1
|
Zuo Z, Zhang M, Li T, Zhang X, Wang L. Quality control of cooked rice: Exploring physicochemical changes of the intrinsic component in production. Food Chem 2024; 463:141295. [PMID: 39340909 DOI: 10.1016/j.foodchem.2024.141295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
Sensory deterioration exists in marketed cooked rice. The migration and interaction of intrinsic components occur under multiple conditions in each industrial production process and cause relevant physicochemical changes in cooked rice. This review aims to establish a scientific knowledge system of intrinsic component transition and migration in cooked rice kernel during processing to solve qualitative deficiencies in cooked rice products. The main influencing factors of intrinsic component structural change in cooked rice and the quality control points that should be considered are summarized. Further studies are needed to establish proper evaluation standards for cooked rice products to meet the growing consumer demands.
Collapse
Affiliation(s)
- Zhongyu Zuo
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ming Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Ting Li
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China
| | - Xinxia Zhang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Lihu Avenue 1800, Wuxi 214122, China.
| |
Collapse
|
2
|
Liao Y, Liu Y, Zhang W, Dong H, Yang L, Zhang J, Wang Y, Cheng S, Chen G. Effects of variable-temperature drying on the qualities and sweet-substance profile of Zizyphus jujuba Mill. cv. Junzao. Food Chem X 2024; 22:101361. [PMID: 38633738 PMCID: PMC11021840 DOI: 10.1016/j.fochx.2024.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
The changes in the qualities and sweet-substance levels of Junzao jujube during variable-temperature drying (VTD) were investigated. The results showed that VTD retains the original color of jujube, reduces its hardness and chewiness, and decreases its wrinkling while shortening the drying time by 13.2% compared with that of constant temperature drying (CTD). "Electronic-tongue" taste analysis showed that the sweetness of VTD jujube is significantly higher than that for CTD. This is shown to be related to the contents of sucrose, fructose, and glucose, as well as the activities of invertase and sucrose synthase enzymes. In addition, the content trends for sweet amino acids are correlated with the temperature gradient used in VTD. Thus, the present study elucidates the factors governing the transformation of sugar substances in jujube during VTD, as well as providing a practical reference for the application of VTD in the jujube industry.
Collapse
Affiliation(s)
- Yaxuan Liao
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Yuxing Liu
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Weida Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Hao Dong
- Shihezi Testing Institute of Quality and Metrology, Shihezi 832000, PR China
| | - Liqing Yang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Jiajun Zhang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Yunuo Wang
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
| | - Shaobo Cheng
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| | - Guogang Chen
- College of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, PR China
- Research Center of Xinjiang Characteristic Fruit and Vegetable Storage and Processing Engineering, Ministry of Education, Shihezi, Xinjiang 832000, PR China
| |
Collapse
|
3
|
Jiang DL, Wang QH, Huang C, Sutar PP, Lin YW, Okaiyeto SA, Lin ZF, Wu YT, Ma WM, Xiao HW. Effect of various different pretreatment methods on infrared combined hot air impingement drying behavior and physicochemical properties of strawberry slices. Food Chem X 2024; 22:101299. [PMID: 38559442 PMCID: PMC10978477 DOI: 10.1016/j.fochx.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
In current work, the effect of freezing (F), ultrasound (U), and freeze- ultrasound (FU) pretreatment on infrared combined with hot air impingement drying kinetics, cell ultrastructure, enzyme activity, and physicochemical properties of strawberry slices were explored. Results showed that FU pretreatment enhanced cell membrane permeability via forming micropores, altered water status by transforming bound water into free water and thus promoted moisture diffusivity and decreased drying time by 50% compared to the control group. FU pretreatment also extensively decreased pectin methylesterase enzyme activity and maintained quality. The contents of total phenols, anthocyanins, vitamin C, antioxidant activity, and a* value of dried strawberries pretreated by FU were extensively increased compared to the control group. U and FU pretreatments were beneficial for retaining aromatic components and organic sulfides according to e-nose analyses. The findings indicate that FU is a promising pretreatment technique as it enhances drying process and quality of strawberry slices.
