1
|
Niu J, Li W, Du B, Wu Y, Lang Y, Sun B, Sun W, Li X. Temporal heterogeneity of microbial communities and flavor metabolism during storage of high-temperature Daqu. Food Chem 2025; 464:141577. [PMID: 39427619 DOI: 10.1016/j.foodchem.2024.141577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Storage is a crucial step in the production of Daqu, but the microbiological and flavor chemical kinetics of the storage process remain largely unknown and limit the quality control of Daqu. In this study, the microbial communities and volatile compounds were analyzed and compared during the storage of Daqu. Virgibacillus, Bacillus and Kroppenstedtia were the dominant bacterial genera, and Thermoascus, Thermomyces and Aspergillus were the dominant fungal genera. By LEfSe analysis, JW1 Daqu had more differential microbial markers. At the end of storage, the content of some compounds decreased significantly, such as esters, alcohols and ketones. In addition, PICRUSt2 predicted enzymes related to some important aroma production. These results indicated that microbial communities and volatiles changed significantly during storage of Daqu, which might be important for optimization of quality.
Collapse
Affiliation(s)
- Jialiang Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Binghao Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute Co.Ltd, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Weizheng Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100816, China; Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Wang D, Wu C, Hu J, Hu F, Liu L, Huang H, Yang J, Zhao W, Xie D, Zhang J, Zhu A. Exploring the impact mechanisms on different mechanized airing approaches during second round heap fermentation of sauce-flavor Baijiu: From physicochemical parameters, microbial diversity to volatile flavor compounds. Food Res Int 2025; 199:115359. [PMID: 39658161 DOI: 10.1016/j.foodres.2024.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The airing process of sauce-flavor Baijiu is a critical operation that serves the functions of cooling, homogenizing, and facilitating microbial proliferation and metabolism. Comprehensive analysis of physicochemical parameters, bacterial and fungal community of fermented grains, and volatile flavor compounds of soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors among traditional (CT) and two different mechanized (JXA and JXB) airing operations were investigated. The results indicated that the dynamic variation patterns of moisture content, total titratable acidity, starch content, lactic acid, acetic acid, pH, and dominated microbial composition among CT, JXA, and JXB were similar, while minor bacterial genera with relative abundance including unclassified Micrococcineae, unclassified Rhizobiales, etc, and dominated fungi such as Torulaspora, Hyphopichia, Candida, Pichia, and Penicillium were profoundly influenced by mechanized airing operations, especially by JXB. A total of 100 and 101 volatile flavor compounds were qualitatively and quantitatively detected from soy-sauce (Jiangxiang) and mellow-sweet (Chuntian) typical base liquors. Mechanized airing operations were more consistent with CT for mellow-sweet (Chuntian) typical base liquors, but 2,3-dimethyl-5-ethylpyrazine, 2,3-dimethylpyrazine, tetramethylpyrazine and ethyl benzoate etc. were more abundant in soy-sauce (Jiangxiang) typical base liquors by mechanized airing operations, which were mainly associated with Leuconostoc, Acetoanaerobium, Limnohabitans and Bradyhizobium etc. This study provides a theoretical evidence for understanding the relationships among physicochemical parameters, microbial communities and volatile flavor compounds during second round heap fermentation of sauce-flavor Baijiu, laying a foundation for further elucidating the mechanized brewing mechanisms.
Collapse
Affiliation(s)
- Diqiang Wang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Cheng Wu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Jianfeng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China.
| | - Feng Hu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Baijiu Manufacturing Innovation Center of Guizhou Province, Renhuai 564500, Guizhou, China; Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui 564622, Guizhou, China
| | - Liping Liu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Heou Huang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Junlin Yang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Wenyu Zhao
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Dan Xie
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Jian Zhang
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Technology Innovation Center for Jiangxiangxing Baijiu, Guizhou Province, Xishui 564622, Guizhou, China; Key Laboratory of Quality and Safety of Jiangxiangxing Baijiu, State Administration for Market Regulation, Guiyang 550000, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| | - Anran Zhu
- Guizhou Xijiu Co., Ltd., Xishui 564622, Guizhou, China; Provincial Enterprise Technology Center of Guizhou Xijiu Co., Ltd, Xishui 564622, Guizhou, China
| |
Collapse
|
3
|
Chen ZP, Cao Q, Meng TT, Shi W, Zhang XJ, Chai LJ, Shi JS, Chen FW, Wang ST, Zhang SY, Shen CH, Lu ZM, Xu ZH. Yeast community in the first-round fermentation of sauce-flavor Baijiu: Source, succession and metabolic function. Food Res Int 2025; 200:115466. [PMID: 39779106 DOI: 10.1016/j.foodres.2024.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Yeasts play a crucial role in determining the quality and yield of sauce-flavor Baijiu, yet the source, succession, and metabolic functions of the yeast community in fermented grains during stacking fermentation remains unclear. In this study, amplicon sequencing combined with solid-state fermentation was used to investigate the structure and function of yeast community during the first-round fermentation of sauce-flavor Baijiu. The richness and diversity of yeast community increased throughout fermentation, with 83.05 % of yeast ASV sourced from the fermentation environment. Fourteen yeast genera were identified, with Wickerhamomyces (29.6 %), Saccharomycopsis (25.0 %), and Torulaspora (14.9 %) being the predominant genera. These genera showed distinct spatial distributions throughout the fermentation stack. Spearman correlation analysis indicated positive correlations between the three genera and multiple volatiles in fermented grains alcohols and esters. After solid-state fermentation in pure culture, T. delbrueckii ME22, S. fibuligera ME8, and W. anomalus ME57 produced distinct floral, fruity, and sweet flavor compounds, such as phenylethyl alcohol, isoamyl alcohol, ethyl acetate, phenethyl acetate, and isoamyl acetate. T. delbrueckii ME22 demonstrated a great capacity for cellulose degradation, whereas S. fibuligera ME8 exhibited enhanced capabilities for protein and starch degradation. This study provides a theoretical reference for the application of yeast in the fermentation of sauce-flavor Baijiu.
Collapse
Affiliation(s)
- Zheng-Pei Chen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Qian Cao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Tian-Tian Meng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Wei Shi
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Xiao-Juan Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Li-Juan Chai
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- School of School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Fu-Wei Chen
- Guizhou Zhongjian Wine Industry Group Co. LTD, Zunyi 564500, PR China
| | - Song-Tao Wang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Su-Yi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Cai-Hong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, PR China
| | - Zhen-Ming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Hong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
4
|
Xu Y, Yang L, Yang Y, Yang F. Unraveling Shengmuxiang in Jiang-flavor base baijiu using a combination of metabolomics and sensomics strategy. Food Chem X 2024; 24:101851. [PMID: 39398868 PMCID: PMC11470176 DOI: 10.1016/j.fochx.2024.101851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
Shengmuxiang (SMX), an important aroma in Jiang-flavor base baijiu, significantly influences the quality of the product. This study employed untargeted metabolomics combined with sensomics to explore the key compounds responsible for SMX. Results indicated that SMX samples had higher intensities of green and woody-like odors compare to control samples. A total of 87 aroma compounds were identified by headspace solid phase microextraction combined with gas chromatography-mass spectrometry technology. Based on the variable projection importance, PCA and OPLS-DA were employed to identify 22 potential marker compounds. Quantitative results combined with hierarchical cluster and OAV analysis revealed that 9 aroma compounds (OAV > 1) had high concentrations in SMX samples. Aroma recombination and omission experiments further indicated that acetaldehyde and acetal were the key compounds responsible for the characteristic aroma of SMX in Jiang-flavor base baijiu. These findings provide valuable insights into the distinct aroma profile of SMX and offer a basis for quality control of Jiang-flavor base baijiu.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Lizhang Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Yubo Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| | - Fan Yang
- Institute of Science and Technology, Moutai Group, Zunyi 564501, China
| |
Collapse
|
5
|
Li S, Li T, Han Y, Yan P, Li G, Ren T, Yan M, Lu J, Qiu S. Machine learning discrimination and prediction of different quality grades of sauce-flavor baijiu based on biomarker and key flavor compounds screening. Food Chem X 2024; 24:101877. [PMID: 39444436 PMCID: PMC11497441 DOI: 10.1016/j.fochx.2024.101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
The quality grade of base Baijiu directly determines the final quality of sauce-flavor Baijiu. However, traditional methods for assessing these grades often rely on subjective experience, lacking objectivity and accuracy. This study used GC-FID, combined with quantitative descriptive analysis (QDA) and odor activity value (OAV), to identify 27 key flavor compounds, including acetic acid, propionic acid, ethyl oleate, and isoamyl alcohol etc., as crucial contributors to quality grade differences. Sixteen bacterial biomarkers, including Komagataeibacter and Acetobacter etc., and 7 fungal biomarkers, including Aspergillus and Monascus etc., were identified as key microorganisms influencing these differences. Additionally, reducing sugar content in Jiupei significantly impacted base Baijiu quality. Finally, 11 machine learning classification models and 9 prediction models were evaluated, leading to the selection of the optimal model for accurate quality grade classification and prediction. This study provides a foundation for improving the evaluation system of sauce-flavor Baijiu and ensuring consistent quality.
