1
|
Betancur-D´Ambrosio MC, Pérez-Cervera CE, Barrera-Martinez C, Andrade-Pizarro R. Antimicrobial activity, mechanical and thermal properties of cassava starch films incorporated with beeswax and propolis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:782-789. [PMID: 38410275 PMCID: PMC10894146 DOI: 10.1007/s13197-023-05878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Revised: 09/18/2023] [Accepted: 10/16/2023] [Indexed: 02/28/2024]
Abstract
Edible films can be formed from different polymeric compounds. The use of starch has gained extra value; because it can be used in combination with plasticizers and lipids, helping to improve mechanical properties. Besides, with the addition of an antimicrobial, the function of these films can be extended. The objective of this research was to evaluate the effect of native cassava starch, beeswax and ethanolic propolis extract (EPE) on the mechanical, thermal and inhibitory properties against the Aspergillus niger fungus. An experimental Box-Behnken design with three factors: cassava starch concentration (2-4%w/v), beeswax (0.5-0.9%w/w) and EPE (1-4%v/w) was used. The films obtained were opaque and with low mechanical properties. EPE concentration affected tensile strength, elongation at break (EB) and Young's modulus (YM), and cassava starch content only affected EB and YM. In thermal properties, the weight loss was affected by the cassava starch-beeswax interaction, where the most loss occurred at high levels of these factors in the temperature range of 200-360 °C. The films reduced the growth of the Aspergillus niger by 51%, where the beeswax-EPE interaction had a significant positive effect. The characteristics of the developed films suggest that they would be more acceptable as fruit and vegetable coatings.
Collapse
|
2
|
de Jesus GAM, Berton SBR, Simões BM, Zola RS, Monteiro JP, Martins AF, Bonafé EG. κ-Carrageenan/poly(vinyl alcohol) functionalized films with gallic acid and stabilized with metallic ions. Int J Biol Macromol 2023; 253:127087. [PMID: 37769774 DOI: 10.1016/j.ijbiomac.2023.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Given the environmental issues caused by the extensive use of conventional petroleum-based packaging, this work proposes functional films based on commercial κ-carrageenan (κc), poly(vinyl alcohol) (PVA), and gallic acid (GA) prepared by the "casting" method. Metallic ions in the κc composition stabilized the films, supporting processability and suitable mechanical properties. However, the incorporated GA amount (6.25 and 10 wt%) in the films created from an aqueous κc solution at 3.0 % wt/v (κc3) prevented crystalline domains in the resulting materials. The κc3/GA6.25 and κc3/GA10 films had less tensile strength (8.50 ± 0.61 and 10.28 ± 0.65 MPa) and high elongation at break (2.36 ± 0.16 and 1.19 ± 0.17 %) compared to the other samples, respectively. Low κc contents (κc2.5/GA6.25 and κc2.5/GA10) promoted stiff films and less permeability to water vapor (5.36 ± 0.51 and 3.76 ± 0.02 [×10-12 g(Pa × m × s)-1], respectively. The κc/GA weight ratio also influenced the film wettability, indicating water contact angles (WCAs) between 55 and 74°. The surface wettability implies a low oil permeability and high water swelling capacity of up to 1600 %. The κc/GA also played an essential role in the film's antimicrobial action against Staphylococcus aureus and Escherichia coli. Thus, the κc3/GA10 film showed suitable physical, chemical, and biological properties, having the potential to be applied as food coatings.
