1
|
Wei J, Li Z, Kuang J, Yan Z, Wang L, Lin Y, Du J, Li K, Wang Y, Yang L. Microbial community succession and changes of volatile compounds in the fermentation process of bamboo shoots. Food Microbiol 2024; 124:104618. [PMID: 39244370 DOI: 10.1016/j.fm.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
Sour bamboo shoots are a traditional fermented delicacy that has garnered appreciation both domestically and internationally. This study investigates the intricate dynamics of microbial communities and volatile flavor compounds primarily derived from salted and pickled bamboo shoots during the fermentation process of Phyllostachys purpurea (PP). The dynamics of microorganisms and volatile flavor compounds were thoroughly examined initially using conventional isolation and cultivation methods in conjunction with high-throughput sequencing (HTS), headspace solid-phase microextraction (HS-SPME), and gas chromatography-mass spectrometry (GC-MS). In addition, we analyzed the core microorganisms responsible for modulating the volatile flavor profile. Our findings revealed 60 volatile compounds, 14 of which were the predominant contributors to the aroma of fermented PP. This group primarily comprised alcohols, aldehydes, and olefins. Notably, our investigation identified Lactobacillus and Candida as the dominant microbial genera during the middle and late stages of fermentation. These two genera exert a significant influence on the formation of characteristic aromas. Furthermore, we discovered that acids, sugars, and proteins pivotally influence the succession of microorganisms. Specifically, acids and soluble sugars drove the transition of Lactococcus to Lactobacillus and Pediococcus, whereas soluble proteins facilitated fungal succession from Candida to Kazachstania and Issatchenkia. These insights shed light on the community structure and succession patterns of flavor compounds throughout the PP fermentation process. Ultimately, they provide a foundation for optimizing the fermentation process and ensuring quality control in the production of sour bamboo shoots.
Collapse
Affiliation(s)
- Jinmei Wei
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Jinyan Kuang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zikang Yan
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ying Lin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jin Du
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China; Changsha Modern Food Innovation Research Institute, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Li Yang
- Hunan Jiapin Jiawei Biological Technology Co.Ltd, Changde, Hunan, 415400, China
| |
Collapse
|
2
|
Duan S, Tian Z, Zheng X, Tang X, Li W, Huang X. Characterization of flavour components and identification of lipid flavour precursors in different cuts of pork by phospholipidomics. Food Chem 2024; 458:139422. [PMID: 38959797 DOI: 10.1016/j.foodchem.2024.139422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 07/05/2024]
Abstract
The lipids and volatile compounds in pork from different parts, including the loin, belly, shoulder and hind leg were analyzed by triple quadrupole tandem time-of-flight mass spectrometer (Q-TOF/MS) and gas chromatography-olfactometry-mass spectrometry (GC-O-MS), respectively. Partial least squares regression (PLSR) and Pearson correlation analysis were utilized to establish the relationship between the lipids and volatile compounds. A total of 8 main flavour substances, 38 main phospholipids, and 32 main fatty acids were identified. The results showed that the key flavour compounds were mainly derived from unsaturated fatty acids and phospholipids containing unsaturated fatty acids, including oleic acid (C18:2n6c), α-Linolenic acid (C18:3n3), arachidonic acid (C20:4n6), PE O (18:1/20:4), PE O (18:2/20:4), and PE O (18:2/18:2), etc. Understanding the relationship between flavour compounds and lipids of pork will be helpful to control the quality of pork.
Collapse
Affiliation(s)
- Shengnan Duan
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Zhiqing Tian
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xin Zheng
- Shimadzu (China) Co., Ltd, Beijing Branch, Beijing 100020, PR China.
| | - Xiaoyan Tang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wusun Li
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Xinyuan Huang
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Cheng L, Wang Q, Li X, Huang X, An F, Luo Z, Wang J, Zeng Q, Shang P, Liu Z, Huang Q. Exploring the influence and mechanism of different frying methods on the flavor quality of low-salt sour meat. Food Chem X 2024; 23:101591. [PMID: 39036485 PMCID: PMC11260038 DOI: 10.1016/j.fochx.2024.101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
To obtain nutritious, healthy, and flavor-enriched sour meat products, the effects of different frying methods (microwave, air-frying, and traditional frying) on the flavor quality of low-salt sour meat were evaluated using metabolomics and other flavor analysis techniques. The pH value of the sour meat rose dramatically, while the TBARS value dropped significantly after frying. E-nose and E-tongue results showed that air-frying could reduce acidity and improve umami. The comprehensive analysis of all samples revealed the identification of 107 volatile flavor compounds, including 10 unique aroma compounds that were specifically detected in the AF group. Additionally, the air frying process notably increased the free amino acid and nucleotide concentrations in sour meat by 53.58% and 159.29%, respectively, while causing a significant reduction in both fatty acid and lactic acid content by 22.84% and 49.29%, respectively. All three frying methods altered the flavor of the samples, but air frying performed better in terms of flavor and texture.