Collapse
Affiliation(s)
- Shuai Li
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Tao Li
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| | - Yueran Han
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Pei Yan
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Guohui Li
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Tingting Ren
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Ming Yan
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Jun Lu
- Guizhou Guotai Distillery Co. Ltd., Renhuai, Guizhou 564501, China
| | - Shuyi Qiu
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, China
| |
Collapse
|
6
|
Ding H, Yang J, Cheng M, Li X, Zeng M, Yang W, Wu Q, Luo X, Zhao J, Li X, Qiu S, Zhou J. Comparative characterization of key compounds of Sauce-flavored rounded-Baijiu in northern and southern China and the potential possibility of similar quality of their combined products. Food Chem X 2024; 24:101970. [PMID: 39582653 PMCID: PMC11582755 DOI: 10.1016/j.fochx.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The flavor characteristics and sensory attributes of northern Sauce-flavored rounded-Baijiu (NR) and southern Sauce-flavored rounded-Baijiu (SR) were systematically studied. A total of 56 major flavor compounds were quantitatively detected through Gas chromatography-flame ionization detection (GC-FID). Besides, 20 kinds of key aroma compounds and 7 significant differential compounds were identified by calculating the odor activity values (OAVs) and orthogonal partial least squares discriminant analysis (OPLS-DA) of flavor compounds in NR and SR. And then, the relationship between sensory attributes and key aroma compounds were investigated by network analysis. Furthermore, A group of combined-Baijiu (the ratios of the first to the fifth round of Sauce-flavored Baijiu in the north (NR1-5) were 5 % NR1, 35 % NR2, 30 % NR3, 20 % NR4, 10 % NR5) was closer to the style known for blending different proportions of SR into the combined-Baijiu. This study provided a guiding significance for the standardized production of sauce-flavored Baijiu.
Collapse
Affiliation(s)
- Hexia Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jiekai Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Mai Cheng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuanchen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Maodie Zeng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Wei Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Qian Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaoye Luo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Juan Zhao
- Shandong Yanghu Liquor Co., Ltd., Heze 274000, Shandong, China
| | - Xiande Li
- Shandong Yanghu Liquor Co., Ltd., Heze 274000, Shandong, China
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
7
|
Zhao P, Xia X, Luo Y, Yuan Z, Deng J, Luo H, Luo X, Huo D, Hou C. A porphyrin-modified CoMoO 4 nanosensor array for the detection of crude baijiu. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7494-7501. [PMID: 39364608 DOI: 10.1039/d4ay01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The rapid classification of crude baijiu is pivotal for its industrialization and automated development. In this study, a colorimetric sensor array employing peroxidase nanase (Por-CoMoO4) was developed to detect reducing substances and crude baijiu. The peroxidase-like activity of CoMoO4 was significantly enhanced by porphyrin (Por), exhibiting a Km value of 0.044 mM and Vmax of 19.37 × 10-8 for TMB substrate. Peroxidase activity varies at different pH levels. Organic and crude baijiu scavenge free radicals, thereby inhibiting oxTMB formation and yielding distinctive fingerprint profiles. Using linear discriminant analysis, 14 types of small molecules and 16 varieties of Luzhou-flavor crude baijiu were identified within specific concentration ranges. The method achieved 100% accuracy in distinguishing baijiu samples sourced from different distilleries, offering a straightforward, rapid, and effective approach to differentiate crude baijiu during alcoholic beverage production.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Xuhui Xia
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Yiyao Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Zirui Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Jiaxi Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| |
Collapse
|
8
|
Shi X, Fan C, Pan C, Zhang F, Hou X, Hui M. Analysis of differences in physicochemical properties of different sorghum varieties and their influence on the selection of raw materials for winemaking. Food Chem X 2024; 23:101517. [PMID: 38974196 PMCID: PMC11225647 DOI: 10.1016/j.fochx.2024.101517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 07/09/2024] Open
Abstract
Sorghum is one of the oldest crops in the world, an important grain crop in northern China, and a major raw material in the liquor-brewing industry. The physicochemical properties, cooking characteristics, and starch quality of sorghum seeds considerably affect the liquor-brewing process.To select suitable sorghums for liquor brewing and to determine the cooking characteristics and starch physicochemical properties of different sorghum varieties, 30 types of sorghum were used in this study, and their compositions were compared; six types of sorghum were further studied for their cooking quality and starch physicochemical and pasting characteristics. Gas chromatography time of flight mass spectrometry was used to analyse the cooking aroma of sorghum seeds. Additionally, scanning electron microscopy, a rapid visco analyser, and a differential calorimetric scanner were used to analyse the microstructure of sorghum starch, starch pasting characteristics, and thermodynamic properties, respectively. The results revealed that the water absorption and saccharification forces of glutinous sorghum were higher than those of japonica sorghum and that the aroma substances were significantly different. Glutinous sorghum starch had high crystallinity, freeze-thaw stability, and enthalpy, thus indicating its structural stability. This study provides a theoretical basis for the selection of wine raw materials in the future.
Collapse
Affiliation(s)
- Xin Shi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chenming Fan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunmei Pan
- College of Food and Biological Engineering(Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | | | - Xiaoge Hou
- College of Food and Biological Engineering(Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Ming Hui
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
- Henan Provincial Engineering Laboratory of Preservation and Breeding of Industrial Microbial Strains, Zhengzhou 450001, PR China
| |
Collapse
|
9
|
Wang L, Tang P, Zhao Q, Shan Q, Qin L, Xiao D, Li C, Lu J, Guo X. Difference between traditional brewing technology and mechanized production technology of jiangxiangxing baijiu: Micro ecology of zaopei, physicochemical factors and volatile composition. Food Res Int 2024; 192:114748. [PMID: 39147555 DOI: 10.1016/j.foodres.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Mechanized production of Jiangxiangxing Baijiu (JB) stands as a pivotal trend in today's Baijiu industry. This study, employing high-throughput sequencing and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology, comprehensively analyzed the micro ecology, physicochemical factors, and volatile components during pit fermentation, comparing traditional fermentation Zaopei (TZP) and mechanized fermentation Zaopei (MZP). According to the research findings, the dominant microorganisms in the fermentation process of ZP comprise Lactobacillus, Monascus, Issatchenkia, and Zygosaccharomyces. In addition, functional microorganisms like Zygosaccharomyces, Monascus, Issatchenkia, Leiothecium, Candida, Pichia, and others exhibited differences on day 0 and throughout the fermentation process. These differences are attributed to the effects of distinct fermentation environment and physicochemical factors. Furthermore, comprehensive analysis detected 87 volatile compounds in TZP and MZP, with 56 showing significant differences, primarily including alcohols, aldehydes, ketones, acids, esters, and aromatics. Additionally, fermentation can be classified into two phases based on ethanol and volatile compounds production: the initial phase (0-12 days, P1) primarily focuses on alcohols production, while the subsequent phase (12-30 days, P2) concentrates on volatile compounds generation. The subsequent correlation analysis indicates that variations in volatile compounds primarily arise from shifts in microbial composition, with notable differences observed in fungi, specifically Monascus, Zygosaccharomyces, and Issatchenkia, which drive the disparities in volatile compounds. This study provides an important theoretical basis and practical guidance for the realization of mechanized high-quality production of JB.
Collapse
Affiliation(s)
- Lianqing Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Ping Tang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China; Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Qing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Qimuge Shan
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Liqin Qin
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China.
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China.
| |
Collapse
|
10
|
Tan Q, Wu Y, Li C, Jin J, Zhang L, Tong S, Chen Z, Ran L, Huang L, Zuo Z. Characterization of Key Aroma Compounds of Soy Sauce-like Aroma Produced in Ferment of Soybeans by Bacillus subtilis BJ3-2. Foods 2024; 13:2731. [PMID: 39272497 PMCID: PMC11395551 DOI: 10.3390/foods13172731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Fermented soybeans are popular among many for their rich soy sauce-like aroma. However, the precise composition of this aroma remains elusive, with key aroma compounds unidentified. In this study, we screened the candidate genes ilvA and serA in BJ3-2 based on previous multi-omics data, and we constructed three mutant strains, BJ3-2-ΔserA, BJ3-2-ΔilvA, and BJ3-2-ΔserAΔilvA, using homologous recombination to fermented soybeans with varying intensities of soy sauce-like aroma. Our objective was to analyze samples that exhibited different aroma intensities resulting from the fermented soybeans of BJ3-2 and its mutant strains, thereby exploring the key flavor compounds influencing soy sauce-like aroma as well analyzing the effects of ilvA and serA on soy sauce-like aroma. We employed quantitative descriptive sensory analysis (QDA), gas chromatography-olfactometry-mass spectrometry (GC-O-MS), relative odor activity value analysis (rOAV), principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), and partial least squares regression analysis (PLSR). QDA revealed the predominant soy sauce-like aroma profile of roasted and smoky aromas. GC-MS detected 99 volatile components, predominantly pyrazines and ketones, across the four samples, each showing varying concentrations. Based on rOAV (>1) and GC-O, 12 compounds emerged as primary contributors to soy sauce-like aroma. PCA and OPLS-DA were instrumental in discerning aroma differences among the samples, identifying five compounds with VIP > 1 as key marker compounds influencing soy sauce-like aroma intensity levels. Differential analyses of key aroma compounds indicated that the mutant strains of ilvA and serA affected soy sauce-like aroma mainly by affecting pyrazines. PLSR analysis indicated that roasted and smoky aromas were the two most important sensory attributes of soy sauce-like aroma, with pyrazines associated with roasted aroma and guaiacol associated with smoky aroma. In addition, substances positively correlated with the intensity of soy sauce-like aroma were verified by additional experiments. This study enhances our understanding of the characteristic flavor compounds in soy sauce-like aroma ferments, provides new perspectives for analyzing the molecular mechanisms of soy sauce-like aroma formation, and provides a theoretical framework for the targeted enhancement of soy sauce-like aroma in various foods.
