1
|
He Y, Xiang J, Chen J, Fang S, Guo Z, Liang X. Improving Bioaccessibility and Bioavailability of Isoflavone Aglycones from Chickpeas by Germination and Forming β-Cyclodextrin Inclusion Complexes. Pharmaceutics 2023; 15:2684. [PMID: 38140025 PMCID: PMC10747479 DOI: 10.3390/pharmaceutics15122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Chickpea isoflavones have diverse pharmacological activities but with low water solubility and bioavailability. In this work, the isoflavone content in chickpeas was first increased by germination, and then the bioaccessibility and bioavailability of isoflavones in chickpea sprout extracts (CSE) were enhanced using β-cyclodextrin (β-CD) inclusion techniques. Firstly, the total content of isoflavones was increased by 182 times through sprouting, and isoflavones were presented mostly in the germ and radicle. Then, the chickpea sprout extract/β-cyclodextrin (CSE/β-CD) inclusion complex was prepared and characterized. The in vitro test showed that the cumulative release of two isoflavones, formononetin (FMN) and biochanin A (BCA), in the CSE/β-CD was significantly increased in a simulated digestive fluid. The in vivo rat pharmacokinetics demonstrated that the inclusion of FMN and BCA by β-CD effectively increased their bioavailability in rat plasma and tissues, especially in the liver. The study provides a feasible strategy for improving the bioavailability of isoflavones from chickpeas and is also beneficial to the utilization of other legume resources.
Collapse
Affiliation(s)
- Yuanfan He
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jiani Xiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| | - Jie Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; (J.C.); (S.F.)
| | - Zili Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xianrui Liang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Y.H.); (J.X.)
| |
Collapse
|
2
|
Kieliszek M, Serrano Sandoval SN. The importance of selenium in food enrichment processes. A comprehensive review. J Trace Elem Med Biol 2023; 79:127260. [PMID: 37421809 DOI: 10.1016/j.jtemb.2023.127260] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Selenium is an essential element that determines the proper life functions of human and animal organisms. The content of selenium in food varies depending on the region and soil conditions. Therefore, the main source is a properly selected diet. However, in many countries, there are shortages of this element in the soil and local food. Too low an amount of this element in food can lead to many adverse changes in the body. The consequence of this may also be the occurrence of numerous potentially life-threatening diseases. Therefore, it is very important to properly introduce methods that condition the supplementation of the appropriate chemical form of this element, especially in areas with deficient selenium content. This review aims to summarize the published literature on the characterization of different types of selenium-enriched foods. At the same time, legal regulations and prospects for the future related to the production of food enriched with this element are presented. It should be noted that there are limitations and concerns with the production of such food due to the narrow safety range between the necessary and the toxic dose of this element. Therefore, selenium has been treated with special care for a very long time. For this reason, the presented mechanisms of production processes related to increasing the scale of selenium supplementation should be constantly monitored. Appropriate monitoring and development of the technological process for the production of selenium-enriched food is very important. Such food should ensure consumer safety and repeatability of the obtained product. Understanding the mechanisms and possibilities of selenium accumulation by plants and animals is one of the most important directions in the development of modern bromatology and the science of supplementation. This is particularly important in the case of rational nutrition and supplementing the human diet with an essential element such as selenium. Food technology is facing these challenges today.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | - Sayra N Serrano Sandoval
- Tecnologico de Monterrey, Centro de Biotecnología FEMSA, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849 Monterrey, NL, Mexico
| |
Collapse
|
3
|
Dávila-Vega JP, Gastelum-Hernández AC, Serrano-Sandoval SN, Serna-Saldívar SO, Guitiérrez-Uribe JA, Milán-Carrillo J, Martínez-Cuesta MC, Guardado-Félix D. Metabolism and Anticancer Mechanisms of Selocompounds: Comprehensive Review. Biol Trace Elem Res 2022:10.1007/s12011-022-03467-1. [PMID: 36342630 DOI: 10.1007/s12011-022-03467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Selenium (Se) is an essential micronutrient with several functions in cellular and molecular anticancer processes. There is evidence that Se depending on its chemical form and the dosage use could act as a modulator in some anticancer mechanisms. However, the metabolism of organic and inorganic forms of dietary selenium converges on the main pathways. Different selenocompounds have been reported to have crucial roles as chemopreventive agents, such as antioxidant activity, activation of apoptotic pathways, selective cytotoxicity, antiangiogenic effect, and cell cycle modulation. Nowadays, great interest has arisen to find therapies that could enhance the antitumor effects of different Se sources. Herein, different studies are reported related to the effects of combinatorial therapies, where Se is used in combination with proteins, polysaccharides, chemotherapeutic agents or as nanoparticles. Another important factor is the presence of single nucleotide polymorphisms in genes related to Se metabolism or selenoprotein synthesis which could prevent cancer. These studies and mechanisms show promising results in cancer therapies. This review aims to compile studies that have demonstrated the anticancer effects of Se at molecular levels and its potential to be used as chemopreventive and in cancer treatment.