Collapse
Affiliation(s)
- Da-Long Jiang
- School of Computer and Control Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Qing-Hui Wang
- Agricultural Mechanization Institute, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Chu Huang
- Yancheng Dafeng District Fruit Tree Technical Guidance Station, Yancheng 224005, Jiangsu, China
| | - Parag Prakash Sutar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Ya-Wen Lin
- School of Food Science and Engineering, Bohai University, Jinzhou 121000, Liaoning, China
| | - Samuel Ariyo Okaiyeto
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| | - Zi-Fan Lin
- Department of Electrical and Electronic Engineering, University of Western Australia, Perth 6000, Australia
| | - Yun-Tian Wu
- BeiGene Guangzhou Biologics Manufacturing Co., Ltd, Guangzhou 510555, China
| | - Wen-Ming Ma
- School of Computer and Control Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, P.O. Box 194, 17 Qinghua Donglu, Beijing 100083, China
| |
Collapse
|
4
|
Nkem OM, Oladejo AO, Alonge AF. Influence of ultrasound pretreatment on drying characteristics of cocoyam (Xanthosoma sagittifolium) slices during convective hot air drying. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3047-3056. [PMID: 38058019 DOI: 10.1002/jsfa.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Convective hot air drying of cocoyam is risk-free and inexpensive to a significant level. However, hot air drying causes negative changes to the color, texture, flavor and nutritional content of cocoyam as a result of the prolonged drying. Recently, the innovative technology of ultrasound pretreatment has been applied in food processing to reduce the processing time, conserve energy and preserve the quality of the food product. Thus, there is need to investigate the effect of ultrasound pretreatment with distilled water (UDW) and ultrasound with osmotic dehydration (UOD) for different ultrasonic times (10-30 min) on the drying kinetics of cocoyam slices during convective hot air drying. Ultrasound pretreatment was applied at a frequency of 20 kHz and an output power of 600 W for UDW and UOD. The ultrasound-pretreated samples were further dried in a convective hot-air drying oven at 70 °C. RESULTS UDW and UOD samples, respectively, had a 25% and 46% reduction in drying time compared to untreated samples. The UOD samples had the lowest activation energy (10.697 × 10 3 kJ), as well as the highest moisture diffusivity (3.782 × 10-10 m2 s-1 ) and mass transfer coefficient (2.006 × 10-8 m s-1 ), among the untreated and UDW samples. Wang and Singh, Page and Peleg models were found to be the most fitted models with respect to the drying characteristics of cocoyam for untreated, UDW and UOD samples, respectively. CONCLUSION Ultrasound pretreatment technology is a potential non-thermal process that can be incorporated as a pretreatment method in the convective drying of cocoyam to reduce processing time, conserve energy and enhance cocoyam product shelf life. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Owoidoho Michael Nkem
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
| | - Ayobami Olayemi Oladejo
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
| | - Akindele Folarin Alonge
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
| |
Collapse
|
5
|
Yao J, Chen W, Fan K. Novel Efficient Physical Technologies for Enhancing Freeze Drying of Fruits and Vegetables: A Review. Foods 2023; 12:4321. [PMID: 38231776 DOI: 10.3390/foods12234321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
Drying is the main technical means of fruit and vegetable processing and storage; freeze drying is one of the best dehydration processes for fruit and vegetables, and the quality of the final product obtained is the highest. The process is carried out under vacuum and at low temperatures, which inhibits enzymatic activity and the growth and multiplication of micro-organisms, and better preserves the nutrient content and flavor of the product. Despite its many advantages, freeze drying consumes approximately four to ten times more energy than hot-air drying, and is more costly, so freeze drying can be assisted by means of highly efficient physical fields. This paper reviews the definition, principles and steps of freeze drying, and introduces the application mechanisms of several efficient physical fields such as ultrasonic, microwave, infrared radiation and pulsed electric fields, as well as the application of efficient physical fields in the freeze drying of fruits and vegetables. The application of high efficiency physical fields with freeze drying can improve drying kinetics, increase drying rates and maintain maximum product quality, providing benefits in terms of energy, time and cost. Efficient physical field and freeze drying technologies can be well linked to sustainable deep processing of fruit and vegetables and have a wide range of development prospects.