Collapse
Affiliation(s)
- Qibo Tan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yongjun Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Cen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Jing Jin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lincheng Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Shuoqiu Tong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zhaofeng Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Li Ran
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Lu Huang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zeyan Zuo
- Guizhou Institute of Products Quality Inspection & Testing, Guiyang 550016, China
| |
Collapse
|
11
|
Qin D, Duan J, Shen Y, Yan Y, Shen Y, Jiang Y, Li H, Sun J, Dong W, Cheng H, Ye X, Sun B. Flavor Perception and Formation Mechanism of Empty Cup Aroma in Soy Sauce Aroma Type Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39013108 DOI: 10.1021/acs.jafc.4c01709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The research focused on the distinctive empty cup aroma, with the aim of identifying the key aroma compounds and the formation mechanism of empty cup aroma in soy sauce aroma type baijiu (SSB). The lasting times of SSB is significantly longer than that of other types of baijiu, with an average duration of 28 days. Key compounds such as 2,3-dimethyl-5-ethylpyrazine, phenylethyl alcohol, p-cresol, sotolon, benzeneacetic acid were identified in empty cup aroma due to their highest flavor dilution factor. Molecular dynamics (MD) simulation was performed to study the mechanism of empty cup aroma on the liquid-gas interface and solid-gas interface. The results revealed the existence of hydrogen bonding and van der Waals forces between sotolon and lactic acid, a representative nonvolatile compound, which are speculated to be an important reason for the empty cup aroma.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Duan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, Luzhou 646523, Sichuan, China
| | - Yahan Yan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yunran Shen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yingli Jiang
- Sichuan Langjiu Co., Ltd, Gulin, Luzhou 646523, Sichuan, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
12
|
Chen B, Wang L, Wang L, Han Y, Yan G, Chen L, Li C, Zhu Y, Lu J, Han L. A Novel Data Fusion Strategy of GC-MS and 1H NMR Spectra for the Identification of Different Vintages of Maotai-flavor Baijiu. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14865-14873. [PMID: 38912709 DOI: 10.1021/acs.jafc.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Counterfeit Baijiu has been emerging because of the price variances of real-aged Chinese Baijiu. Accurate identification of different vintages is of great interest. In this study, the combination of gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy was applied for the comprehensive analysis of chemical constituents for Maotai-flavor Baijiu. Furthermore, a novel data fusion strategy combined with machine learning algorithms has been established. The results showed that the midlevel data fusion combined with the random forest algorithm were the best and successfully applied for classification of different Baijiu vintages. A total of 14 differential compounds (belonging to fatty acid ethyl esters, alcohols, organic acids, and aldehydes) were identified, and used for evaluation of commercial Maotai-flavor Baijiu. Our results indicated that both volatiles and nonvolatiles contributed to the vintage differences. This study demonstrated that GC-MS and 1H NMR spectra combined with a data fusion strategy are practical for the classification of different vintages of Maotai-flavor Baijiu.
Collapse
Affiliation(s)
- Biying Chen
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, P. R. China
| | - Li Wang
- Guotai Research Academy, Guizhou Guotai Liquor Group Co., Ltd., 1 Tingjiang Road, Tianjin 300410, P. R. China
| | - Liming Wang
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, P. R. China
| | - Yueran Han
- Guotai Research Academy, Guizhou Guotai Liquor Group Co., Ltd., 1 Tingjiang Road, Tianjin 300410, P. R. China
| | - Guokai Yan
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, P. R. China
| | - Liangjie Chen
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, P. R. China
| | - Changwen Li
- Guotai Research Academy, Guizhou Guotai Liquor Group Co., Ltd., 1 Tingjiang Road, Tianjin 300410, P. R. China
| | - Yu Zhu
- Department of Clinical Laboratory, Nankai University Affiliated Third Central Hospital, Tianjin 300170, P. R. China
- Department of Clinical Laboratory, The Third Central Hospital of Tianjin, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, P. R. China
| | - Jun Lu
- Guotai Research Academy, Guizhou Guotai Liquor Group Co., Ltd., 1 Tingjiang Road, Tianjin 300410, P. R. China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, P. R. China
| |
Collapse
|
13
|
Wang C, Li C, Bin Z, Zhu G, Tang S, Zhang J, Chen Y, Xiao D, Guo X. Workshop environment heterogeneity shaped the microbiome and metabolome profiles during Xiasha round of Jiangxiangxing Baijiu. Food Chem X 2024; 22:101264. [PMID: 38468635 PMCID: PMC10926306 DOI: 10.1016/j.fochx.2024.101264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Workshop with different fermentation years plays an essential role in the yield and quality of Baijiu. In actual production, the quality of base Baijiu in newly built workshop is inferior to the older one. In this study, the microbiota of workshop environment and fermentation process from two workshops namely N (ferment 2 years) and O (ferment 20 years) and flavor compounds were studied during Xiasha round. Results showed workshop O accumulated more environmental microorganisms and fungi including P. kudriavzevii, Wickerhamomyces anomalus and Saccharomyces sp mainly came from ground. Yeasts including Pichia, Cyberlindnera, Wickerhamomyces and Candida were responsible for flavor substances formation in O while Saccharopolyspora was in N. This study for the first time explored the reasons for the brewing differences among N and O workshop from perspectives of workshop environment, microbial community and flavor substances, providing new ideas for guiding production as well as improvement of Baijiu quality.
Collapse
Affiliation(s)
- Cailing Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chenyao Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhiqiang Bin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guojun Zhu
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Shaopei Tang
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Jinyu Zhang
- Guizhou Zhenjiu Brewing Co., Ltd, Zunyi, Guizhou, China
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
14
|
Duan J, Cheng W, Lv S, Deng W, Hu X, Li H, Sun J, Zheng F, Sun B. Characterization of key aroma compounds in soy sauce flavor baijiu by molecular sensory science combined with aroma active compounds reverse verification method. Food Chem 2024; 443:138487. [PMID: 38271898 DOI: 10.1016/j.foodchem.2024.138487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The distinctive flavor profile of soy sauce flavor baijiu (SAB) is shaped by its unique aroma compounds. The characteristic aroma compounds in Langjiu soy sauce flavor baijiu (LSAB) were explored based on molecular sensory science. A total of 66 aroma active compounds were identified by gas chromatography-olfactometry (GC-O) combined with aroma extract dilution analysis (AEDA), and 6 important unknown sulfur compounds were identified using the aroma active compounds reverse verification method (ACRVW). A total of 39 key aroma compounds were determined to have odor activity values (OAVs) ≥ 1. The aroma contribution of aroma components was verified by aroma recombination and aroma omission experiments. 15 characteristic aroma compounds were identified in LSAB. Meanwhile, a simple and easy-to-understand sensory expression language was described to fully understand the style characteristics of LSAB. Overall, the present paper offers insights into research uncovering the key "sauce flavor" of soy sauce flavor baijiu.
Collapse
Affiliation(s)
- Jiawen Duan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyu Deng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Xiangjun Hu
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
15
|
Wang X, Huang W, Huang J, Luo X, Nie M, Jiang T, Ban S, Li P. The mechanism of Laceyella sacchari FBKL4.010 produced tetramethylpyrazine in the liquid fermentation by comparative transcriptomic techniques. Front Microbiol 2024; 15:1414203. [PMID: 38939185 PMCID: PMC11208324 DOI: 10.3389/fmicb.2024.1414203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Tetramethylpyrazine (TTMP) is considered a crucial flavor component in Moutai-flavored liquor. Laceyeella sacchari FBKL4.010 (L. sacchari) is the dominant species found in Moutai-flavor Daqu, and this study aims to determine the mechanism by which L. sacchari produces TTMP during liquid fermentation of Moutai-flavor Daqu. The results of the liquid fermentation performance demonstrated a gradual increase in biomass over time, while there was a gradual decline in residual glucose content and pH value. Furthermore, analysis of volatile components revealed that liquid fermentation significantly enhanced the production of TTMP in Moutai-flavor Daqu, with the relative content of TTMP reaching 14.24 mg/L after 96 h of liquid fermentation. Additionally, to explore the synthesis mechanism of TTMP, we compared differentially expressed genes (DEGs) of L. sacchari between 24 and 96 h using comparative transcriptomic techniques. The results indicated that DEGs involved in isoleucine, valine, and leucine biosynthesis pathway were upregulated, while those associated with isoleucine, valine, and leucine degradation pathway were downregulated, suggesting that the valine, leucine, and isoleucine biosynthesis pathway primarily contributes ammonia for TTMP synthesis. The findings of this study present an opportunity for further elucidating the production process of TTMP in Moutai-flavor Daqu during liquid fermentation.