Collapse
Affiliation(s)
- Juan Pablo Dávila-Vega
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Ana Carolina Gastelum-Hernández
- Facultad de Ciencias Químico Biológicas, Programa Regional de Posgrado en Biotecnología, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, CP 80000, Culiacán, Sinaloa, Mexico
| | - Sayra N Serrano-Sandoval
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - Sergio O Serna-Saldívar
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México
| | - Janet A Guitiérrez-Uribe
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
- Escuela de Ingeniería Y Ciencias, Tecnologico de Monterrey, Reserva Territorial Atlixcáyotl, Campus Puebla, Vía Atlixcáyotl 5718, C.P. 72453, Puebla, Pue, México
| | - Jorge Milán-Carrillo
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico
| | - M Carmen Martínez-Cuesta
- Department of Food Biotechnology and Microbiology, Instituto de Investigación en Ciencias de La Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Daniela Guardado-Félix
- Escuela de Ingeniería Y Ciencias, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, México.
- Tecnologico de Monterrey, The Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, NL, Mexico.
| |
Collapse
|
4
|
Hernández-Grijalva MI, Serrano-Sandoval SN, Gutiérrez-Uribe JA, Serna-Saldivar SO, Milán-Carrillo J, Antunes-Ricardo M, Villela-Castrejón J, Guardado-Félix D. Application of protein fractions from selenized sprouted chickpeas as emulsifying agents and evaluation of their antioxidant properties. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Huang Y, Lei N, Xiong Y, Liu Y, Tong L, Wang F, Fan B, Maesen P, Blecker C. Influence of Selenium Biofortification of Soybeans on Speciation and Transformation during Seed Germination and Sprouts Quality. Foods 2022; 11:foods11091200. [PMID: 35563923 PMCID: PMC9104096 DOI: 10.3390/foods11091200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/19/2023] Open
Abstract
Selenium (Se) biofortification during seed germination is important not only to meet nutritional demands but also to prevent Se-deficiency-related diseases by producing Se-enriched foods. In this study, we evaluated effects of Se biofortification of soybeans on the Se concentration, speciation, and species transformation as well as nutrients and bioactive compounds in sprouts during germination. Soybean (Glycine max L.) seedlings were cultivated in the dark in an incubator with controlled temperature and water conditions and harvested at different time points after soaking in Se solutions (0, 5, 10, 20, 40, and 60 mg/L). Five Se species and main nutrients in the sprouts were determined. The total Se content increased by 87.3 times, and a large portion of inorganic Se was transformed into organic Se during 24 h of germination, with 89.3% of the total Se was bound to soybean protein. Methylselenocysteine (MeSeCys) and selenomethionine (SeMet) were the dominant Se species, MeSeCys decreased during the germination, but SeMet had opposite trend. Se biofortification increased contents of total polyphenol and isoflavonoid compounds and amino acids (both total and essential), especially in low-concentration Se treatment. In conclusion, Se-enriched soybean sprouts have promising potential for Se supplementation and as functional foods.
Collapse
Affiliation(s)
- Yatao Huang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Ningyu Lei
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yangyang Xiong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Yanfang Liu
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Litao Tong
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
- Correspondence:
| | - Bei Fan
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.H.); (N.L.); (Y.X.); (Y.L.); (L.T.); (B.F.)
| | - Philippe Maesen
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, TERRA Research Centre, University of Liege, 5030 Gembloux, Belgium; (P.M.); (C.B.)
| |
Collapse
|
6
|
Rico D, Peñas E, del Carmen García M, Rai DK, Martínez-Villaluenga C, Frias J, Martín-Diana AB. Development of Antioxidant and Nutritious Lentil ( Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods 2021; 10:foods10122924. [PMID: 34945474 PMCID: PMC8700479 DOI: 10.3390/foods10122924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/31/2022] Open
Abstract
Germination is an efficient and natural strategy that allows the modification of the nutritional value and the nutraceutical properties of seeds, enabling one to tailor the process according to its final use. This study aimed at optimization of germination conditions to produce novel lentil flours with improved nutritional and functional features. Response Surface Methodology (RSM) was applied to model the effect of temperature (15–27 °C) and time (1–5 days) on different nutritional and quality parameters of lentil flours including proximate composition, content and profile of fatty acids, content of phytic acid, ascorbic acid and γ-aminobutyric acid (GABA), content and profile of phenolic compounds, antioxidant activity, expected glycemic index (GI) and color during germination. As shown by RSM polynomial models, sprouting promoted the reduction of phytic acid content and enhanced the levels of ascorbic acid, GABA, insoluble phenolic compounds, antioxidant activity and expected GI, and modified the color of the resultant lentil flours. RSM optimization of germination temperature and time using desirability function revealed that the optimal process conditions to maximize the nutritional, bioactive and quality properties of sprouted lentil flours were 21 °C for 3.5 days.
Collapse
Affiliation(s)
- Daniel Rico
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - María del Carmen García
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
| | - Dilip K. Rai
- Department of Food BioSciences, Teagasc Food Research Centre Ashtown, 15 Dublin, Ireland;
| | - Cristina Martínez-Villaluenga
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Juana Frias
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (E.P.); (C.M.-V.); (J.F.)
| | - Ana B. Martín-Diana
- Subdirection of Research and Technology, Agro-Technological Institute of Castilla y León, Consejería de Agricultura y Ganadería, Finca de Zamadueñas, 47171 Valladolid, Spain; (D.R.); (M.d.C.G.)
- Correspondence: ; Tel.: +34-98-310-366
| |
Collapse
|