Collapse
Affiliation(s)
- Jianhua Yao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Wenjuan Chen
- National Polymer Materials Industry Innovation Center Co., Ltd., Guangzhou 510530, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
6
|
Malakar S, Arora VK, Munshi M, Yadav DK, Pou KRJ, Deb S, Chandra R. Application of novel pretreatment technologies for intensification of drying performance and quality attributes of food commodities: a review. Food Sci Biotechnol 2023; 32:1303-1335. [PMID: 37457402 PMCID: PMC10349028 DOI: 10.1007/s10068-023-01322-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 07/18/2023] Open
Abstract
Drying is an energy-intensive process that can be reduced by the application of pretreatment prior to drying to enhance mass transfer and minimize energy consumption. This review summarizes the mechanistic aspects and applications of emerging pretreatment approaches, namely ohmic heating (OH), ultrasound (US), high pressure processing (HPP), and pulsed electric field (PEF), with emphasis on the enhancement of mass transfer and quality attributes of foods. Novel pretreatments significantly improved the drying efficiency by increasing mass transfer, cavitation, and microchannel formation within the cell structure. Various processing parameters have great influence on the drying performance and quality attributes of foods. Several studies have shown that novel pretreatments (individual and combined) can significantly save energy while improving the overall drying performance and retaining the quality attributes. This work would be useful for understanding the mechanisms of novel pretreatment technologies and their applications for future commercial research and development activities.
Collapse
Affiliation(s)
- Santanu Malakar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
- Department of Food Technology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh India
| | - Vinkel Kumar Arora
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - Mohona Munshi
- Department of Food Technology, Vignan Foundation for Science, Technology, and Research, Vadlamudi, Guntur, Andhra Pradesh India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana India
| | - K. R. Jolvis Pou
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Montreal, Quebec Canada
| | - Saptashish Deb
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| | - Ram Chandra
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 India
| |
Collapse
|
7
|
Abouelenein D, Acquaticci L, Alessandroni L, Borsetta G, Caprioli G, Mannozzi C, Marconi R, Piatti D, Santanatoglia A, Sagratini G, Vittori S, Mustafa AM. Volatile Profile of Strawberry Fruits and Influence of Different Drying Methods on Their Aroma and Flavor: A Review. Molecules 2023; 28:5810. [PMID: 37570780 PMCID: PMC10420878 DOI: 10.3390/molecules28155810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Strawberries are the most popular berry fruit in the world, due to their distinctive aroma, flavor, and known health properties. Because volatile substances play a large role in strawberry flavor, even little alterations can have a big impact on how the fruit tastes. Strawberries are thought to have a complex aroma. Fresh strawberry fruits contain more than 360 volatile compounds, including esters, furans, terpenes, alcohols, aldehydes, ketones, and sulfur compounds. Despite having far lower concentrations than esters, terpenoids, furanones, and sulfur compounds, all have a considerable impact on how people perceive the aroma of strawberries. With a focus on the active aroma components and the many analytical methods used to identify them, including gas chromatography, electronic nose sensing, and proton-transfer- reaction mass spectrometry, the present review's aim was to provide a summary of the relevant literature. Additionally, strawberry fruits are frequently dried to create a powder in order to increase their shelf life. Consequently, the impact of various drying techniques on strawberries' volatile profile was investigated in the current review. This review can be considered a good reference for research concerning the aroma profile of strawberries. It helps to better understand the complex aroma and flavor of strawberries and provides a guide for the effects of drying processing.