Collapse
Affiliation(s)
- Xiaodan Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | - Wu Huang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | - Jin Huang
- Guizhou Anjiu Co., Ltd., Zunyi, China
| | - Xiaoye Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Guizhou Provincial Key Laboratory of Fermentation Engineering and Biological Pharmacy, Guizhou University, Guiyang, China
| | | | - Tao Jiang
- Guizhou Anjiu Co., Ltd., Zunyi, China
| | - Shidong Ban
- Academy of Agricultural Planning and Engineering, Beijing, China
| | - Pei Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
| |
Collapse
|
16
|
Chen L, Mao Z, Ma Y, Luo H, Zhang S, Huo D, Hou C. A three-modal fluorescent sensor harnessing diverse luminescent mechanisms for the purpose of segmented Baijiu identification. Food Chem 2024; 442:138316. [PMID: 38266410 DOI: 10.1016/j.foodchem.2023.138316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024]
Abstract
The classification and verification of segmented Baijiu hold significant importance as they profoundly influence the blending and overall quality of the Baijiu. Our scholarly investigation yielded a fluorescent sensor with three luminescent modes by integrating Tb3+ and RHB into UiO-66. The interplay between carboxyl-containing compounds and RHB/Tb@TLU-2 orchestrates a harmonious molecular association, where the convergence of carboxyl groups with Tb3+ yields a resonating impact on the antenna effect of BDC-SO3-. Furthermore, the acidity and alkalinity of reactants induced a charge transfer interaction between BDC-NH2 and Zr4+ and led to structural changes in RHB/Tb@TLU-2, resulting in observable fluorescence signal variations across the three emission centers. The sensor array successfully identified eight organic acids, achieving an impressive 97.5 % accuracy in discerning segmented Baijiu samples from four Baijiu pits. This meticulous methodology prioritizes simplicity, swiftness, and effectiveness, paving the path for comprehensive segmented Baijiu analysis in the esteemed realm of Brewing production.
Collapse
Affiliation(s)
- Lin Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Zhenyu Mao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin 644000, PR China.
| |
Collapse
|
17
|
Wu C, Hu J, Xie D, Fan E, Yang J, You X, Cheng P, Huang W, Hu F, Wang D. Comparison of physicochemical parameters, microbial community composition and flavor substances during mechanical and traditional brewing process of Jiang-flavor baijiu. Food Sci Biotechnol 2024; 33:1909-1919. [PMID: 38752119 PMCID: PMC11091018 DOI: 10.1007/s10068-023-01483-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/15/2023] [Accepted: 11/09/2023] [Indexed: 05/18/2024] Open
Abstract
Mechanized, automated and intelligent brewing is an important trend of innovation and transition in Jiang-flavor baijiu industry. In this study, physicochemical parameters, microbial community composition and flavor substances during 3rd round heap fermentation between mechanical and traditional workshop were investigated and compared based on traditional culturable methods, high-throughput sequencing technology and gas chromatography analysis. The dominant bacterial and fungal genera were consistent between the two workshops, but mechanized brewing had a significant impact on the composition of fungal communities. Rhodococcus and Monascus were special genera in mechanical workshop. The interaction relationship between physicochemical parameters and dominant microorganisms in mechanized workshop was different from traditional workshop as well. This study provided a scientific basis for further analyzing the mechanism of mechanized brewing of Jiang-flavor baijiu. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01483-y.
Collapse
Affiliation(s)
- Cheng Wu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Jianfeng Hu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Dan Xie
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Endi Fan
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Junlin Yang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Xiaolong You
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Pingyan Cheng
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Wei Huang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Feng Hu
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| | - Diqiang Wang
- Guizhou Xijiu Co., LTD., Xishui, 564600 Guizhou China
- Engineering Technology Research Center of Jiang-Flavor Baijiu Intelligent Brewing, China National Light Industry Council, Xishui, 564600 Guizhou China
| |
Collapse
|
18
|
Li X, Zhang B, Li W, Zhao Y, Lyu X, You X, Lin L, Zhang C. Unraveling the chemosensory characteristics dependence of sauce-flavor baijiu on regionality using descriptive sensory analysis and quantitative targeted flavoromics. Food Chem 2024; 441:138274. [PMID: 38181665 DOI: 10.1016/j.foodchem.2023.138274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Descriptive sensory analysis, headspace solid-phase microextraction-gas chromatography-mass spectrometry, gas chromatography-flame ionization detector and multivariate statistical analysis were used to elucidate the regional dependence of sauce-flavor baijiu (SFB). Although SFB samples from different regions couldn't be clearly classified by sensory profiles, they could be clearly divided into 5 groups in principal component analysis plot based on quantitative targeted flavoromics analysis. And then, the relationship between sensory attributes and volatile compounds were investigated by network analysis. Twenty regional aroma markers were identified by multivariate statistical analysis to distinguish SFB samples from different regions. Furthermore, the influence of manufacturing operation on SFB in Guizhou region was further analyzed. Thirty-eight potential compounds were significant different in Guizhou SFB samples with different manufacturing operations. This study not only provides a better understanding of regional dependence on SFB flavor, but also further clarifies the inheritance importance of manufacturing operation in traditional SFB production.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Busheng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wenxuan Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yawen Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaotong Lyu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaolong You
- Guizhou Xijiu Co., LTD., Xishui 564622, Guizhou, People's Republic of China.
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
19
|
Zhang B, Lin L, Zheng C, Liu X, Cui W, Li X, Lyu X, Zhang C. Using in situ untargeted flavoromics analysis to unravel the empty cup aroma of Jiangxiang-type Baijiu: A novel strategy for geographical origin traceability. Food Chem 2024; 438:137932. [PMID: 37979271 DOI: 10.1016/j.foodchem.2023.137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/20/2023]
Abstract
"Empty cup aroma" is an important characteristic and quality evaluation standard of Jiangxiang-type Baijiu (JXB). In this study, an in situ detection method for the empty cup aroma of JXB was established, and the authenticity and origin information of JXB were identified with an untargeted flavoromics strategy. The complex composition of JXB leads to slow ethanol volatilization, which is a potential method for identifying artificial JXB. The results of the sensory analysis showed that acidic, sauce, burnt and qu in the empty cup of JXB were the strongest at the 45 min stage. A total of 155 compounds were detected in the empty cups of 15 JXB from different regions during 45 min of standing, and 34 compounds were identified as key aroma compounds in the empty cups of JXB. Eleven potential markers were screened (VIP > 1), which can be used to distinguish JXB produced in Guizhou/Sichuan and other regions.
Collapse
Affiliation(s)
- Busheng Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Canjie Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xuan Liu
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Wanjing Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xin Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xiaotong Lyu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China.
| |
Collapse
|
20
|
Qin H, Zhang S, Wang C, Pan Q, Dong Y, Cai X, Wang X, Huang M, Huang J, Zhou R. Revealing the influence of exogenously inoculated Bacillus spp. on the microbiota and metabolic potential of medium-temperature Daqu: A meta-omics analysis. Food Res Int 2024; 182:114152. [PMID: 38519180 DOI: 10.1016/j.foodres.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
To determine the unique contribution of the bioturbation to the properties of the medium-temperature Daqu, we investigated the differences in microbiota and metabolic composition using the meta-omics approach. Bioturbation increased the amounts of microbial specie and influenced the contribution of the core microbiota to the metabolome. Specifically, inoculated synthetic microbiota (MQB) enhanced the abundance of Bacillus amyloliquefaciens, while Bacillus licheniformis (MQH) increased the abundance of the two Aspergillus species and four species level of lactic acid bacteria. These changes of the microbial profiles significantly increased the potentials of carbohydrate metabolism, amino acid metabolism, and biosynthesis of ester compounds. Consequently, both patterns significantly increased the content of volatile compounds and free amino acids, which were 27.61% and 21.57% (MQB), as well as 15.14% and 17.83% (MQH), respectively. In addition, the contents of lactic acid in MQB and MQH decreased by 65.42% and 42.99%, respectively, closely related to the up- or down-regulation of the expression of their corresponding functional enzyme genes. These results suggested that bioturbation drove the assembly of the core microbiota, rather than becoming critical functional species. Overall, our study provides new insights into the functional role of exogenous isolates in the Daqu microecosystem.