Collapse
Affiliation(s)
- Lujie Cheng
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qia Wang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiefei Li
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xinyuan Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Fengping An
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhang Luo
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Jingjing Wang
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, 528225, China
| | - Peng Shang
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Zhendong Liu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Tibet, Autonomous Region, 860000, China
| | - Qun Huang
- School of Public Health, Guizhou Province Engineering Research Center of Health Food Innovative Manufacturing, the Key Laboratory of Environmental Pollution Monitoring and Disease Control of Ministry of Education, Guizhou Medical University, Guiyang 550025, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
4
|
Fan Y, Zhang K, Liu Q, Liu H, Wang H, Sun F, Kong B. Impact and correlation of fermentation temperature on the bacterial community, flavor characteristics, and proteolysis of Harbin dry sausages. Food Chem 2024; 464:141703. [PMID: 39447265 DOI: 10.1016/j.foodchem.2024.141703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Proteins undergo degradation to produce peptides and free amino acids, which in turn promote the production of volatile compounds with important contributions to the taste and aroma. This study investigated the effect of fermentation temperatures (8, 15, and 25 °C) on the bacterial community, flavor profile, and protein degradation of Harbin dry sausages. The physical and chemical properties were improved at 25 °C compared with 8 and 15 °C. Staphylococcus xylosus increased with the increase in fermentation temperature, whereas Latilactobacillus sakei decreased. The degree of protein degradation increased, and the content and proportion of taste peptides and free amino acids increased. Similarly, a higher fermentation temperature led to an increase in volatile compounds, such as aldehydes, alcohols, and esters. In conclusion, there is an inseparable relationship between proteolysis and microbial proteases. The fermentation temperature of 25 °C best contributed to the sensory quality and flavor characteristics of Harbin dry sausages.
Collapse
Affiliation(s)
- Yuhang Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Kaida Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Hui Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fangda Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Hu Y, Badar IH, Zhang L, Yang L, Xu B. Odor and taste characteristics, transduction mechanism, and perceptual interaction in fermented foods: a review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39012297 DOI: 10.1080/10408398.2024.2377292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Fermentation is a critical technological process for flavor development in fermented foods. The combination of odor and taste, known as flavor, is crucial in enhancing people's perception and psychology toward fermented foods, thereby increasing their acceptance among consumers. This review summarized the determination and key flavor compound screening methods in fermented foods and analyzed the flavor perception, perceptual interactions, and evaluation methods. The flavor compounds in fermented foods could be separated, purified, and identified by instrument techniques, and a molecular sensory science approach could identify the key flavor compounds. How flavor compounds bind to their respective receptors determines flavor perception, which is influenced by their perceptual interactions, including odor-odor, taste-taste, and odor-taste. Evaluation methods of flavor perception mainly include human sensory evaluation, electronic sensors and biosensors, and neuroimaging techniques. Among them, the biosensor-based evaluation methods could facilitate the investigation of the flavor transduction mechanism and the neuroimaging technique could explain the brain's signals that relate to the perception of flavor and how they compare to signals from other senses. This review aims to elucidate the flavor profile of fermented foods and highlight the significance of comprehending the interactions between various flavor compounds, thus improving the healthiness and sensory attributes.
Collapse
Affiliation(s)
- Yingying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, China
| | - Iftikhar Hussain Badar
- Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Lang Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Linwei Yang
- State key Laboratory of Meat Quality Control and Cultured Meat Development, Jiangsu Yurun Meat Industry Group Co., Ltd, Nanjing, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
6
|
Guo B, Wu Q, Jiang C, Chen Y, Dai Y, Ji C, Zhang S, Dong L, Liang H, Lin X. Inoculation of Yarrowia lipolytica promotes the growth of lactic acid bacteria, Debaryomyces udenii and the formation of ethyl esters in sour meat. Food Microbiol 2024; 119:104447. [PMID: 38225049 DOI: 10.1016/j.fm.2023.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Yarrowia lipolytica N12 and A13 with high lipase activity obtained by mutagenesis were inoculated into sour meat, and their effects on physicochemical properties, microbial community succession, free amino acids, and volatile compounds of sour meat were investigated. Inoculation fermentation increased the contents of free amino acids observably, rapidly reduced pH, promoted the accumulation of total acids, decreased 2-thiobarbituric acid reactive substances (TBARS) values. In addition, the addition of Y. lipolytica might contribute to the growth of lactic acid bacteria, Candida spp., and Debaryomyces udenii, which play an important role in production of volatile compounds. It was shown that inoculation promoted the production of esters, aldehydes, and alcohols, especially ethyl esters, giving sour meat a better meat flavor. Besides, it was found that Y. lipolytica A13 had better fermenting property. Sample of A13 group had higher contents of ethyl esters, free amino acids and dominant microorganisms. The results may help to provide new strains for sour meat fermentation.