Collapse
Affiliation(s)
- Doaa Abouelenein
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Laura Acquaticci
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Laura Alessandroni
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Germana Borsetta
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Cinzia Mannozzi
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Riccardo Marconi
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Agnese Santanatoglia
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Gianni Sagratini
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Sauro Vittori
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
| | - Ahmed M. Mustafa
- CHemistry Interdisciplinary Project (CHIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (D.A.); (L.A.); (L.A.); (G.B.); (G.C.); (C.M.); (R.M.); (D.P.); (A.S.); (G.S.); (A.M.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Xing Y, Ma Q, Wang K, Dong X, Wang S, He P, Wang J, Xu H. Non-thermal treatments of strawberry pulp: The relationship between quality attributes and microstructure. ULTRASONICS SONOCHEMISTRY 2023; 98:106508. [PMID: 37442055 PMCID: PMC10362351 DOI: 10.1016/j.ultsonch.2023.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023]
Abstract
The relationship between quality attributes and microstructure in strawberry pulp after pasteurization (PS), ultrasound (US), electron beam irradiation (EB), and high pressure (HP) treatments was investigated. The results showed that US treatment decreased the viscosity to the lowest by 80.15% and increased the a* value, cloudy stability, and contents of titratable acid, total soluble solid, organic acids, total phenols, total flavonoids, and total anthocyanins (TAC), as well as its antioxidant capacity, due to the decrease in particle size, the destruction of microstructure, and the release of intracellular compounds. US and EB treatments could maintain the volatile compounds. The greatest deterioration in TAC and volatile compound content was found in the pulp treated with PS and HP treatments. HP treatment was beneficial to the enhancement of apparent viscosity, organic acids, and soluble sugar. These results provided insights into the enhancement of quality attributes in strawberry pulp due to the microstructure change.
Collapse
Affiliation(s)
- Ying Xing
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Life Science, Yuncheng University, Yuncheng, Shanxi 044000, China
| | - Qiudi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kunhua Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaobo Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - ShuangShuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyun He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Fernandes FAN, Rodrigues S. Ultrasound applications in drying of fruits from a sustainable development goals perspective. ULTRASONICS SONOCHEMISTRY 2023; 96:106430. [PMID: 37167783 DOI: 10.1016/j.ultsonch.2023.106430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
This review focuses on the many contributions of ultrasound technologies for fruit drying toward the United Nations Sustainable Development Goals (SDG). Along this review, several aspects attained from the application of ultrasound technologies are correlated with the SDGs. The main ultrasonic technologies applied for fruit drying, such as ultrasonic bath, probe ultrasound, air-borne ultrasound air-drying, and ultrasound-assisted contact air-drying, are presented. An in-depth discussion on ultrasound contributions, its advantages, disadvantages, and limitations are made. The effects of ultrasound on water diffusivity in several fruits are presented by correlating this effect with drying time and cost of energy. Ultrasound-assisted fruit drying, like other food processing technologies, directly impacts Zero Hunger, but ultrasound technologies contribute to much more than delivering long shelf-life food. This technology can be used to produce healthy foods and provide well-being, which will be discussed by correlating the effects of ultrasound-assisted air-drying with the concentration of nutritional compounds. Ultrasound-assisted fruit drying reduces wastewater toxicity and energy consumption and improves productivity, potentially improving workplaces and salaries. A walk through the technology is presented from Zero Hunger to No Poverty.