Collapse
Affiliation(s)
- Hui Qin
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Chao Wang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Dong
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Xiaobo Cai
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Xiaojun Wang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; Luzhou Laojiao Co., Ltd., Luzhou 646699, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- National Engineering Research Center of Solid-State Manufacturing, Luzhou 646000, China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
21
|
Dong W, Dai X, Jia Y, Ye S, Shen C, Liu M, Lin F, Sun X, Xiong Y, Deng B. Association between Baijiu chemistry and taste change: Constituents, sensory properties, and analytical approaches. Food Chem 2024; 437:137826. [PMID: 37897822 DOI: 10.1016/j.foodchem.2023.137826] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Typical flavors, such as sourness, sweetness, and bitterness, possess numerous functions and physiological significance, and are closely related to Baijiu production management, quality control, and product development. However, current research on Baijiu flavor primarily focuses on the volatile constituents and distinctive aroma compounds. Furthermore, studies on taste substance recognition, identification, and formation are remain in the preliminary phase. Herein, we take an integrated account of the signal transduction, recognition, composition, and sensory properties of the three main basic tastes of Baijiu, including sourness, sweetness, and bitterness. Moreover, to elucidate the factors that might influence the taste perception of Baijiu, we also discussed the biotic and abiotic factors within the fermentation system. Finally, further elucidating the contribution underlying the three main tastes in Baijiu using a combination of the "Sensomics" and "Flavoromics", will allow for Baijiu taste characteristics to be manipulated.
Collapse
Affiliation(s)
- Wei Dong
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xinran Dai
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yintao Jia
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Siting Ye
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Miao Liu
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Feng Lin
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Xiaotao Sun
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanfei Xiong
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| | - Bo Deng
- Luzhou Laojiao Co. Ltd., Luzhou, Sichuan 646000, China
| |
Collapse
|
22
|
Qin D, Lv S, Shen Y, Shi J, Jiang Y, Cheng W, Wang D, Li H, Zhang Y, Cheng H, Ye X, Sun B. Decoding the key compounds responsible for the empty cup aroma of soy sauce aroma type baijiu. Food Chem 2024; 434:137466. [PMID: 37741247 DOI: 10.1016/j.foodchem.2023.137466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/25/2023]
Abstract
The empty cup aroma in soy sauce aroma type baijiu (SSB) is distinct, but the specific compounds responsible for its unique aroma remain unknown. The aroma characteristics of SSB and the empty cup were investigated using molecular sensory science. Fifty-three and 27 aroma active compounds were identified in SSB and empty cup aroma, respectively. AEDA of the empty cup showed ethyl 3-phenylpropanoate, phenylethyl alcohol, sotolon, p-cresol, and 2,3-dimethyl-5-ethyl pyrazine could be the most important aroma contributors to the empty cup aroma due to their high FD values. Sotolon, characterized by its seasoning-like and herbal aroma, was identified as a crucial aroma compound for the empty cup aroma for the first time. Lactic acid was found to decrease the olfactory threshold of sotolon markedly in both 53% ethanol water solution and empty cup, promoting the contribution of sotolon to the empty cup aroma.
Collapse
Affiliation(s)
- Dan Qin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Jie Shi
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Yingli Jiang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Dongmei Wang
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Yanyan Zhang
- Institute of Food Science and Biotechnology, Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, 70599 Stuttgart, Germany
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
23
|
Wang L, Gao Y, Wu L, Chen S, Xu Y. Characterization of Key Aging Aroma Compounds in Aged Jiangxiangxing Baijiu and Their Formation Influencing Factors during the Storge Process. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1695-1707. [PMID: 38194670 DOI: 10.1021/acs.jafc.3c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Long-term storage Baijiu has an appealing sensory property, yet the chemical makeup is rarely reported. This study investigated a 30-year-old Jiangxiangxing (JXX) Baijiu and recognized and measured 69 aroma compounds. 3-Methyl-2,4-nonanedione (2.76 μg/L), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (HDMF, 46.2 μg/L), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (HEMF, 61.7 μg/L), and piperitone (3.66 μg/L) were detected for the first time in Baijiu. Compared with 3-year-old JXX Baijiu, 24 compounds were significantly higher in the 30-year-old, mainly including furans, pyrazines, and aromatics. Notably, 4,5-dimethyl-3-hydroxy-2(5H)-furanone (sotolon), HDMF, HEMF, vanillin, acetovanillone, and alkyl pyrazines in 30-year-old JXX Baijiu were 2-7 times higher than those of a 3-year-old, and they increased steadily during aging for 3, 15, and 30 years, assumed to be associated with the aging aroma. Following 24 months of storing JXX Baijiu under different conditions, the pottery significantly promoted the synthesis of sotolon, HDMF, HEMF, and alkyl pyrazines. These findings suggest that pottery is a potential catalyst for enhancing aged Baijiu.
Collapse
Affiliation(s)
- Lulu Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yuchen Gao
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lan Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
24
|
Lin L, Fan W, Xu Y, Zhu D, Yang T, Li J. Characterization of Key Odorants in Chinese Texiang Aroma and Flavor Type Baijiu (Chinese Liquor) by Means of a Molecular Sensory Science Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1256-1265. [PMID: 38169436 DOI: 10.1021/acs.jafc.3c07053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The popularity of texiang aroma type baijiu (liquor), known for its unique production technology and multilayered flavor, has been steadily increasing among consumers. So far, no research has determined its key aroma compounds for characterizing the unique flavor, which is the purpose of this paper. Using gas chromatography-olfactometry (GC-O) coupled with the GC-mass spectrometry (GC-MS) method, 87 aroma-active compounds were identified and screened out with intensity values ≥2.0. 1,1,6-Trimethyl-1,2-dihydronaphthalene (TDN) was first confirmed by GC-O in Chinese liquor. According to a quantitative study and odor activity values (OAVs), 42 odorants were determined as important aroma compounds. These odorants were recombined based on quantitative concentrations, successfully simulating the overall aroma profile. Omission experiments verified ethyl hexanoate, β-damascenone, and 2-furfuryl ethyl ether as the key aroma compounds and revealed that ethyl acetate, furfural, and ethyl 2-phenylacetate were important aroma compounds to the overall flavor of texiang aroma and flavor type liquor.
Collapse
Affiliation(s)
- Luyao Lin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenlai Fan
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology, Ministry of Education, and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dongcai Zhu
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| | - Tao Yang
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| | - Jie Li
- Jiangnan University-Lidu Liquor Industry (Yuan Dynasty) Ancient Cellar Microbial Joint Research and Development Center, Jiangxi Lidu Liquor Industry Co., Ltd., Nanchang, Jiangxi 331725, China
| |
Collapse
|
25
|
Cheng W, Chen X, Xue X, Lan W, Zeng H, Li R, Pan T, Li N, Gong Z, Yang H. Comparison of the Correlations of Microbial Community and Volatile Compounds between Pit-Mud and Fermented Grains of Compound-Flavor Baijiu. Foods 2024; 13:203. [PMID: 38254504 PMCID: PMC10814010 DOI: 10.3390/foods13020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
The microbial composition and volatile components of fermented grains (FG) and pit mud (PM) are crucial for the quality and flavor of compound-flavor baijiu (CFB). The physicochemical indices, culturable microorganisms, microbial communities, and volatile components of FG and PM were analyzed and correlated in our research. Considering FG and PM, amplicon sequencing was used to analyze the microbial community and the volatile components were detected by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME). For FG, redundancy analysis and correlation perfume Circos were used to clarify the correlations between the dominant microbial community and volatile components. The results showed that Aspergillus, Pichia, and Rhizopus were the main fungal microflora in FG and PM, whereas Lactobacillus and Bacillus were the dominant bacteria in FG, and Methanosarcina and Clostridium sensu stricto 12 were the dominant bacteria in the PM. The microbial community and volatile compounds in the CB sampled from the bottom layers of the FG were greatly affected by those in the PM. There were 32 common volatile components in CB and PM. For FG, most of the volatile components were highly correlated with Lactobacillus, Bacillus, Aspergillus, Pichia, and Monascus, which includes alcohols, acids and esters. This study reveals correlations between microbial composition, volatile components, and the interplay of FG and PM, which are conducive to optimizing the fermentation process and improving the quality of CFB base.
