1
|
Sasidharan A, Rustad T, Cusimano GM. Tuna sidestream valorization: a circular blue bioeconomy approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28610-w. [PMID: 37434051 DOI: 10.1007/s11356-023-28610-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Tuna is an economically significant seafood, harvested throughout the world, and is heavily traded due to its high nutritional quality and consumer acceptance. Tuna meat is rich in essential nutrients such as amino acids, polyunsaturated fatty acids (PUFA), and trace minerals. The huge volume of solid and liquid sidestreams generated during the processing stages of tuna is creating environmental and socioeconomic challenges in coastal areas. Different products such as fish meal, protein hydrolysates, collagen, enzymes, oil, and bone powder can be produced from tuna sidestreams. Using different nutrient recovery technologies like enzymatic hydrolysis, chemical processing, and green technologies, various categories of product value chains can be created in line with the conventional processing industry. This review attempts to provide a route map for the tuna industry for achieving the circular blue-bioeconomic objectives and reorient the irregular utilization pattern into a sustainable and inclusive path.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Department of Fish Processing Technology, KUFOS, Kerala, India
| | - Turid Rustad
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway.
| | | |
Collapse
|
2
|
Avram I, Pelinescu D, Gatea F, Ionescu R, Barcan A, Rosca R, Zanfirescu A, Vamanu E. Boletus edulis Extract-A New Modulator of Dysbiotic Microbiota. Life (Basel) 2023; 13:1481. [PMID: 37511858 PMCID: PMC10381576 DOI: 10.3390/life13071481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The regular administration of antibiotics is a public concern due to the prejudices of large population groups and the high frequency with which antimicrobial products are prescribed. The current study aimed to evaluate the in vitro effect of a new extract from Boletus edulis (BEE) on the human microbiota. One of the disadvantages of this extensive use is the disruption of the human microbiota, leading to potential negative health consequences. The in vitro evaluation of BEE consisted in determining its cytotoxicity, influence on the concentration of four types of cytokines (IL-6, IL-10, IL-1β, TNFα), and capacity to modulate the human microbiota after administering antibiotics. The latter was assessed by microbiome analysis and the evaluation of short-chain fatty acid synthesis (SCFAs). Simultaneously, the content of total polyphenols, the antioxidant capacity, and the compositional analysis of the extract (individual polyphenols composition) were determined. The results showed that BEE modulates the microbial pattern and reduces inflammatory progression. The data demonstrated antioxidant properties correlated with the increase in synthesizing some biomarkers, such as SCFAs, which mitigated antibiotic-induced dysbiosis without using probiotic products.
Collapse
Affiliation(s)
- Ionela Avram
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Diana Pelinescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Florentina Gatea
- Centre of Bioanalysis, National Institute for Biological Sciences, 296 Spl. Independentei, 060031 Bucharest, Romania
| | - Robertina Ionescu
- Department of Genetics, University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Alexandru Barcan
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Razvan Rosca
- Anoom Laboratories SRL, București, 28 Vintila Mihaileanu Sector 1, 024023 Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| |
Collapse
|
3
|
Li L, Gao T, Wu X, Geng M, Teng F, Li Y. Investigation of soybean lipophilic proteins as carriers for vitamin B 12: Focus on interaction mechanism, physicochemical functionality, and digestion characteristics. Food Chem 2023; 424:136435. [PMID: 37244193 DOI: 10.1016/j.foodchem.2023.136435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
This study aimed to explore the interaction mechanism between soybean lipophilic protein (LP) and vitamin B12 and the potential of LP as a vitamin B12 carrier. The results of spectroscopy indicated that the interaction between vitamin B12 and LP changed the conformation of LP and exposed hydrophobic groups largely. The results of molecular docking revealed that vitamin B12 interacted with LP through a hydrophobic pocket embedded on the surface of LP. With the enhancement of the interaction between LP and vitamin B12, the particle size of the LP-vitamin B12 complex gradually decreased to 588.31 nm and the absolute value of zeta potential gradually increased to 26.82 mV. Meanwhile, the LP-vitamin B12 complex showed excellent physicochemical properties and digestive characteristics. The present work enriched the means of vitamin B12 protection and provided a theoretical basis for applying the LP-vitamin B12 complex in food systems.