Collapse
Affiliation(s)
- Guilherme A M de Jesus
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Sharise B R Berton
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Bruno M Simões
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Rafael S Zola
- Department of Physics, Federal University of Technology - Paraná (UTFPR), 86812-460 Apucarana, Paraná, Brazil
| | - Johny P Monteiro
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil
| | - Alessandro F Martins
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Group of Polymeric Materials and Composites (GMPC), Department of Chemistry, State University of Maringá (UEM), 87020-900 Maringá, PR, Brazil; Department of Chemistry & Biotechnology, University of Wisconsin-River Falls (UWRF), River Falls, WI 54022, USA.
| | - Elton G Bonafé
- Laboratory of Materials, Macromolecules, and Composites (LaMMAC), Federal University of Technology - Parana (UTFPR), Apucarana, PR 86812-460, Brazil; Analitycal Applied in Lipids, Sterols, and Antioxidants (APLE-A), State University of Maringá (UEM), Maringá, PR 87020-900, Brazil.
| |
Collapse
|
3
|
Liu B, Zhang S, Li M, Wang Y, Mei D. Metal-Organic Framework/Polyvinyl Alcohol Composite Films for Multiple Applications Prepared by Different Methods. MEMBRANES 2023; 13:755. [PMID: 37755178 PMCID: PMC10537366 DOI: 10.3390/membranes13090755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
The incorporation of different functional fillers has been widely used to improve the properties of polymeric materials. The polyhydroxy structure of PVA with excellent film-forming ability can be easily combined with organic/inorganic multifunctional compounds, and such an interesting combining phenomenon can create a variety of functional materials in the field of materials science. The composite membrane material obtained by combining MOF material with high porosity, specific surface area, and adjustable structure with PVA, a non-toxic and low-cost polymer material with good solubility and biodegradability, can combine the processability of PVA with the excellent performance of porous filler MOFs, solving the problem that the poor machinability of MOFs and the difficulty of recycling limit the practical application of powdered MOFs and improving the physicochemical properties of PVA, maximizing the advantages of the material to develop a wider range of applications. Firstly, we systematically summarize the preparation of MOF/PVA composite membrane materials using solution casting, electrostatic spinning, and other different methods for such excellent properties, in addition to discussing in detail the various applications of MOF/PVA composite membranes in water treatment, sensing, air purification, separation, antibacterials, and so on. Finally, we conclude with a discussion of the difficulties that need to be overcome during the film formation process to affect the performance of the composite film and offer encouraging solutions.
Collapse
Affiliation(s)
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| | | | | | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (B.L.); (M.L.); (Y.W.)
| |
Collapse
|
4
|
Advances in propolis and propolis functionalized coatings and films for fruits and vegetables preservation. Food Chem 2023; 414:135662. [PMID: 36808021 DOI: 10.1016/j.foodchem.2023.135662] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Propolis, as a natural active substance, is rich in polyphenols, with low toxicity, antioxidant, antifungal and antibacterial properties, which can be applied to the post-harvest preservation of fruits and vegetables. Propolis extracts and propolis functionalized coatings and films have exhibited good freshness in various types of fruits and vegetables as well as fresh-cut vegetables. They are mainly used to prevent water loss after harvesting, to inhibit the infestation of bacteria and fungi after harvesting and to enhance the firmness and apparent quality of fruits and vegetables. Moreover, propolis and propolis functionalized composites have a small or even insignificant effect on the physicochemical parameters of fruits and vegetables. Furthermore, how to cover the special smell of propolis itself so that it does not affect the flavor of fruits and vegetables, and the application of propolis extract in wrapping paper and packaging bag of fruits and vegetables, are worthwhile to further investigate.
Collapse
|
5
|
Żołek-Tryznowska Z, Bednarczyk E, Tryznowski M, Kobiela T. A Comparative Investigation of the Surface Properties of Corn-Starch-Microfibrillated Cellulose Composite Films. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093320. [PMID: 37176202 PMCID: PMC10179309 DOI: 10.3390/ma16093320] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Starch-based materials seem to be an excellent alternative for conventional plastics used in various applications. Microfibralted cellulose can be used to improve the surface properties of starch-based materials. This study aims to analyze the surface properties of starch-microfibrillated cellulose materials. The surface properties of films were evaluated by ATR-FTIR, surface roughness, water wettability, and surface free energy. The surface homogeneity between corn starch and microfibrillated cellulose (MFC) fibers was confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Microscopic analyses of the film surfaces confirm good compatibility of starch and MFC. The addition of MFC increased the surface roughness and polarity of developed starch/MFC materials. The surface roughness parameter has increased from 1.44 ± 0.59 to 2.32 ± 1.13 for pure starch-based materials and starch/MFC material with the highest MFC content. The WCA contact angle has decreased from 70.3 ± 2.4 to 39.1 ± 1.0°, while the surface free energy is 46.2 ± 3.4 to 66.2 ± 1.5 mJ·m-2, respectively. The findings of this study present that surface structure starch/MFC films exhibit homogeneity, which would be helpful in the application of MFC/starch materials for biodegradable packaging purposes.