Collapse
Affiliation(s)
- Wei Cheng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Xijia Xue
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Huawei Zeng
- School of Life Sciences, Huaibei Normal University, Huaibei 235000, China;
| | - Ruilong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China;
| | - Tianquan Pan
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Na Li
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Zilu Gong
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| | - Hongwen Yang
- Technology Center of Enterprise, Anhui Jinzhongzi Distillery Co., Ltd., Fuyang 236023, China; (X.X.); (T.P.); (N.L.); (Z.G.); (H.Y.)
| |
Collapse
|
26
|
Zhang J, Du R, Niu J, Ban S, Zhang Y, Xu L, Nie H, Wu Q, Xu Y. Daqu and environmental microbiota regulate fatty acid biosynthesis via driving the core microbiota in soy sauce aroma type liquor fermentation. Int J Food Microbiol 2024; 408:110423. [PMID: 37832205 DOI: 10.1016/j.ijfoodmicro.2023.110423] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
Fatty acids are considered as important compounds for the aroma and taste of Chinese liquor. Revealing the core microbiota related with fatty acid biosynthesis and how they are influenced are essential to control fatty acids in spontaneous Chinese liquor fermentation. Herein, we identified the core microbiota related with fatty acid biosynthesis based on their microbial abundance, abundance and expression level of genes related with fatty acid biosynthesis, using high-throughput amplicon sequencing, metagenomic and metatranscriptomic analysis, respectively. Acetilactobacillus, Kroppenstedtia, Saccharomyces, Paecilomyces and Pichia were identified as the core microbiota (the criteria for identifying core microbiota: average relative abundance ≥1 %, average abundance of related genes >400 fragments per kilobase of transcript per million fragments mapped [FPKM], and expression level of related genes >1000 FPKM) related with fatty acid biosynthesis. SourceTracker analysis showed that Daqu mainly provided Kroppenstedtia (34.01 %) and Acetilactobacillus (3.31 %). Ground mainly provided Pichia (47.47 %), Saccharomyces (16.17 %) and Paecilomyces (8.55 %). Structural equation model revealed that Daqu and environmental microbiota drove the core microbiota (P < 0.05), and the core microbiota drove the biosynthesis of fatty acids (P < 0.05). This work revealed the important role of Daqu and environmental microbiota in fatty acid biosynthesis in liquor fermentation. It would benefit controlling fatty acids in liquor fermentation, and improving the liquor quality.
Collapse
Affiliation(s)
- Jing Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Rubing Du
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiao Niu
- Sichuan Lang Jiu Co. Ltd., Luzhou 646523, China
| | - Shibo Ban
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | - Lei Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Niu Y, Yang Y, Mao C, Xiao Z. Effects of gallic acid on the release of aroma compounds in Moutai Baijiu. Food Res Int 2024; 176:113655. [PMID: 38163678 DOI: 10.1016/j.foodres.2023.113655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 01/03/2024]
Abstract
Due to the trace concentrations of gallic acid (GA), the interaction mechanism between GA and flavor compounds is limited, and the effects on the aroma compounds of Moutai Baijiu are even more unclear. In this study, the aroma compounds and phenolic compounds in Moutai Baijiu were investigated by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). A total of 63 volatiles and 10 phenolic compounds were identified, and 16 esters and 4 alcohols were identified as the important aroma substances (odor activity values ≥1). The effect of GA on the release of aroma compounds was investigated by sensory analysis and partition coefficient. The results showed that GA mainly inhibited the volatilization of alcohols, low concentrations of GA promoted the release of esters, and high concentrations slowed down or even inhibited the release effect affected by the hydrophobicity of aroma compounds. UV spectroscopy and thermodynamic analysis further revealed that the interaction of GA with 1-propanol was attributed mainly to hydrogen bonding and van der Waals forces, and the interaction with other compounds was mainly influenced by hydrophobic effects. These results show that gallic acid can effectively control the release of the aromas of Moutai Baijiu, highlight the important role of GA on the volatiles of baijiu, and provide theoretical support for further healthy improvement of the sensory quality of baijiu.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yuling Yang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chengting Mao
- China Tobacco Jiangsu Industrial Co., Jiangsu 210019, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Wu Y, Duan Z, Niu J, Zhu H, Zhang C, Li W, Li X, Sun B. Spatial heterogeneity of microbiota and flavor across different rounds of sauce-flavor baijiu in Northern China. Food Chem X 2023; 20:100970. [PMID: 38144740 PMCID: PMC10739760 DOI: 10.1016/j.fochx.2023.100970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/26/2023] Open
Abstract
Sauce-flavor baijiu (SFB) is a traditional Chinese distilled liquor crafted through a distinctive brewing process, involving seven rounds of stack fermentation (SF) and pit fermentation (PF). To date, there remains a knowledge gap regarding the microbial succession and flavor throughout all rounds of SFB with distinctive northern characteristics. Through LEfSe analysis, Saccharopolyspora, Virgibacillus, Thermoascus and Thermomyces, and Lactobacillus and Issatchenkia were found to be the most differentially representative genera in SF and PF, respectively. A total of 93 volatile flavor compounds were found in base baijius through the gas-chromatography mass spectrometry. Moreover, 29 volatile flavor substances with significant difference in base baijius of different rounds were revealed using the OPLS-DA model and VIP values and Spearman correlation analysis shows that bacteria have a greater impact on differential flavor compounds than fungi. This study provides a new perspective and insight into the brewing of northern SFB.
Collapse
Affiliation(s)
- Yanfang Wu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhongfu Duan
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jialiang Niu
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Hua Zhu
- Beijing Huadu Distillery Food Co. Ltd, Beijing 102212, PR China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiuting Li
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| | - Baoguo Sun
- Key Laboratory of Brewing Microbiology and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, PR China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, PR China
| |
Collapse
|
29
|
Qiao L, Wang J, Wang R, Zhang N, Zheng F. A review on flavor of Baijiu and other world-renowned distilled liquors. Food Chem X 2023; 20:100870. [PMID: 38144822 PMCID: PMC10739939 DOI: 10.1016/j.fochx.2023.100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 12/26/2023] Open
Abstract
The flavor characteristics of distilled liquors significantly affect consumer acceptance and adoption. Therefore, odorants that contribute to sensory properties have received more attention. The odorants depend on the operating parameters, such as raw materials and ingredients, manufacturing process and maturing circumstances. This review summarized the odorants in the Baijiu and other world-renowned distilled liquors. Especially, the contribution of the odorants to the dominant aroma attributes is given more attention. The variations in the constituents and contents of odorants among the liquors are discussed comprehensively. In general, further research is still needed on the interaction mechanism between the odorants and sensory properties of distilled liquors.
Collapse
Affiliation(s)
- Lina Qiao
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jing Wang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Ruifang Wang
- BeijingKey Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Ning Zhang
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- BeijingKey Laboratory of Flavor Chemistry, Beijing Technology & Business University, Beijing 100048, China
| | - Fuping Zheng
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China
- KeyLaboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
30
|
Duan Z, Wu Y, Zhang C, Niu J, Zhao J, Li W, Li X. Comparison of fungal communities and flavour substances in surface and inner layers of fermented grains during stacking fermentation of sauce-flavour baijiu. J Biosci Bioeng 2023; 136:295-303. [PMID: 37544799 DOI: 10.1016/j.jbiosc.2023.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 08/08/2023]
Abstract
The stacking fermentation process plays a vital role in the production of sauce-flavour baijiu. The aim of this paper is to elucidate the effects of environmental variables on the fungal communities of different layers of fermented grains (zaopei) during the sixth round of stacking and the changes in volatile flavour substances during this process. The composition of the fungal communities in different layers during the stacking fermentation process was analysed. Principal coordinate analysis (pCoA) showed that the dominant fungal communities in different layers differed significantly with the stacking fermentation process. The dominant fungal genera were Thermoascus, Thermomyces and Issatchenkia. The total content of flavouring substances in the surface layer of zaopei were higher, but the types of flavouring substances were less than in the inner layer. The relationship between temperature, moisture content, acidity, starch content and reducing sugar content and microbial community was analysed by Redundancy analysis. The results showed that the correlation between microbial communities and physicochemical indexes in different layers of zaopei varied. The core fungal genera in the surface layer were mainly influenced by acidity, and the microorganisms in the inner layer were more strongly correlated with temperature. Spearman correlation coefficient revealed the correlation between fungal community and volatile flavour substances, and the results showed that microorganisms in different layers of zaopei have different correlations with flavour substances. This study contributes to the understanding of the evolution of different layers fungal communities during the stacking of sauce-flavour baijiu and their relationship with volatile aroma substances.
Collapse
Affiliation(s)
- Zhongfu Duan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Yanfang Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Jialiang Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Jingrong Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China.
| |
Collapse
|
31
|
Wei L, Hu J, Pan C, Cheng P, Zhang J, Xi D, Chen M, Lu L, Lu H, Hu F. Effects of different storage containers on the flavor characteristics of Jiangxiangxing baijiu. Food Res Int 2023; 172:113196. [PMID: 37689951 DOI: 10.1016/j.foodres.2023.113196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
Storage is a key factor controlling the quality of Jiangxiangxing baijiu, and storage time and the type of storage container play crucial roles in shaping the baijiu's distinct flavor. To investigate the influence of storage containers on the flavor characteristics of Jiangxiangxing baijiu, the sensory qualities, flavor components, and metal ions of Jiangxiangxing baijiu were measured during 24 months of storage in a pottery jar or a stainless steel tank. The results showed that Jiangxiangxing baijiu preserved in a pottery jar was superior to that stored in a stainless steel tank. A total of 96 flavor substances were detected, and 17 key flavor characteristic substances were screened by combining the results of odor activity values (OAV) and orthogonal partial least squares-discriminant analysis (OPLS-DA). A correlation heat map and redundancy analysis (RDA) showed that aluminum, cadmium, iron, cobalt, magnesium, potassium, and copper ions promoted the formation of key characteristic substances including diethoxymethane, lactic acid, 2,3-dimethyl-5-ethylpyrazine, 1-hexanol, and 2-methyl-1-propanol. Overall, the results show that 24-month pottery jar storage can promote the flavor quality of Jiangxiangxing baijiu. This study established a theoretical foundation to select the appropriate storage conditions and control the flavor quality of Jiangxiangxing baijiu.