Collapse
Affiliation(s)
- Fabiano A N Fernandes
- Universidade Federal do Ceará, Departamento de Engenharia Química, Campus do Pici, Bloco 709, 60440-900 Fortaleza, CE, Brazil.
| | - Sueli Rodrigues
- Universidade Federal do Ceará, Departamento de Engenharia de Alimentos, Campus do Pici, Bloco 858, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
10
|
Zhou J, Dong X, Kong B, Sun Q, Ji H, Liu S. Effects of magnetic field-assisted immersion freezing at different magnetic field intensities on the muscle quality of golden pompano (Trachinotus ovatus). Food Chem 2023; 407:135092. [PMID: 36502731 DOI: 10.1016/j.foodchem.2022.135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
This study evaluated the effects of magnetic field-assisted immersion freezing (MIF) with different magnetic field intensities (0, 20, 40, 60, and 80 mT) on the freezing curves, ice crystal area, microstructure, and physicochemical properties of golden pompano (Trachinotus ovatus) muscle. The result showed that, compared with refrigerator freezing (RF) and immersion freezing (MIF-0), magnetic fields prolonged the freezing time. However, the centrifugal loss and cooking loss of MIF-20 were 23.55 % and 29.18 % lower than those of MIF-0 group, respectively (P < 0.05). Low field-nuclear magnetic resonance results showed that MIF-20 group exhibited more homogeneous of water distribution and higher water content, the T22 was 20.59 % shorter than of MIF-0 (P < 0.05). Microscopic observations confirmed that the MIF-20 group had the smallest and the most evenly distribution of ice crystals. Therefore, MIF at 20 mT intensity can effectively improve the muscle qualities of frozen golden pompano.
Collapse
Affiliation(s)
- Jieqian Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Xiuping Dong
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Huang X, You Y, Liu Q, Dong H, Bai W, Lan B, Wu J. Effect of gamma irradiation treatment on microstructure, water mobility, flavor, sensory and quality properties of smoked chicken breast. Food Chem 2023; 421:136174. [PMID: 37086519 DOI: 10.1016/j.foodchem.2023.136174] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Accepted: 04/13/2023] [Indexed: 04/24/2023]
Abstract
Effect of gamma irradiation on quality, flavor and sensory properties of smoked chicken breasts were investigated. Results indicated irradiation doses >3 kGy were effective for sterilization, while also produced a significant effect on overall quality of smoked chicken breast. Irradiation treatment could inhibit protein oxidation and accelerate lipid oxidation of smoked chicken breasts. High irradiation doses could increase the instability of free and bound water, as well as increase muscle fiber gap and juice loss significantly. Irradiation treatment also promoted free fatty acids and taste-presenting nucleotides degradation, effectively increased fresh-tasting amino acids contents and decreased bitter and sweet-tasting amino acids contents. The types and relative contents of volatiles, especially aldehydes, alcohols, aromatic hydrocarbons, and phenolic compounds, also changed after irradiation, while tartaric, pyruvic, and malic acids decreased. Results obtained can provide valuable reference data for improving the quality and flavor of smoked chicken breasts using gamma irradiation technology.
Collapse
Affiliation(s)
- Xiaoxia Huang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yun You
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qiaoyu Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Dong
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Bifeng Lan
- Guangzhou Furui High Energy Technology Co., Ltd., Guangdong Industrial 60Co Gamma Ray Application Engineering Technology Research Center, Guangzhou 511458, China
| | - Junshi Wu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangzhou Furui High Energy Technology Co., Ltd., Guangdong Industrial 60Co Gamma Ray Application Engineering Technology Research Center, Guangzhou 511458, China
| |
Collapse
|
12
|
Bao C, Xin M, Su K, Guan C, Wang D. Effects of Ultra-High Pressure Synergistic Enzymatic Hydrolysis on Flavor of Stropharia rugoso-annulata. Foods 2023; 12:foods12040848. [PMID: 36832923 PMCID: PMC9956958 DOI: 10.3390/foods12040848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In this study, using gas chromatography-mass spectrometry (HS-SPME-GC-MS), electronic nose (E-nose), high performance liquid chromatography (HPLC), and electronic tongue (E-tongue) to analyze the effect of ultra-high pressure (UHP) synergistic enzymatic hydrolysis on the flavor compounds of enzymatic hydrolysates of S. rugoso-annulata. The results demonstrated that 38 volatile flavor substances were identified in the enzymatic hydrolysates of S. rugoso-annulata treated at atmospheric pressure and 100, 200, 300, 400, and 500 MPa, mainly 6 esters, 4 aldehydes, 10 alcohols, 5 acids, and 13 other volatile flavor substances, and the most kinds of flavor substances reached 32 kinds when the pressure was 400 MPa. E-nose can effectively distinguish the overall changes of enzymatic hydrolysates of S. rugoso-annulata treated with atmospheric pressure and different pressures. There was 1.09 times more umami amino acids in the enzymatic hydrolysates at 400 MPa than in the atmospheric pressure enzymatic hydrolysates and 1.11 times more sweet amino acids at 500 MPa than in the atmospheric pressure enzymatic hydrolysates. The results of the E-tongue indicate that the UHP treatment increased umami and sweetness and reduced bitterness, which was also confirmed by the results of amino acid and 5'-nucleotide analysis. In conclusion, the UHP synergistic enzymatic hydrolysis can effectively improve the overall flavor of the enzymatic hydrolysates of S. rugoso-annulata; this study also lays the theoretical foundation for the deep processing and comprehensive utilization of S. rugoso-annulata.