Collapse
Affiliation(s)
- Zuzanna Żołek-Tryznowska
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Ewa Bednarczyk
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Mariusz Tryznowski
- Faculty of Mechanical and Industrial Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland
| | - Tomasz Kobiela
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-662 Warsaw, Poland
| |
Collapse
|
6
|
Isfran D, Chacon WDC, Alves MJDS, Monteiro AR, Ayala Valencia G. Active Films and Coatings Based on Propolis Extract and Chitosan: Physicochemical Characterization and Potential Application in Refrigerated Shrimps (
Litopenaeus vannamei
). STARCH-STARKE 2023. [DOI: 10.1002/star.202200263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- Douglas Isfran
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | | | - Alcilene Rodrigues Monteiro
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
7
|
Da Rocha J, Mustafa SK, Jagnandan A, Ahmad MA, Rebezov M, Shariati MA, Krebs de Souza C. Development of active and biodegradable film of ternary-based for food application. POTRAVINARSTVO 2023. [DOI: 10.5219/1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The effectiveness of plastic packaging in protecting food is quite appreciable, but its non-biodegradable characteristic raises concerns about environmental impacts. This has drawn attention to the development of alternative materials for food packaging from bio-based polymers. Chitosan, a polysaccharide with biodegradable, biocompatible, and non-toxic properties, is widely used in the formulation of food films. The objective of this work was to create a biodegradable and sustainable chitosan-based film whose active and intelligent action is obtained from red cabbage anthocyanins and the addition of propolis. The edible film’s thickness and total polyphenol content were 61.0 ±0.1μm and 20.08 ±0.5 mgAG g-1, respectively. The content of phenolic compounds and the biodegradation showed significant results (p <0.05), besides the good thermal stability to 200 °C and transparency. The proposed formulation developed an edible, biodegradable, and active (antioxidant) film with interesting heat-sealing resistance, moisture barrier and gas transfer, which contributes to increasing food shelf life.
Collapse
|
8
|
Matheus JRV, de Farias PM, Satoriva JM, de Andrade CJ, Fai AEC. Cassava starch films for food packaging: Trends over the last decade and future research. Int J Biol Macromol 2023; 225:658-672. [PMID: 36395939 DOI: 10.1016/j.ijbiomac.2022.11.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Cassava starch is one of the most available and cost-effective biopolymers. This work aimed to apply a bibliometric methodology to identify the most impactful scientific data on cassava starch and its residues for food packaging in the last ten years. As a result, an increasing interest in this subject has been observed, mainly in the past five years. Among the 85 selected scientific publications, Brazil and China have been leading the research on starch-based films, accounting for 39 % of the total. The International Journal of Biological Macromolecules was the main scientific source of information. Besides cassava starch, 41.18 % of these studies added other biopolymers, 5.88 % added synthetic polymers, and 4.71 % added a combination of both. Studies analyzed suggested that different modifications in starch can improve films' mechanical and barrier properties. In addition, 52.94 % of articles evaluated the film's bioactivity. Still, only 37.65 % assessed the performance of those films as food packaging, suggesting that more studies should be conducted on assessing the potential of these alternative packages. Future research should consider scale-up methods for film production, including cost analysis, assessment life cycle, and the impact on the safety and quality of a broader range of foods.
