1
|
Zhu H, Chen S, Xue J, Wang X, Yang T, He J, Luo Y. Advances and challenges in green extraction of chitin for food and agriculture applications: A review. Int J Biol Macromol 2025; 297:139762. [PMID: 39800035 DOI: 10.1016/j.ijbiomac.2025.139762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Chitin, the second most abundant polysaccharide in nature, offers numerous practical applications due to its versatile functional properties. However, its utilization is constrained by significant challenges in extraction, as well as low solubility and high crystallinity. While traditional chemical and biological fermentation methods can achieve high-purity chitin, these processes are often environmentally harmful or time/energy-consuming. Ionic liquids and deep eutectic solvents have emerged as more sustainable alternatives for chitin extraction, though both methods still face certain limitations, which are comprehensively discussed in this review. Besides extraction, chitin or modified chitin is increasingly being used to create a variety of biomaterials, which have shown considerable potential in food applications, including food packaging, preservation, stabilization, and nutrient encapsulation and delivery. Furthermore, the applications of chitin-based biomaterials are also reviewed in agriculture, where they are utilized as fertilizers, biocides, the elicitation of plants, or to treat seeds. This review not only provides a deeper understanding of the advancements and limitations in green chitin extraction methods but also highlights the broad potential of chitin-based biomaterials in both food and agriculture.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Jingyi Xue
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Xinhao Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Tiangang Yang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
2
|
Dong F, Dong Z, Mao L, Yao J, Wang C. Development of crosslinked gelatin films through Maillard reaction and reinforced with poly(vinyl alcohol) for active food packaging. Int J Biol Macromol 2024; 277:134095. [PMID: 39059526 DOI: 10.1016/j.ijbiomac.2024.134095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/18/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In order to improve the functionality of natural gelatin films for active food packaging applications, a combined strategy of crosslinking via Maillard reaction and blending enhancement incorporated with poly(vinyl alcohol) (PVA) was explored. In this study, when the mass ratio of gelatin to glucose was 10:1, Maillard reaction of crosslinked gelatin films was the highest, UV absorption and browning index reached the maximum. Infrared analysis showed that PVA could form strong interfacial interactions with gelatin matrix. The presence of PVA could significantly improve the toughness, water absorption, transparency, and oxygen barrier properties of crosslinked gelatin films. When the amount of PVA reached 5 %, elongation at break and oxygen barrier properties of crosslinked gelatin films were improved by 76.7 % and 47.9 % compared with pure crosslinked gelatin film. Even when the amount of PVA reached 10 %, UV absorption (at 315 nm) of crosslinked gelatin films still exceeded 98.7 %. The addition of PVA could accelerate the dissolution and swelling of crosslinked gelatin films, promoting the migration and release of active substances (Maillard reaction products (MRPs)). The two antioxidant activities tests (DPPH and ABTS method) achieved the highest radical scavenging rates of 71.6 % and 91.2 %, respectively, with corresponding PVA addition of 5 % and 7.5 %. After continuing to add PVA, antioxidant activities began to significantly decrease, which was directly related to the decrease in the generation of MRPs. Therefore, crosslinked gelatin films reinforced with appropriate amount of PVA can be considerable potential as active films for renewable food packaging applications.
Collapse
Affiliation(s)
- Fang Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Zhiye Dong
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China
| | - Long Mao
- Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, PR China.
| | - Jin Yao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| | - Chengyu Wang
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, PR China
| |
Collapse
|
3
|
Zhang J, Mohd Said F, Daud NFS, Jing Z. Present status and application prospects of green chitin nanowhiskers: A comprehensive review. Int J Biol Macromol 2024; 278:134235. [PMID: 39079565 DOI: 10.1016/j.ijbiomac.2024.134235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/25/2024]
Abstract
Petrochemical resources are non-renewable, which has impeded the development of synthetic polymers. The poor degradability of synthetic polymers poses substantial environmental pressure. Additionally, the high cost of synthetic biopolymers with excellent degradation performance limits their widespread application. Thus, it is crucial to seek green, sustainable, low-cost polymers as alternatives to petrochemical-based synthetic polymers and synthetic biopolymers. Chitin is a natural and renewable biopolymer discovered in crustacean shells, insect exoskeletons, and fungal cell walls. Chitin chains consist of crystalline and amorphous regions. Note that various treatments can be employed to remove the amorphous region, enhancing the crystallinity of chitin. Chitin nanowhiskers are a high crystallinity nanoscale chitin product with a high aspect ratio, a large surface area, adjustable surface morphology, and biocompatibility. They discover widespread applications in biomedicine, environmental treatment, food packaging, and biomaterials. Various methods can be utilized for preparing chitin nanowhiskers, including chemical, ionic liquids, deacetylation, and mechanical methods. However, developing an environmentally friendly preparation process remains a big challenge for expanding their applications in different materials and large-scale production. This article comprehensively analyzes chitin nanowhiskers' preparation strategies and their drawbacks. It also highlights the extensive application in different materials and various fields, besides the potential for commercial application.