Collapse
Affiliation(s)
- Bingrui Guo
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Qi Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Cuicui Jiang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yingxi Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yiwei Dai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Chaofan Ji
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Sufang Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Liang Dong
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Huipeng Liang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; Institute of Technology, China Resources Beer (Holdings) Company Limited, Room 306 China Resources Building No.8 Jianguomen North Avenue, Dongcheng District, Beijing, 100005, China.
| | - Xinping Lin
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
7
|
Mao J, Wang X, Chen H, Zhao Z, Liu D, Zhang Y, Nie X. The Contribution of Microorganisms to the Quality and Flavor Formation of Chinese Traditional Fermented Meat and Fish Products. Foods 2024; 13:608. [PMID: 38397585 PMCID: PMC10888149 DOI: 10.3390/foods13040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Guizhou sour meat and sour fish, Chaoshan fish sauce, Sichuan sausage and bacon, Cantonese sausage, Jinhua ham, and Xinjiang air-dried beef are eight representatives of Chinese traditional fermented meat and fish products (FMFPs), which are favored by Chinese consumers due to their high nutritional value and quality. The quality of the spontaneously fermented Chinese traditional FMFP is closely correlated with microorganisms. Moreover, the dominant microorganisms are significantly different due to regional differences. The effects of microorganisms on the texture, color, flavor, nutrition, functional properties, and safety of Chinese traditional FMFPs have not been not fully described. Additionally, metabolic pathways for flavor formation of Chinese traditional FMFPs have not well been summarized. This article describes the seven characteristic Chinese traditional FMFPs and correlated dominant microorganisms in different regions of China. The effects of microorganisms on the texture, color, and flavor of Chinese traditional FMFPs are discussed. Furthermore, the metabolic pathways of microbial regulation of flavor formation in Chinese traditional FMFPs are proposed. This work provides a theoretical basis for improvement of Chinese traditional FMFPs by inoculating functional microorganisms isolated from Chinese traditional fermented foods.
Collapse
Affiliation(s)
- Jingjing Mao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| |
Collapse
|
8
|
Sánchez-García J, Muñoz-Pina S, García-Hernández J, Heredia A, Andrés A. Volatile profile of quinoa and lentil flour under fungal fermentation and drying. Food Chem 2024; 430:137082. [PMID: 37549623 DOI: 10.1016/j.foodchem.2023.137082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Solid-state fermentation reportedly improves the nutritional and sensory properties of legumes and pseudocereals. This study examined changes in the volatile profile using HS-SPME-GC-MS of two varieties of lentil and quinoa flour fermented with Pleurotus ostreatus and dried using hot-air drying and lyophilisation. Fermentation significantly increased the volatile profile. Pardina lentil flour showed a 570% increase in its volatile profile, and 10 compounds were created. In white quinoa, the total area rose from 96 to 4500, and 30 compounds were created. Compounds such as 1-octen-3-ol, benzaldehyde, 3-octanone and hexanal were generated during fermentation, providing a sweet, grassy, cocoa flavour. Hot-air drying led to decrease of over 40% in total peak area. Dried fermented flour retained higher levels of compounds that provide a sweet, cocoa aroma. Air-drying temperature had no significant influence on the volatile profile. This a allows the inclusion of these flours in a wide variety of food products.