Collapse
Affiliation(s)
- Lulu Wei
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Jianfeng Hu
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Chengkang Pan
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Pingyan Cheng
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Jian Zhang
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Dezhou Xi
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Mingxue Chen
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Lunwei Lu
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China
| | - Hu Lu
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China.
| | - Feng Hu
- GuiZhou XiJiu Co., Ltd, Xishui, Guizhou 564622, People's Republic of China.
| |
Collapse
|
32
|
Characterization of empty cup aroma in Soy sauce aroma type Baijiu by vacuum assisted sorbent extraction. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Niu Y, Zhao W, Xiao Z, Zhu J, Xiong W, Chen F. Characterization of aroma compounds and effects of amino acids on the release of esters in Laimao baijiu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1784-1799. [PMID: 36260337 DOI: 10.1002/jsfa.12281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Laimao baijiu is a typical soy-sauce aroma-type baijiu in China. Amino acids are non-volatile compounds in baijiu and are beneficial to human health. Aroma is one of the important indicators that are used to evaluate the quality of baijiu. The interaction between aroma-active compounds and non-volatile compounds can also affect the release of aroma compounds. In this study, we identified the active-aroma compounds and amino acids in Laimao baijiu by stir bar sorptive extraction (SBSE), gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The interaction between amino acids and key esters was investigated by sensory analysis and partition coefficients. RESULTS A total of 63 aroma compounds and 21 amino acids were identified. Twenty-one esters were identified from them as major aroma-active ester compounds with odor activity values ≥ 1. Finally, sensory analysis revealed that l-alanine had a significant effect on the strength of the aromas of esters, suggesting that low concentrations of amino acids were more likely to promote the release of esters and high concentrations were more likely to inhibit this. The partition coefficient can be a good explanation for this phenomenon. CONCLUSION l-Alanine can significantly affect the aroma intensity of key ester aroma compounds in Laimao baijiu, and the effects of different concentrations of amino acids are different. This work shows that amino acids, as non-volatile compounds, have a regulatory effect on the release of aroma compounds in alcoholic beverages, which may provide new technical support for the aroma modulation of alcoholic beverages. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wenqi Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiancai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wen Xiong
- China Tobacco Yunnan Industrial Co. LTD, Kunming, China
| | - Feng Chen
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
34
|
Jia W, Ma R. Cross-modal interactions caused by nonvolatile compounds derived from fermentation, distillation and aging to harmonize flavor. Crit Rev Food Sci Nutr 2023; 64:6686-6713. [PMID: 36718555 DOI: 10.1080/10408398.2023.2172714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chinese liquor (Baijiu), unique liquor produced in China and among the six world-renowned distilled liquors, is never a follower of others. Flavor is the essential characteristics of Baijiu which largely affect consumers' acceptance and selection. Though the flavor of Baijiu has been widely explored, the majority of research and review mainly focused on the volatile compounds in Baijiu. The research status on detection, source and flavor contribution of nonvolatile compounds in Baijiu is clarified in the article based on available literatures and knowledge. The nonvolatile composition of Baijiu is the result of contributions of different degrees from each step involved in the production process. Gas chromatography-mass spectrometry combined with derivatization and ultra-high performance liquid chromatography coupled to mass spectrometry is the generally adopted methods for the characterization of nonvolatile compounds in Baijiu. Certain nonvolatile compounds are taste-active compounds. Cross-modal interactions caused by nonvolatile composition could affect the aroma intensity of flavor compounds in Baijiu. The work provides numerous incompletely explored but useful points for the flavor chemistry of Baijiu and lays a theoretical foundation for the better understanding of Baijiu flavor and rapid development of Baijiu industry.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an, China
| | - Rutian Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
35
|
Wu J, Chen R, Li X, Fu Z, Xian C, Zhao W, Zhao C, Wu X. Comprehensive identification of key compounds in different quality grades of soy sauce-aroma type baijiu by HS-SPME-GC-MS coupled with electronic nose. Front Nutr 2023; 10:1132527. [PMID: 36960200 PMCID: PMC10028209 DOI: 10.3389/fnut.2023.1132527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
In the production of soy sauce-aroma type baijiu (SSAB), the quality of base liquor significantly affects the finished liquor's quality. Moreover, low-quality liquor may cause health problems. The different quality grades of base liquor were analyzed to investigate the relationship between the quality and the key compounds in SSAB. In this study, samples were evaluated by the sensory and further analyzed by headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) coupled with electronic nose (E-nose). First, by sensory evaluation, the sauce, floral and fruity, fermented aromas and taste indicators (softness, fullness, harmony, purity and persistence) were positively correlated with the quality grade of the base liquor. The E-nose could distinguish the different quality grades of base liquor well. Second, differential compounds were identified via untargeted metabolome based on the HS-SPME-GC-MS. 16 common differential compounds were shared in the base liquor from different fermentation rounds, including 11 esters, 1 alcohol, 2 aldehydes and 2 ketones. It was found that the higher the quality grade of the base liquor, the richer the content of aromatics, alcohols, aldehydes and ketones. The principal component analysis (PCA) biplots of the differential compounds in the different quality grades of base liquor indicated that the superior-grade base liquor has a strong fruity aroma. By correlation analysis of the differential compounds and sensors responses of E-nose, furfuryl ethyl ether, butanoic acid ethyl ester, isopentyl hexanoate, nonanoic acid ethyl ester and 3-methyl-1-butanol had a significant effect on the response intensity of E-nose sensors. In the present study, the key differential compounds between the different quality grades of base liquor were identified, and the sensory differences between the base liquor were digitized.
Collapse
Affiliation(s)
- Junhai Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| | - Renyuan Chen
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Xiaobo Li
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Zheyang Fu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
| | - Chun Xian
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Wenwu Zhao
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Cheng Zhao
- Guizhou Academy of Liquor Quality Inspection and Testing, Renhuai, China
| | - Xinying Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, China
- *Correspondence: Xinying Wu,
| |
Collapse
|
36
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
37
|
Volatile Compound Abundance Correlations Provide a New Insight into Odor Balances in Sauce-Aroma Baijiu. Foods 2022; 11:foods11233916. [PMID: 36496724 PMCID: PMC9739518 DOI: 10.3390/foods11233916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Sauce-aroma Baijiu (SAB) is one of the most famous Baijius in China; SAB has more than 500 aroma compounds in it. However, the key aroma compound in SAB flavor remains unclear. Volatiles play an important role in SAB aroma and are highly correlated to SAB quality. In the present study, 63 volatile compounds were quantified among 66 SAB samples using gas chromatography with flame ionization detector (GC-FID). The authors analyzed odor contributions and volatile compound correlations in two quality groups of SAB samples. Moreover, an odor activity value (OAV) ratio-based random forest classifier was used to explain the volatile compound relationship differentiations between the two quality groups. Our results proved higher quality SABs had richer aromas and indicated a set of fruity-like ethyl valerate, green- and malt-like isobutyraldehyde and malt-like 3-methylbutyraldehyde and sweet-like furfural, had closer co-abundance correlations in higher quality SABs. These results indicated that the aroma and contributions of volatile compounds in SABs should be analyzed not only with compound odor activity values, but also the correlations between different aroma compounds.
Collapse
|
38
|
Analysis of the Influence of Microbial Community Structure on Flavor Composition of Jiang-Flavor Liquor in Different Batches of Pre-Pit Fermented Grains. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the effects of microbial community changes on the key flavor substances in base Baijiu, this study analyzed the microbiome of the pre-pit fermentation grains using high-throughput sequencing technology and determined the flavor substances of the base Baijiu by GC-FID. The results showed the microbial community changed dynamically between the different rounds, as well as bacteria and fungi displayed different succession patterns. Next, the variations of skeletal flavor substances in the base Baijiu were analyzed by multiomics, and it was found that alcohols, acids, and esters were the most abundant, accounting for 88.16–98.87% of the total flavor substances, and decreased with the increase of the rounds. By calculating the Spearman coefficient, it was found that microorganisms such as Acinetobacter, Oceanobacillus, Saccharomyces, and Byssochlamys were significantly correlated with the n-Propano and 2,3-Butanediol and other components in the base Baijiu. Finally, 15 flavor substances such as Acetaldehyde, Propionaldehyde, and Isobutyraldehyde were identified as key substances by OAV analysis. This study is the first to reveal the potential association between the microbial community of pre-pit fermentation grains and flavor of base Baijiu and has the benefit of improving the quality of base Baijiu.