Collapse
|
13
|
Xu B, Feng M, Chitrakar B, Cheng J, Wei B, Wang B, Zhou C, Ma H. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Pandiselvam R, Aydar AY, Kutlu N, Aslam R, Sahni P, Mitharwal S, Gavahian M, Kumar M, Raposo A, Yoo S, Han H, Kothakota A. Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 92:106261. [PMID: 36516722 PMCID: PMC9755246 DOI: 10.1016/j.ultsonch.2022.106261] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
One of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, expenses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as "ultrasound". Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.
Collapse
Affiliation(s)
- R Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671 124, Kerala, India.
| | - Alev Yüksel Aydar
- Department of Food Engineering, Manisa Celal Bayar University, 45140, Yunusemre, Manisa, Turkiye.
| | - Naciye Kutlu
- Department of Food Processing, Aydıntepe Vocational College, Bayburt University, 69500 Aydıntepe, Bayburt, Turkiye
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prashant Sahni
- College of Dairy and Food Technology, Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Swati Mitharwal
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Kundli 131028, India
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Matunga, Mumbai 400019, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Sunghoon Yoo
- Audit Team, Hanmoo Convention (Oakwood Premier), 49, Teheran-ro 87-gil, Gangnam-gu, Seoul 06164, South Korea.
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 98 Gunja-Dong, Gwanjin-Gu, Seoul 143-747, South Korea.
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| |
Collapse
|
15
|
Cho S, Moazzem MS. Recent Applications of Potentiometric Electronic Tongue and Electronic Nose in Sensory Evaluation. Prev Nutr Food Sci 2022; 27:354-364. [PMID: 36721748 PMCID: PMC9843717 DOI: 10.3746/pnf.2022.27.4.354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Electronic tongue (e-tongue) and electronic nose (e-nose) have been widely used to determine food products' taste, aroma, and flavor profiles. Several researchers and industries have recently attempted to find relationships between these e-senses and human sensory panels to ultimately replace sensory panels or use them as a viable alternative to timeconsuming and expensive traditional sensory evaluation (e.g., consumer acceptance testing or descriptive sensory analysis). This study investigated the recent applications of e-tongue and e-nose in the food and beverages sectors and their relationships with human sensory panels, including a trained sensory panel and naïve consumers. According to several studies, the e-tongue, e-nose, or a combination of e-tongue and e-nose can be an effective and powerful tool for rapid assessment of sensory profiles and quality detection with significant correlations with human sensory data. These instruments are also often reported to be more sensitive to detect subtle changes/differences that the human panel cannot detect. Future trends and projections of the e-tongue and e-nose with limitations are also discussed.