Collapse
Affiliation(s)
- Lijia Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Gao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xixi Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengjie Geng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Research Center of Soybean Engineering and Technology, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
4
|
Makran M, Miedes D, Cilla A, Barberá R, Garcia-Llatas G, Alegría A. Understanding the influence of simulated elderly gastrointestinal conditions on nutrient digestibility and functional properties. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Zhan Q, Wang R, Thakur K, Feng JY, Zhu YY, Zhang JG, Wei ZJ. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit Rev Food Sci Nutr 2022; 64:4046-4058. [PMID: 36271691 DOI: 10.1080/10408398.2022.2138263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nutrition-gut cross-talk holds a vital position in sustaining intestinal function, and micronutrient metabolism has emerged as the foremost metabolic pathway to preserve gut homeostasis. Among micronutrients, B vitamins have evolved prior to DNA/RNA and are known for their vital roles for major evolutionary transitions in extant organisms. Despite their universal requirement and critical role, not all the three domains of life are endowed with a natural ability for de novo B vitamins synthesis. The human gut microbiome constitutes prototrophs and auxotroph which are entirely dependent on dietary intake and gut microbial production of B vitamins. The syntrophic metabolism involving cross-feeding of B vitamins and community-wide exchange between commensal bacteria elicit important changes in the diversity and composition of the human gut microbiome. Hereto, we discuss the B-vitamins sharing among prototrophic and auxotrophic gut bacteria, their absorption in small intestine and transport in distal gut, functional role in relation to the gut homeostasis and symptoms linked to their deficiency. We also briefly explore their potential involvement as psychobiotics in brain energetic metabolism (kynurenines/tryptophan pathway) for neurological functions and highlight their deficiency related malfunctioning.
Collapse
Affiliation(s)
- Qi Zhan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Rui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, People's Republic of China
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan, People's Republic of China
| |
Collapse
|
6
|
Patil U, Nikoo M, Zhang B, Benjakul S. Freeze-Dried Tuna Pepsin Powder Stabilized by Some Cryoprotectants: In Vitro Simulated Gastric Digestion toward Different Proteins and Its Storage Stability. Foods 2022; 11:foods11152292. [PMID: 35954059 PMCID: PMC9368244 DOI: 10.3390/foods11152292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 02/07/2023] Open
Abstract
The impact of maltodextrin (10%) in combination with trehalose or glycerol at different levels (2.5% and 5%) and their mixture on the stability of freeze-dried pepsin from skipjack tuna stomach was studied. Addition of 5% trehalose and 10% maltodextrin yielded the powder (TPP-T5) with highest relative pepsin activity (p < 0.05). TPP-T5 had different shapes and sizes, with mean particle size of 65.42 ± 57.60 μm, poly-dispersity index of 0.474, and zeta potential of −19.95. It had bulk density of 0.53 kg m−3 and possessed fair flowability. The wetting time for TPP-T5 was 16.36 ± 0.73 min, and solubility was 93.58%. TPP-T5 stored at room temperature under different relative humidities could maintain proteolytic activity up to 4 weeks. Commercial porcine pepsin (CP) and crude tuna pepsinogen had molecular weights of 35.2 and 43.3 kDa, respectively, when analyzed using gel filtration (Sephadex G-50) and SDS-PAGE. Tuna pepsin had comparable hydrolysis toward threadfin bream muscle protein, whey protein isolate, and kidney bean protein isolate to commercial pepsin, especially at a higher level (15 units/g protein). Digested proteins contained peptides with varying molecular weights as determined by MALDI-TOF. Therefore, pepsin from skipjack tuna stomach could replace commercial porcine pepsin and was beneficial supplement for patients with maldigestion, particularly the elderly.
Collapse
Affiliation(s)
- Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, West Azerbaijan, Iran;
| | - Bin Zhang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
- Correspondence: ; Tel.: +66-7428-6334
| |
Collapse
|