.1016/j.foodchem.2022.134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/29/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Lourdes González-Salitre
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico
| | - Luis Guillermo González-Olivares
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, C.P. 42183, Mineral de la Reforma, Hidalgo, Mexico.
| | - Ulin Antobelli Basilio-Cortes
- Área Académica de Biotecnología Agropecuaria, Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Carretera a Delta, Ejido Nuevo León s/n, C.P. 21705 Mexicali, Baja California, Mexico.
| |
Collapse
|
10
|
Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci 2023; 6:100477. [PMID: 36935850 PMCID: PMC10020662 DOI: 10.1016/j.crfs.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023] Open
Abstract
Currently, there is greater production and consumption of craft beer due to its appreciated sensory characteristics. Unlike conventional beer, craft beers provide better health benefits due to their varied and high content of phenolic compounds (PCs) and also due to their alcohol content, but the latter is controversial. The purpose of this paper was to report on the alcoholic fraction and PCs present in craft beers and their influence on health. Despite the craft beer boom, there are few studies on the topic; there is a lot of field to explore. The countries with the most research are the United States > Italy > Brazil > United Kingdom > Spain. The type and amount of PCs in craft beers depends on the ingredients and strains used, as well as the brewing process. It was determined that it is healthier to be a moderate consumer of alcohol than to be a teetotaler or heavy drinker. Thus, studies in vitro, with animal models and clinical trials on cardiovascular and neurodegenerative diseases, cancer, diabetes and obesity, osteoporosis and even the immune system suggest the consumption of craft beer. However, more studies with more robust designs are required to obtain more generalizable and conclusive results. Finally, some challenges in the production of craft beer were detailed and some alternative solutions were mentioned.
Collapse
|
11
|
Valorization of Spent Brewer’s Yeast for the Production of High-Value Products, Materials, and Biofuels and Environmental Application. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Spent brewer’s yeast (SBY) is a byproduct of the brewing industry traditionally used as a feed additive, although it could have much broader applications. In this paper, a comprehensive review of valorization of SBY for the production of high-value products, new materials, and biofuels, as well as environmental application, is presented. An economic perspective is given by mirroring marketing of conventional SBY with innovative high-value products. Cascading utilization of fine chemicals, biofuels, and nutrients such as proteins, carbohydrates, and lipids released by various SBY treatments has been proposed as a means to maximize the sustainable and circular economy.
Collapse
|
12
|
Lachancea thermotolerans, an Innovative Alternative for Sour Beer Production. BEVERAGES 2023. [DOI: 10.3390/beverages9010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The interest in and growth of craft beer has led to an intense search for new beers and styles. The revival of traditional styles has sometimes been hampered by the use of microorganisms such as lactic acid bacteria. Therefore, studies on alternative yeasts for the production of this style of beer have increased. In this work and together with previous studies carried out with yeasts isolated from Madrid agriculture (from grapes, must, wine, vineyards and wineries), the capacity of 10 yeast strains, belonging to the genus Lachancea thermotolerans, for the production of sour beer has been determined. For this purpose, different fermentation scale-ups (100 mL, 1 L and 100 L) have been performed and their fermentation capacity, aroma compound production (33 volatile compounds by GC), organoleptic profile (trained tasting panel and consumers), melatonin production (HPLC) and antioxidant capacity have been studied. Beer fermented with yeast strain CLI 1232 showed a balanced acidity with a fruity aromatic profile and honey notes. On the other hand, the beer fermented with strain 1-8B also showed a balanced acidity, but less fruity and citric flavour than CLI 1232 strain. Finally, the yeast strain selected by the consumers (CLI 1232) was used for beer production at industrial scale and the market launch of a sour beer.
Collapse
|
13
|
Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter for “Ale” and “Lager” Craft Beer Production. Processes (Basel) 2022. [DOI: 10.3390/pr10122495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Craft breweries tend to use special raw materials and also special ingredients (spices, herbs, fruits) to typify beers, but the metabolic activities of yeasts play a primary role in defining the sensory characteristics of this beverage. Saccharomyces cerevisiae and Saccharomyces pastorianus are yeast species usually used for ale and lager beer production. The selection and use of new yeast starters with peculiar technological and enzymatic characteristics could represent the key point for the production of beers with good and distinctive organoleptic properties. In this study, the fermentative performance of S. cerevisiae 41CM yeast isolated from the vineyard environment for ale and lager craft beer production on a laboratory scale was evaluated. The commercial yeast S. cerevisiae Fermentis S-04 and S. pastorianus Weihenstephan 34/70 were used as reference strains. S. cerevisiae 41CM showed fermentative kinetics similar to commercial starters, both in lager (12 °C) and ale (20 °C) brewing. In all beers brewed, the largest percentage of volatile compounds synthesized during the fermentation were alcohols, followed by esters, terpenes, and aldehydes. In particular, S. cerevisiae 41CM starter contributed a higher relative percentage of esters in the ale beer than that detected in the lager beer, without ever synthesizing unwanted volatile compounds.