Collapse
Affiliation(s)
- Juanni Zhang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.
| | - Nur Fathin Shamirah Daud
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
| | - Zhanxin Jing
- College of Chemistry and Environment, Guangdong Ocean University, 524088 Zhanjiang, Guangdong, China
| |
Collapse
|
4
|
Zhan Z, Feng Y, Zhao J, Qiao M, Jin Q. Valorization of Seafood Waste for Food Packaging Development. Foods 2024; 13:2122. [PMID: 38998628 PMCID: PMC11241680 DOI: 10.3390/foods13132122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/14/2024] Open
Abstract
Packaging plays a crucial role in protecting food by providing excellent mechanical properties as well as effectively blocking water vapor, oxygen, oil, and other contaminants. The low degradation of widely used petroleum-based plastics leads to environmental pollution and poses health risks. This has drawn interest in renewable biopolymers as sustainable alternatives. The seafood industry generates significant waste that is rich in bioactive substances like chitin, chitosan, gelatins, and alginate, which can replace synthetic polymers in food packaging. Although biopolymers offer biodegradability, biocompatibility, and non-toxicity, their films often lack mechanical and barrier properties compared with synthetic polymer films. This comprehensive review discusses the chemical structure, characteristics, and extraction methods of biopolymers derived from seafood waste and their usage in the packaging area as reinforcement or base materials to guide researchers toward successful plastics replacement and commercialization. Our review highlights recent advancements in improving the thermal durability, mechanical strength, and barrier properties of seafood waste-derived packaging, explores the mechanisms behind these improvements, and briefly mentions the antimicrobial activities and mechanisms gained from these biopolymers. In addition, the remaining challenges and future directions for using seafood waste-derived biopolymers for packaging are discussed. This review aims to guide ongoing efforts to develop seafood waste-derived biopolymer films that can ultimately replace traditional plastic packaging.
Collapse
Affiliation(s)
- Zhijing Zhan
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Yiming Feng
- Virginia Seafood AREC, Virginia Polytechnic Institute and State University, Hampton, VA 23662, USA
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jikai Zhao
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78542, USA
| | - Mingyu Qiao
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
- Center for Clean Energy Engineering (C2E2), University of Connecticut, Storrs, CT 05269, USA
- Institute of Materials Science (IMS), University of Connecticut, Storrs, CT 06269, USA
| | - Qing Jin
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
5
|
Zhang R, Liu R, Han J, Ren L, Jiang L. Protein-Based Packaging Films in Food: Developments, Applications, and Challenges. Gels 2024; 10:418. [PMID: 39057442 PMCID: PMC11275615 DOI: 10.3390/gels10070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
With the emphasis placed by society on environmental resources, current petroleum-based packaging in the food industry can no longer meet people's needs. However, new active packaging technologies have emerged, such as proteins, polysaccharides, and lipids, in which proteins are widely used for their outstanding gel film-forming properties. Most of the current literature focuses on research applications of single protein-based films. In this paper, we review the novel protein-based packaging technologies that have been used in recent years to categorize different proteins, including plant proteins (soybean protein isolate, zein, gluten protein) and animal proteins (whey protein isolate, casein, collagen, gelatin). The advances that have recently been made in protein-based active packaging technology can be understood by describing protein sources, gel properties, molding principles, and applied research. This paper presents the current problems and prospects of active packaging technology, provides new ideas for the development of new types of packaging and the expansion of gel applications in the future, and promotes the development and innovation of environmentally friendly food packaging.
