1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
2
|
Xin D, Yin H, Ran G. Efficient production of High-Purity manno-oligosaccharides from guar gum by citric acid and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2024; 401:130719. [PMID: 38642662 DOI: 10.1016/j.biortech.2024.130719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Currently, the production of manno-oligosaccharides (MOS) from guar gum faces challenges of low oligosaccharide enzymatic hydrolysis yield and complicated steps in separation and purification. In this work, a potential strategy to address these issues was explored. By combining citric acid pretreatment (300 mM, 130 °C, 1 h) with β-mannanase hydrolysis, an impressive MOS yield of 61.8 % from guar gum (10 %, w/v) was achieved. The key success lay in the optimizing conditions that completely degraded other galactomannans into monosaccharides, which could be easily removable through Saccharomyces cerevisiae fermentation (without additional nutrients). Following ion exchange chromatography for desalination, and concluding with spray drying, 4.57 g of solid MOS with a purity of 90 % was obtained from 10 g of guar gum. This method offers a streamlined and effective pathway for obtaining high-yield and high-purity MOS from guar gum by combining citric acid pretreatment and enzymatic hydrolysis.
Collapse
Affiliation(s)
- Donglin Xin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China
| | - Ganqiao Ran
- Bio-Agriculture Institute of Shaanxi, Xi'an 710043, Shaanxi, China.
| |
Collapse
|
3
|
Cui L, Wang X, Wang C, Yan Y, Zhang M, Mayo KH, Sun L, Zhou Y. An efficient protocol for preparing linear β-manno-oligosaccharides. Carbohydr Res 2023; 532:108895. [PMID: 37463551 DOI: 10.1016/j.carres.2023.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
Linear β-manno-oligosaccharides (l-β-MOS) are widely used to investigate oligo- and poly-saccharide structures and mannanolytic enzyme activities. l-β-MOS are also being used as prebiotic agents with potential bio-active properties. In this study, we developed an efficient protocol to prepare a series of l-β-MOS by hydrolyzing cassia gum (CG) using mannanolytic enzymes (endo-1,4-β-mannanase, α-galactosidases and β-glucosidases). By using medium pressure liquid chromatography (MPLC), we purified l-β-MOS with different degrees of polymerization (DPs). HPAEC-PAD, MALDI-TOF-MS and NMR studies confirmed that these l-β-MOS species ranged from 1,4-β-d-mannobiose to 1,4-β-d-mannononaose (DP 2-9) with >95% purity. Our results provide a robust approach to preparing l-β-MOS, thus enabling l-β-MOS to be further used in the fields of chemistry, life science, and nutritional food.
Collapse
Affiliation(s)
- Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Chao Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yue Yan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Mengshan Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Xu W, Zhang W, Han M, Zhang F, Lei F, Cheng X, Ning R, Wang K, Ji L, Jiang J. Production of xylooligosaccharides from Camellia oleifera Abel fruit shell using a shell-based solid acid catalyst. BIORESOURCE TECHNOLOGY 2022; 365:128173. [PMID: 36283662 DOI: 10.1016/j.biortech.2022.128173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to produce xylooligosaccharides (XOS) from Camellia oleifera Abel fruit shell (CFS) using a shell-based solid acid derived from CFS (CFS-BSA). CFS-BSA preparation was optimized by incomplete carbonization at 450 °C for 1 h, followed by sulfonation at 130 °C for 8 h to yield a -SO3H functional group concentration of 1.04 mmol/g. When CFS-BSA was used to hydrolyze CFS with a 1:5 ratio of CFS-BSA to CFS at 170 °C for 20 min, a maximum XOS yield (X2-X5) of 51.41 % was achieved, which was notably higher than when using subcritical H2O solely. CFS-BSA can be recycled and reused at least six times by sieving without a substantial loss in its catalytic activity. CFS-BSA can also be used to produce XOS from other lignocellulosic materials such as corncob (41.04 %), sugarcane bagasse (45.03 %), corn stalk (45.89 %), birchwood (46.05 %), and poplar (40.10 %).
Collapse
Affiliation(s)
- Wei Xu
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Minghui Han
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Fenglun Zhang
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China
| | - Xichuang Cheng
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Ruxia Ning
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Department of Chemistry and Chemical Engineering, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, National Forest and Grass Administration Woody Species (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Advances in Prebiotic Mannooligosaccharides. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Yan B, Tao Y, Huang C, Lai C, Yong Q. Using One-pot Fermentation Technology to Prepare Enzyme Cocktail to Sustainably Produce Low Molecular Weight Galactomannans from Sesbania cannabina Seeds. Appl Biochem Biotechnol 2022; 194:3016-3030. [PMID: 35334068 DOI: 10.1007/s12010-022-03891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Enzymatic hydrolysis using β-mannanase and α-galactosidase is necessary to produce low molecular weight galactomannan (LMW-GM) from galactomannans (GM) in the leguminous seeds. In this study, different ratios of avicel and melibiose were used as the inductors (carbon sources) for Trichoderma reesei to metabolize the enzyme cocktail containing β-mannanase and α-galactosidase using one-pot fermentation technology. The obtained enzyme cocktail was used to efficiently produce LMW-GM from GM in Sesbania cannabina seeds. Results showed that 15 g/L avicel and 10 g/L melibiose were the best carbon sources to prepare enzyme cocktail containing β-mannanase and α-galactosidase with activities of 3.69 ± 0.27 U/mL and 0.51 ± 0.02 U/mL, respectively. Specifically, melibiose could effectively induce the metabolite product of α-galactosidase by T. reesei, which showed good performance in degrading the galactose substituent from GM backbone. The degradation of galactose alleviated the spatial site-blocking effect for enzymatic hydrolysis by β-mannanase and improved the yield of LMW-GM. This research can lay the foundation for the industrial technology amplification of LMW-GM production for further application.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuheng Tao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|