Collapse
Affiliation(s)
- Janaina Sánchez-García
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara Muñoz-Pina
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos (CAMA), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Heredia
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Andrés
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo (IUIAD-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
9
|
Chen H, Zhang Y, Wang X, Nie X, Liu D, Zhao Z. The Volatile Flavor Substances, Microbial Diversity, and Their Potential Correlations of Inner and Surface Areas within Chinese Qingcheng Mountain Traditional Bacon. Foods 2023; 12:3729. [PMID: 37893622 PMCID: PMC10606684 DOI: 10.3390/foods12203729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The objective of this study was to explore the microbial diversity, volatile flavor substances, and their potential correlations in inner and surface Chinese Qingcheng Mountain traditional bacon (CQTB). The results showed that there were 39 volatile flavor substances in inner and surface CQTB detected by headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPME-GC-MS). Moreover, significant differences in volatile flavor substances between the inner and surface CQTB were observed. Sixteen key volatile flavor substances were screened (OAV > 1), including guaiacol, nonanal, ethyl isovalerate, and others. High-throughput sequencing (HTS) result indicated that Firmicutes, Proteobacteria, and Actinobacteria were the predominant bacterial phyla, and Ascomycota and Mucoromycota were the predominant fungal phyla. Staphylococcus, Psychrobacter, and Brochothrix were the predominant bacteria, and Debaryomyces, Penicillium, and Mucor were the predominant fungal genera. Spearman correlation coefficient analysis suggested that Apiotrichum and Lactobacillus were closely and positively correlated with the formation of key phenol compounds. The present work demonstrates the microbial diversity and related volatile flavor substances and their potential correlations in CQTB and provides a theoretical basis for the development of microbial starter culture and green processing of CQTB.
Collapse
Affiliation(s)
- Hongfan Chen
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
| | - Yulin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Xinyi Wang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Xin Nie
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| | - Zhiping Zhao
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China (D.L.)
| |
Collapse
|
10
|
Zhao X, Feng J, Laghi L, Deng J, Dao X, Tang J, Ji L, Zhu C, Picone G. Characterization of Flavor Profile of "Nanx Wudl" Sour Meat Fermented from Goose and Pork Using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Combined with Electronic Nose and Tongue. Foods 2023; 12:foods12112194. [PMID: 37297439 DOI: 10.3390/foods12112194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Sour meat is a highly appreciated traditional fermented product, mainly from the Guizhou, Yunnan, and Hunan provinces. The flavor profiles of sour meat from goose and pork were evaluated using gas chromatography-ion mobility spectrometry (GC-IMS) combined with an electronic nose (E-nose) and tongue (E-tongue). A total of 94 volatile compounds were characterized in fermented sour meat from both pork and goose using GC-IMS. A data-mining protocol based on univariate and multivariate analyses revealed that the source of the raw meat plays a crucial role in the formation of flavor compounds during the fermentation process. In detail, sour meat from pork contained higher levels of hexyl acetate, sotolon, heptyl acetate, butyl propanoate, hexanal, and 2-acetylpyrrole than sour goose meat. In parallel, sour meat from goose showed higher levels of 4-methyl-3-penten-2-one, n-butyl lactate, 2-butanol, (E)-2-nonenal, and decalin than sour pork. In terms of the odor and taste response values obtained by the E-nose and E-tongue, a robust principal component model (RPCA) could effectively differentiate sour meat from the two sources. The present work could provide references to investigate the flavor profiles of traditional sour meat products fermented from different raw meats and offer opportunities for a rapid identification method based on flavor profiles.
Collapse
Affiliation(s)
- Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Jianying Feng
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Jing Deng
- Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu 610100, China
| | - Xiaofang Dao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Lili Ji
- Meat Processing Key Lab of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Gianfranco Picone
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
11
|
Chen L, Wang G, Teng M, Wang L, Yang F, Jin G, Du H, Xu Y. Non-gene-editing microbiome engineering of spontaneous food fermentation microbiota-Limitation control, design control, and integration. Compr Rev Food Sci Food Saf 2023; 22:1902-1932. [PMID: 36880579 DOI: 10.1111/1541-4337.13135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
Non-gene-editing microbiome engineering (NgeME) is the rational design and control of natural microbial consortia to perform desired functions. Traditional NgeME approaches use selected environmental variables to force natural microbial consortia to perform the desired functions. Spontaneous food fermentation, the oldest kind of traditional NgeME, transforms foods into various fermented products using natural microbial networks. In traditional NgeME, spontaneous food fermentation microbiotas (SFFMs) are typically formed and controlled manually by the establishment of limiting factors in small batches with little mechanization. However, limitation control generally leads to trade-offs between efficiency and the quality of fermentation. Modern NgeME approaches based on synthetic microbial ecology have been developed using designed microbial communities to explore assembly mechanisms and target functional enhancement of SFFMs. This has greatly improved our understanding of microbiota control, but such approaches still have shortcomings compared to traditional NgeME. Here, we comprehensively describe research on mechanisms and control strategies for SFFMs based on traditional and modern NgeME. We discuss the ecological and engineering principles of the two approaches to enhance the understanding of how best to control SFFM. We also review recent applied and theoretical research on modern NgeME and propose an integrated in vitro synthetic microbiota model to bridge gaps between limitation control and design control for SFFM.