Collapse
|
39
|
What Are the Main Factors That Affect the Flavor of Sauce-Aroma Baijiu. Foods 2022; 11:foods11213534. [PMID: 36360147 PMCID: PMC9657106 DOI: 10.3390/foods11213534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/10/2022] Open
Abstract
Sauce-aroma Baijiu is a distilled Baijiu well-known in China, and features a unique sauce-aroma style formed by a complex producing process in a specific geographical environment. However, there are few comprehensive reviews of the factors influencing the formation of its flavor. To this end, reviews are hereby carried out over factors including different components in brewing raw materials, geographical environment of Baijiu production, brewing technology including the production of high-temperature Daqu and the brewing process, storage technology including the type of storage containers, storage time and storage temperature involved in the production of Sauce-aroma Baijiu. In addition, the effects of these factors on the flavor formation of Sauce-aroma Baijiu are also revealed, providing references and forging a foundation for stabilizing and improving the quality of Sauce-aroma Baijiu.
Collapse
|
40
|
Lu K, Liu L, Zi J, Song L, Xie W. New insights from flavoromics on different heating methods of traditional fermented shrimp paste: The volatile components and metabolic pathways. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
41
|
Xie X, Lu X, Zhang X, Zheng F, Yu D, Li C, Zheng S, Chen B, Liu X, Ma M, Xu G. In-depth profiling of carboxyl compounds in Chinese Baijiu based on chemical derivatization and ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry. Food Chem X 2022; 15:100440. [PMID: 36211780 PMCID: PMC9532792 DOI: 10.1016/j.fochx.2022.100440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
A systematic strategy for detection and annotation of carboxyl compound was developed. 197 carboxyl compounds were detected in Chinese Baijiu for the first time. Annotation was based on MS1, tR, in-silico MS/MS, and characteristic fragments. Three of carboxyl compounds were newly identified in Chinese Baijiu. Distribution of carboxyl compounds in Baijiu with different flavors was revealed.
Carboxyl compounds have a significant influence on the flavor of Chinese Baijiu. However, because of the structural diversity and low concentration, the deep profiling of carboxyl compounds in Chinese Baijiu is still challenging. In this work, a systematic method for comprehensive analysis of carboxyl compounds in Chinese Baijiu was established. After derivatized under optimized conditions, 197 p-dimethylaminophenacyl bromide-derived carboxylic compounds were annotated by multidimensional information including accurate mass, predicted tR, in-silico MS/MS, and diagnostic ions for the first time. In addition, 48 of the 197 carboxyl compounds were positively identified, and three of them were newly identified in Chinese Baijiu. Moreover, we found the number and the concentration of carboxyl compounds in sauce-flavor Baijiu were more abundant than in strong-flavor Baijiu. This work provides a novel method for the analysis of carboxyl compounds in Baijiu and other complex samples.
Collapse
Affiliation(s)
- Xiaoyu Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Di Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Chao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Computer Science & Technology, Dalian University of Technology, Dalian 116024, China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of Phytochemical R&D of Hunan Province, Hunan Normal University, Changsha 410081, China
- Corresponding authors at: CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian 116023, China
- Corresponding authors at: CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
42
|
Wu Y, Hou Y, Chen H, Wang J, Zhang C, Zhao Z, Ao R, Huang H, Hong J, Zhao D, Sun B. “Key Factor” for Baijiu Quality: Research Progress on Acid Substances in Baijiu. Foods 2022; 11:foods11192959. [PMID: 36230035 PMCID: PMC9562207 DOI: 10.3390/foods11192959] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/09/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Baijiu is the national liquor of China, which has lasted in China for more than 2000 years. Abundant raw materials, multi-strain co-fermentation, and complex processes make the secrets of baijiu flavor and taste still not fully explored. Acid substances not only have a great influence on the flavor and taste of baijiu, but also have certain functions. Therefore, this paper provides a systematic review for the reported acid substances, especially for their contribution to the flavor and functional quality of baijiu. Based on previous studies, this paper puts forward a conjecture, a suggestion, and a point of view, namely: the conjecture of “whether acid substances can be used as ‘key factor’ for baijiu quality “; the suggestion of “the focus of research on acid substances in baijiu should be transferred to evaluating their contribution to the taste of baijiu”; and the view of “acid substances are ‘regulators’ in the fermentation process of baijiu”. It is worth thinking about whether acid substances can be used as the key factors of baijiu to be studied and confirmed by practice in the future. It is hoped that the systematic review of acid substances in baijiu in this paper can contribute to further in-depth and systematic research on baijiu by researchers in the future.
Collapse
Affiliation(s)
- Yashuai Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Yaxin Hou
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Hao Chen
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Junshan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Chunsheng Zhang
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Zhigang Zhao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - Ran Ao
- Chengde Qianlongzui Distillery Company, Chengde 067400, China
| | - He Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jiaxin Hong
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Department of Nutrition and Health, China Agriculture University, Beijing 100193, China
| | - Dongrui Zhao
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-68988715
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Haidian District, No. 11, Fucheng Road, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
43
|
Hu L, Qiu S, Dai Y, Tian L, Wei C. Determination of 2-Pentanol Enantiomers via Chiral GC-MS and Its Sensory Evaluation in Baijiu. Foods 2022; 11:2584. [PMID: 36076771 PMCID: PMC9455680 DOI: 10.3390/foods11172584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The enantiomeric contents of 2-pentanol of Baijiu were analyzed by liquid-liquid extraction (LLE) coupled with gas chromatography-mass spectrometry (GC-MS) using β-cyclodextrin as a chiral stationary phase. In this study, the average enantiomeric ratios R:S were 72:28, 64:36, and 94:6 in soy sauce aroma-type Baijiu (SSB), strong aroma-type Baijiu (STB), and light aroma-type Baijiu (LTB), respectively, and only (R)- configuration was found in rice aroma-type Baijiu (RTB). The highest enantiomeric concentration of 2-pentanol was found in STB. (R)-2-pentanol dominated in 48 Baijiu studied, and the concentration of (R)-2-pentanol was higher than that of the (S)-configuration. The results showed that the enantiomers of 2-pentanol were discrepant in different aroma types of Baijiu, and it may be the result of differences in raw materials, environment, and production processes. The 2-pentanol enantiomers had different odor characteristics, with different olfactory thresholds in pure water and 46% ethanol solutions by sensory analysis. (R)-2-pentanol was described as paint, rubber, grease, while the (S)-form had mint, plastic, and pungent notes. The olfactory thresholds of (R)- and (S)-form were 163.30 mg/L and 78.58 mg/L in 46% ethanol and 12.62 mg/L and 3.03 mg/L in pure water, respectively. The different enantiomeric distribution and aroma characteristics of the 2-pentanol enantiomers in Baijiu could be a potential marker for determining adulteration.
Collapse
Affiliation(s)
- Lisha Hu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuyi Qiu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Luqin Tian
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Chaoyang Wei
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
44
|
Wang L. Research trends in Jiang-flavor baijiu fermentation: From fermentation microecology to environmental ecology. J Food Sci 2022; 87:1362-1374. [PMID: 35275413 DOI: 10.1111/1750-3841.16092] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/15/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022]
Abstract
Chinese baijiu is one of the six major distilled spirits worldwide and is widely enjoyed because of its unique flavor. Among typical baijiu, Jiang-flavor baijiu is gaining popularity. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. In recent years, advances in high-throughput sequencing and multi-omics technologies have yielded meaningful information regarding fermentation microbiome. Therefore, this paper reviews recent developments in the investigation of the diversity, stability, and metabolism of the Jiang-flavor baijiu microbial community. Furthermore, the importance of protecting the ecology of the production environment is proposed based on the putative contribution of environmental factors to the fermentation microbiome and baijiu characteristics. Finally, this paper discusses current research challenges that need to be addressed, including the limitations of sequencing technologies and difficulties unveiling the mechanisms of microbial interaction between the fermentation microbiome and the environmental ecology. The findings of this review will promote further understanding of the Jiang-flavor baijiu fermentation process and provide valuable information for the research and development of traditional baijiu and other naturally fermented foods. PRACTICAL APPLICATION: Baijiu, a transparent strong alcoholic drink, is the world's largest consumed and the most valuable spirit in the market. However, the fermentation mechanisms of baijiu remain unclear due to its open inoculation environment and complex brewing process. Therefore, if we can summarizes the current advances and research challenges of microbial fermentation in baijiu, it will deepen the reader's understanding of the complex fermentation process and fermentation mechanism in baijiu. Furthermore, based on the putative contribution of environmental factors to the fermentation process, the importance of protecting the ecology of the production environment is proposed in future research trends, which will provide valuable information for the research and development of other traditional naturally fermented foods. This will not only achieve breakthroughs in academic value, but also bring higher practical value to fermented foods.
Collapse
Affiliation(s)
- Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi City, China
| |
Collapse
|