Collapse
Affiliation(s)
- Rui Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
| | - Rongxu Liu
- Heilongjiang Institute of Green Food Science, Harbin 150028, China;
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China;
- Heilongjiang Institute of Green Food Science, Harbin 150028, China;
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China;
| | - Longwei Jiang
- College of Tea & Food Science and Technology, Anhui Agricultural University, Key Laboratory of Jianghuai, Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Hefei 230036, China
| |
Collapse
|
6
|
Deng Q, Lin P, Gu H, Zhuang X, Wang F. Silk Protein-Based Nanoporous Microsphere for Controllable Drug Delivery through Self-Assembly in Ionic Liquid System. Biomacromolecules 2024; 25:1527-1540. [PMID: 38307005 DOI: 10.1021/acs.biomac.3c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ionic liquids (ILs) showed a promising application prospect in the field of biomedicine due to their unique recyclability, modifiability, and structure adjustability. In this study, nanoporous microsphere of silk protein and blending with poly(d,l-lactic acid) as model drug delivery was fabricated, respectively, through an IL-induced self-assembly method. Their morphology, structure, and thermal properties were comparably investigated through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, differential scanning calorimetry, X-ray diffraction, and thermogravimetric analyses, and the interaction mechanisms were also discussed to elucidate the effect of structure on drug delivery kinetics. The pure protein exhibited a bigger nanopore size in the microsphere compared to the composite one, facilitating more effective drug loading up to 88.7%. However, drug release was over 53.5% for the composite during initial 4 h, while pure protein was only about half of the composite. Both of them exhibited sustained slow release after 24 h and anticancer efficacy. Furthermore, the favorable compatibility between drug and microsphere vehicle was found and experienced improved thermal stability upon encapsulation, which could protect the drug molecules in high temperature at 200 °C. When the protein and its composite self-assembled to microspheres in ILs due to electrostatic and hydrophobic interaction, the drug could be infiltrated into the nanoporous matrix through biophysical action, and the protein structure displayed reversible transition during delivery. The sustained slow release from pure SF was attributed to the high β-sheet block action and strong drug-protein interactions, whose strength could be tuned through blending poly(d,l-lactic acid) with protein. These findings indicated that the SF-based nanoporous microspheres formed from IL self-assembled system are an ideal and potential drug delivery vehicle which can be incorporated into various biomaterials in the future.
Collapse
Affiliation(s)
- Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ping Lin
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xincheng Zhuang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Liu Y, Xia X, Li X, Wang F, Huang Y, Zhu B, Feng X, Wang Y. Design and characterization of edible chitooligosaccharide/fish skin gelatin nanofiber-based hydrogel with antibacterial and antioxidant characteristics. Int J Biol Macromol 2024; 262:130033. [PMID: 38342261 DOI: 10.1016/j.ijbiomac.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Botian Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xuyang Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China.
| |
Collapse
|
8
|
Eze FN, Jayeoye TJ, Eze RC, Ovatlarnporn C. Construction of carboxymethyl chitosan/PVA/chitin nanowhiskers multicomponent film activated with Cotylelobium lanceolatum phenolics and in situ SeNP for enhanced packaging application. Int J Biol Macromol 2024; 255:128073. [PMID: 37972834 DOI: 10.1016/j.ijbiomac.2023.128073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/28/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
This work focused on the construction of bioactive packaging films based on carboxymethyl chitosan and poly(vinyl alcohol) (CMP) as polymeric matrix and fortified with chitin nanowhiskers, Cotylelobium lanceolatum phenolic extract (CL) and in situ synthesized nano selenium. Extensive morphological, microstructural, physical and mechanical analysis revealed that the nanofillers were well-dispersed and integrated into CMP matrix. Incorporation of the extract and nano selenium produced excellent UV blocking properties without seriously compromising the transparency of the composite (CMP/CNW/CLNS1) film. Moreover, blending of CMP with the filler materials significantly elevated (p < 0.05) the surface hydrophobicity (WCA by 35.4°), water barrier (by 53.86 %), tensile strength (from 29.35 to 33.09 MPa), elongation at break (from 64.28 to 96.48 %), and thermal properties of the resultant CMP/CNW/CLNS1 film, with concomitant reduction in water solubility and swellability. Furthermore, the CMP/CNW/CLNS films exhibited remarkable improvement in antioxidant properties. When used for packaging of peeled fresh garlic cloves, the CMP/CNW/CLNS1 film pouch, not the plain CMP or CMP/CNW film pouches, inhibited weight loss, oxidative browning, and the emergence of black mold on the packaged cloves. The developed CMP/CNW/CLNS1 film demonstrated enhanced capacity to safeguard the quality of packaged food and improved shelf life. Therefore, the present study suggests that incorporation of CNW/CLNS into carboxymethyl chitosan/PVA films is a suitable and facile strategy for the fabrication of films with improved mechanical, physico-chemical and functional properties with great potential for application as a sustainable active packaging material in the food industry.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand.