Collapse
Affiliation(s)
- Liangqiang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | | | | | - Li Wang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Fan Yang
- Kweichow Moutai Distillery Co., Ltd., Zunyi, China
| | - Guangyuan Jin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Wang Q, Li X, Xue B, Wu Y, Song H, Luo Z, Shang P, Liu Z, Huang Q. Low-salt fermentation improves flavor and quality of sour meat: Microbiology and metabolomics. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Xiao Y, Huang Y, Chen Y, Xiao L, Zhang X, Yang C, Li Z, Zhu M, Liu Z, Wang Y. Discrimination and characterization of the volatile profiles of five Fu brick teas from different manufacturing regions by using HS-SPME/GC-MS and HS-GC-IMS. Curr Res Food Sci 2022; 5:1788-1807. [PMID: 36268133 PMCID: PMC9576573 DOI: 10.1016/j.crfs.2022.09.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Although aroma is one of the most essential factors determining the quality of Fu brick tea (FBT), the aroma profiles of FBTs from different manufacturing areas are rarely investigated. The aroma profiles of FBTs manufactured in five typical provinces of China were comprehensively analyzed on the basis of headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), sensory evaluation, odor activity value (OAV), and relative odor activity value (ROAV). HS-GC-IMS and HS-SPME-GC-MS identified 63 and 93 volatile organic compounds (VOCs), respectively. Multivariate statistical analysis indicated that the FBTs from different production regions had remarkably varied aromas. HS-SPME-GC-MS revealed that 27 VOCs (OAV >1) contributed to the overall aroma of the samples, of which 15 key differential compounds can effectively distinguish the aroma profiles of different FBTs. FBT from Shaanxi manifested a strong floral and fruity aroma; that from Hunan had a floral, grassy, and pine-woody aroma; that from Guizhou presented a grassy and herbal aroma; that from Guangxi exhibited a sweet, floral, and minty aroma; and that from Zhejiang possessed various fruit flavors and floral fragrance. OAV analysis identified the biomarkers responsible for the variation in the aroma characteristics of diverse FBTs. These biomarkers included linalool, 6-methyl-5-hepten-2-one, α-ionone, hexanal, and ethyl hexanoate. Sensory evaluation demonstrated that the infusion color and aroma of FBT samples from different provinces also greatly varied. Network correlation analysis revealed that Aspergillus and Eurotium were the crucial microorganisms for the metabolism and formation of VOCs. These findings provide new insight into the VOCs and fragrance features of FBTs produced in different regions of China.
Collapse
Affiliation(s)
- Yu Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha, 410128, China
| | - Yuxin Huang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulian Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Leike Xiao
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xilu Zhang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chenghongwang Yang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha, 410128, China
| | - Mingzhi Zhu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, 410128, China
| | - Yuanliang Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Province Key Laboratory of Food Science and Biotechnology, Changsha, 410128, China
| |
Collapse
|
14
|
Process Modelling and Simulation of Key Volatile Compounds of Maillard Reaction Products Derived from Beef Tallow Residue Hydrolysate Based on Proxy Models. Foods 2022; 11:foods11192962. [PMID: 36230038 PMCID: PMC9563421 DOI: 10.3390/foods11192962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The hydrolysis time is directly related to the flavor of the Maillard reaction, but existing proxy models cannot simulate and model the variation curves of vital volatile components. This study developed a predictive model for modelling and simulating key volatile compounds of Maillard reaction products (MRPs) derived from beef tallow residue hydrolysate. Results showed the degree of hydrolysis increased with hydrolysis time, and the most significant improvement in the roast flavor and overall acceptance was when hydrolyzing 4 h. Based on flavor dilution value and the relative odor activity value, nine key volatile components were identified, and 2-ethyl-3,5-dimethylpyrazine with roast flavor was the highest. Compared with Polynomial Curve Fitting (PCF) and Cubic Spline Interpolation (CSI), key volatile compounds of MRPs could be better modeled and simulated by the Curve Prediction Model (CPM). All results suggested that CPM could predict the changes in key volatile components produced by MRPs.
Collapse
|