Collapse
Affiliation(s)
- Sungeun Cho
- Department of Poultry Science, Auburn University, Auburn, AL 36832, USA,
Correspondence to Sungeun Cho, E-mail:
| | | |
Collapse
|
16
|
Zhao J, Zhang Y, Chen Y, Zheng Y, Peng C, Lin H, Che Z, Ding W. Sensory and Volatile Compounds Characteristics of the Sauce in Bean Paste Fish Treated with Ultra-High-Pressure and Representative Thermal Sterilization. Foods 2022; 12:foods12010109. [PMID: 36613325 PMCID: PMC9818534 DOI: 10.3390/foods12010109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
This study investigated the differences between three sterilized samples to reveal the unique aroma characteristics of the sauce in bean paste fish by multiple analysis methodologies. Samples were subjected to pasteurized (PS), high-temperature sterilization (HTS), and ultra-high-pressure treatment (UHP) tests. The UHP had a higher sensory evaluation and could better maintain the original flavor of the sample. A total of 92, 83, 85, and 76 volatile compounds were detected via comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) techniques in the control (CT), PS, HTS, and UHP groups, respectively. According to the analysis of gas chromatograph-olfactometry and odor activity value, 7 compounds were considered to have an aromatic influence on the sauces, in which four compounds (1,8-Cineole, Linalool, Hexanal, and Dimethyl trisulfide) exhibited a positive contribution to the aroma of the sauces. PLS-DA results showed that the UHP group positively correlated with volatiles (Isoamylol and 1-Octen-3-ol), color, and gloss. In general, the UHP treatment could retain the original state and flavor of the sauce, showing a high similarity to the control group. The HTS significantly altered the flavor and status of the samples.
Collapse
Affiliation(s)
- Jie Zhao
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Yimao Zhang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Yu Chen
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yuhui Zheng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Changbo Peng
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Hongbin Lin
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Zhenming Che
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
| | - Wenwu Ding
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400000, China
- Correspondence:
| |
Collapse
|
17
|
Yuan L, Lao F, Shi X, Zhang D, Wu J. Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. ULTRASONICS SONOCHEMISTRY 2022; 90:106219. [PMID: 36371874 PMCID: PMC9664403 DOI: 10.1016/j.ultsonch.2022.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/16/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.
Collapse
Affiliation(s)
- Lin Yuan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Xun Shi
- Haoxiangni Health Food Co., Ltd., Xinzheng 451100, China
| | - Donghao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China; Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
18
|
Hu J, Sun X, Xiao H, Yang F, Liu C, Wang H, Zhang H, Zhang W. Optimization of Conditions for a Freeze-Dried Restructured Strawberry Block by Adding Guar Gum, Pectin and Gelatin. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212809. [PMID: 36365264 PMCID: PMC9658006 DOI: 10.3390/plants11212809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 05/30/2023]
Abstract
With its high moisture content and tender texture, fresh strawberry is very susceptible to mechanical damage and microbial infection. Drying is one of the most frequently employed methods to extend its shelf life, and freeze-dried restructured strawberry block (FRSB) is an emerging popular food. Here, in order to enhance the quality of FRSB, edible gums of guar gum, pectin, and gelatin were added and the combination was optimized using response surface methodology (RSM) with chewiness, hardness, and organoleptic evaluations of the dried sample as the response indicators. The results showed that the combination addition of 0.10% guar gum, 0.22% pectin, and 0.30% gelatin contributed to the highest comprehensive quality of the dried sample. Compared with the untreated sample, the optimal combination addition of the three edible gums resulted in a higher moisture content for the dried sample (increased by 0.8%), and increased the chewiness, hardness, and porosity by 82.04%, 27.09%, and 3.01%, respectively, while maintaining more original color and forming a denser porous microstructure. The findings in the current work will be useful for the application of edible gums in freeze-dried restructured fruits and vegetables.
Collapse
Affiliation(s)
- Jiaqi Hu
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Xiyun Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Feifei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, China
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Chunju Liu
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haiou Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Honglin Zhang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Wei Zhang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| |
Collapse
|
19
|
Influence of ethanol and ultrasound on drying, bioactive compounds, and antioxidant activity of strawberries (Fragaria × ananassa). J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|