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand
| | - Chitchamai Ovatlarnporn
- Drug Delivery Systems Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, 90112 Songkhla, Thailand; Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
9
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|
10
|
Maryam Adilah Z, Han Lyn F, Nabilah B, Jamilah B, Gun Hean C, Nur Hanani Z. Enhancing the physicochemical and functional properties of gelatin/graphene oxide/cinnamon bark oil nanocomposite packaging films using ferulic acid. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
11
|
Xu W, Jia Y, Wei J, Ning Y, Sun H, Jiang L, Chai L, Luo D, Cao S, Shah BR. Characterization and antibacterial behavior of an edible konjac glucomannan/soluble black tea powder hybrid film with ultraviolet absorption. RSC Adv 2022; 12:32061-32069. [PMID: 36415559 PMCID: PMC9644209 DOI: 10.1039/d2ra05030g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
In this study, a KGM/SBTP film was prepared by a blending method using KGM and a soluble black tea film (SBTP) as substrates, and its hygroscopicity, thermal properties, light barrier properties, microstructure, and bacteriostatic properties were evaluated. The results confirmed that compared with the control group, with the increase in the SBTP content, the transmittance of the film in the ultraviolet region significantly reduced, and the water barrier property and thermal stability were improved. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results indicated that the tea polyphenols interacted with the film substrate. SEM also showed that the structure of the KGM/SBTP films was smooth and flat, and all samples showed no fracture. In addition, the KGM/SBTP mixed membrane had obvious concentration-dependent antibacterial activity. When the concentration of SBTP was 0.9%, the inhibition zones against Staphylococcus aureus and Escherichia coli were 12.30 ± 0.20 mm and 12.05 ± 0.47 mm, respectively.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yin Jia
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Jingjing Wei
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Yuli Ning
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Lanxi Jiang
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Shiwan Cao
- College of Life Science, Xinyang Normal University Xinyang 464000 China
| | - Bakht Ramin Shah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters Na Sádkách, 1780 České Budějovice 37005 Czech Republic
| |
Collapse
|
12
|
Etxabide A, Akbarinejad A, Chan EW, Guerrero P, de la Caba K, Travas-Sejdic J, Kilmartin PA. Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Li S, Fan M, Deng S, Tao N. Characterization and Application in Packaging Grease of Gelatin-Sodium Alginate Edible Films Cross-Linked by Pullulan. Polymers (Basel) 2022; 14:3199. [PMID: 35956713 PMCID: PMC9371049 DOI: 10.3390/polym14153199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
Gelatin-sodium alginate-based edible films cross-linked with pullulan were prepared using the solution casting method. FTIR spectroscopy demonstrated the existence of hydrogen bonding interactions between the components, and scanning electron microscopy observed the component of the films, revealing electrostatic interactions and thus explaining the differences in the properties of the blend films. The best mechanical properties and oxygen barrier occurred at a 1:1 percentage of pullulan to gelatin (GP11) with sodium alginate dosing for modification. Furthermore, GP11 demonstrated the best thermodynamic properties by DSC analysis, the highest UV barrier (94.13%) and the best oxidation resistance in DPPH tests. The results of storage experiments using modified edible films encapsulated in fresh fish liver oil showed that GP11 retarded grease oxidation by inhibiting the rise in peroxide and anisidine values, while inappropriate amounts of pullulan had a pro-oxidative effect on grease. The correlation between oil oxidation and material properties was investigated, and water solubility and apparent color characteristics were also assessed.
Collapse
Affiliation(s)
- Shuo Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316000, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|