Collapse
|
14
|
Chacón-Figueroa IH, Medrano-Ruiz LG, Moreno-Vásquez MDJ, Ovando-Martínez M, Gámez-Meza N, Del-Toro-Sánchez CL, Castro-Enríquez DD, López-Ahumada GA, Dórame-Miranda RF. Use of Coffee Bean Bagasse Extracts in the Brewing of Craft Beers: Optimization and Antioxidant Capacity. Molecules 2022; 27:7755. [PMID: 36431856 PMCID: PMC9697320 DOI: 10.3390/molecules27227755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Coffee bean bagasse is one of the main by-products generated by industrial coffee production. This by-product is rich in bioactive compounds such as caffeine, caffeic and chlorogenic acid, and other phenols. The aims of this work are to optimize the extraction conditions of phenolic compounds present in coffee bean bagasse and incorporate them into stout-style craft beers, as well as to determine their effect on the phenol content and antioxidant capacity. The optimal conditions for extraction were 30% ethanol, 30 °C temperature, 17.5 mL of solvent per gram of dry sample, and 30 min of sonication time. These conditions presented a total phenol content of 115.42 ± 1.04 mg GAE/g dry weight (DW), in addition to an antioxidant capacity of 39.64 ± 2.65 μMol TE/g DW in DPPH• and 55.51 ± 6.66 μMol TE/g DW for FRAP. Caffeine, caffeic and chlorogenic acids, and other minor compounds were quantified using HPLC-DAD. The coffee bean bagasse extracts were added to the stout craft beer and increased the concentration of phenolic compounds and antioxidant capacity of the beer. This work is the first report of the use of this by-product added to beers.
Collapse
Affiliation(s)
- Isabel H. Chacón-Figueroa
- Department of Chemical-Biological Sciences, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Luis G. Medrano-Ruiz
- Department of Scientific and Technological Research, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | | | - Maribel Ovando-Martínez
- Department of Scientific and Technological Research, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Nohemí Gámez-Meza
- Department of Scientific and Technological Research, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Carmen L. Del-Toro-Sánchez
- Department of Food Research and Graduate Program, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Daniela D. Castro-Enríquez
- Department of Food Research and Graduate Program, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Guadalupe A. López-Ahumada
- Department of Food Research and Graduate Program, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| | - Ramón F. Dórame-Miranda
- Department of Food Research and Graduate Program, University of Sonora, Hermosillo C.P. 83000, Sonora, Mexico
| |
Collapse
|
15
|
Physicochemical, Electronic Nose and Tongue, Sensory Evaluation Determination Combined with Chemometrics to Characterize Ficus hirta Vahl. (Moraceae) Beer. J FOOD QUALITY 2022. [DOI: 10.1155/2022/8948603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ficus hirta Vahl. (FHV) is widely consumed because of its functional and aromatic compounds. The incorporation of adjuncts contributes to the functional and flavor properties of beers. This study aims to enrich FHV extractions to develop beers with satisfactory physicochemical, antioxidant, and sensory characteristics. As a result, beers with 0.1 g/mL (P1) and 0.067 g/mL (P3) FHV extraction showed the highest values of physicochemical properties including °Brix, antioxidant activity, foam, lightness, and color intensity. Electronic nose and tongue results show that the aroma of P1 and taste of P3 were quite different from those of other FHV beers, resulting in substantially high consumer preference. The liking drivers of FHV beers were color appearance, hop and malty odor, sweet and malty flavor, thickness, and carbonation mouthfeel. However, the astringency flavor attribute was the disliking factor for beers. The results of this study may provide some references and guidelines for the development of Ficus hirta Vahl. functional beer to control the physicochemical, antioxidative, and sensory properties of the beer.
Collapse
|
16
|
Influence of indigenous Hanseniaspora uvarum and Saccharomyces cerevisiae from sugar-rich substrates on the aromatic composition of loquat beer. Int J Food Microbiol 2022; 379:109868. [DOI: 10.1016/j.ijfoodmicro.2022.109868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
|
17
|
Silva Ferreira C, Simon M, Collin S. Why Catechin and Epicatechin from Early Hopping Impact the Color of Aged Dry-Hopped Beers while Flavan-3-ol Oligomers from Late and Dry Hopping Increase Colloidal Instability. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2062156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Carlos Silva Ferreira
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Margaux Simon
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sonia Collin
- Unité de Brasserie et des Industries Alimentaires, Louvain Institute of Biomolecular Science and Technology (LIBST), Faculté des Bioingénieurs, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|