Collapse
Affiliation(s)
- Julia Rabelo Vaz Matheus
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | - Patrícia Marques de Farias
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Juliana Martins Satoriva
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil
| | - Cristiano José de Andrade
- Chemical and Food Engineering Department, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Ana Elizabeth Cavalcante Fai
- Food and Nutrition Graduate Program, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Dai L, Li R, Liang Y, Liu Y, Zhang W, Shi S. Development of Pomegranate Peel Extract and Nano ZnO Co-Reinforced Polylactic Acid Film for Active Food Packaging. MEMBRANES 2022; 12:1108. [PMID: 36363663 PMCID: PMC9694470 DOI: 10.3390/membranes12111108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The multifunctional packaging used for fresh food, such as antioxidant and antimicrobial packaging, can reduce food waste. In this work, a polylactic acid (PLA)-based composite film with antioxidant and antibacterial properties was prepared by using nano-zinc oxide (ZnONPs) and pomegranate peel extract (PEE) via the solvent-casting method. Different amounts of PEE (0.5, 1, 1.5 and 2 wt%) and 3 wt% ZnONPs were added to PLA to produce the active films. The results of various characterizations (SEM, XRD, etc.) showed that ZnONPs and PEE were uniformly dispersed in PLA film. Compared to PLA films, the PLA/ZnONPs/PEE films showed an increased UV barrier, water vapor permeability and elongation at break, and decreased transparency and tensile strength. In addition, the antioxidant activity of the composite film was evaluated based on DPPH and ABTS. The maximum DPPH and ABTS scavenging activities of PLA/ZnONPs/PEE were 96.2 ± 0.8% and 93.1 ± 0.5%. After 24 h, PLA/ZnONPs/PEE composite film inhibited 1.4 ± 0.05 Log CFU/mL of S. aureus and 8.2 ± 0.35 Log CFU/mL of E. coli, compared with the blank group. The results showed that PLA/ZnONPs/PEE composite film had good antibacterial and antioxidant activities. Therefore, the composite film showed great potential for food packaging.
Collapse
Affiliation(s)
- Lu Dai
- Department of Biological Engineering, Yangling Vocational and Technical College, Xianyang 712100, China
| | - Runli Li
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Yanmin Liang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Yingsha Liu
- Department of Biological Engineering, Yangling Vocational and Technical College, Xianyang 712100, China
| | - Wentao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
10
|
Rahmasari Y, Yemiş GP. Characterization of ginger starch-based edible films incorporated with coconut shell liquid smoke by ultrasound treatment and application for ground beef. Meat Sci 2022; 188:108799. [PMID: 35303656 DOI: 10.1016/j.meatsci.2022.108799] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to investigate the structural and physicochemical properties of ultrasound-treated ginger starch-based edible films incorporated with coconut shell liquid smoke (CSLS), and determine the inhibitory effect of the films against Escherichia coli O157:H7 in ground beef during the storage at 4 °C. Ultrasound-treated CSLS-ginger starch films presented a better mechanical, barrier, thermal, and antibacterial properties. The antibacterial effect of CSLS against E. coli, S. aureus, E. coli O157:H7, Listeria monocytogenes, Salmonella Enteritidis, and B. cereus increased significantly with ultrasound treatment. The CSLS-films showed antibacterial activity against E. coli O157:H7 without negatively affecting the sensory attributes of ground beef. The films containing 15% CSLS reduced E. coli O157:H7 populations by 1.33 log cfu/g in ground beef during the 12-day-storage. The CSLS-starch films effectively inhibited lipid oxidation in the ground beef samples during the refrigerated storage. These results indicated that ultrasound-treated CSLS-ginger starch film has the application potential as a novel antimicrobial active packaging for proteinous foods.
Collapse
Affiliation(s)
- Yovita Rahmasari
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Esentepe Campus, Serdivan 54187, Sakarya, Turkey
| | - Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Esentepe Campus, Serdivan 54187, Sakarya, Turkey.
| |
Collapse
|