1
|
Son MY, Belan O, Spirek M, Cibulka J, Nikulenkov F, Kim YY, Hwang S, Myung K, Montagna C, Kim TM, Krejci L, Hasty P. RAD51 separation of function mutation disables replication fork maintenance but preserves DSB repair. iScience 2024; 27:109524. [PMID: 38577109 PMCID: PMC10993188 DOI: 10.1016/j.isci.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Homologous recombination (HR) protects replication forks (RFs) and repairs DNA double-strand breaks (DSBs). Within HR, BRCA2 regulates RAD51 via two interaction regions: the BRC repeats to form filaments on single-stranded DNA and exon 27 (Ex27) to stabilize the filament. Here, we identified a RAD51 S181P mutant that selectively disrupted the RAD51-Ex27 association while maintaining interaction with BRC repeat and proficiently forming filaments capable of DNA binding and strand invasion. Interestingly, RAD51 S181P was defective for RF protection/restart but proficient for DSB repair. Our data suggest that Ex27-mediated stabilization of RAD51 filaments is required for the protection of RFs, while it seems dispensable for the repair of DSBs.
Collapse
Affiliation(s)
- Mi Young Son
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ondrej Belan
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Mario Spirek
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Jakub Cibulka
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - Fedor Nikulenkov
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
| | - You Young Kim
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Sunyoung Hwang
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Cristina Montagna
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | - Tae Moon Kim
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
- Center for Genomic Integrity Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Lumir Krejci
- Department of Biology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Masaryk University, 625 00 Brno, Czech Republic
| | - Paul Hasty
- Department of Molecular Medicine, The Barshop Institute for Longevity and Aging Studies, The Cancer Therapy Research Center, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Ratnayaka-Gamage ND, Alesi LR, Zerafa N, Stringer JM, Hutt KJ. Xrcc5/KU80 is not required for the survival or activation of prophase-arrested oocytes in primordial follicles. Front Endocrinol (Lausanne) 2023; 14:1268009. [PMID: 37900135 PMCID: PMC10603181 DOI: 10.3389/fendo.2023.1268009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The non-growing, meiotically-arrested oocytes housed within primordial follicles are exquisitely sensitive to genotoxic insults from endogenous and exogenous sources. Even a single DNA double-strand break (DSB) can trigger oocyte apoptosis, which can lead to accelerated depletion of the ovarian reserve, early loss of fertility and menopause. Therefore, repair of DNA damage is important for preserving the quality of oocytes to sustain fertility across the reproductive lifespan. This study aimed to evaluate the role of KU80 (encoded by the XRCC5 gene) - an essential component of the non-homologous end joining (NHEJ) pathway - in the repair of oocyte DNA DSBs during reproductive ageing, and following insult caused by the DNA-damaging chemotherapies cyclophosphamide and cisplatin. Methods To investigate the importance of KU80 following endogenous and exogenous DNA damage, ovaries from conditional oocyte-specific Xrcc5 knockout (Xrcc5 cKO) and wildtype (WT) mice that were aged or exposed to DNA damage-inducing chemotherapy were compared. Ovarian follicles and oocytes were quantified, morphologically assessed and analysed via immunohistochemistry for markers of DNA damage and apoptosis. In addition, chemotherapy exposed mice were superovulated, and the numbers and quality of mature metaphase- II (MII) oocytes were assessed. Results The number of healthy follicles, atretic (dying) follicles, and corpora lutea were similar in Xrcc5 cKO and WT mice at PN50, PN200 and PN300. Additionally, primordial follicle number and ovulation rates were similar in young adult Xrcc5 cKO and WT mice following treatment with cyclophosphamide (75mg/kg), cisplatin (4mg/kg), or vehicle control (saline). Furthermore, KU80 was not essential for the repair of exogenously induced DNA damage in primordial follicle oocytes. Discussion These data indicate that KU80 is not required for maintenance of the ovarian reserve, follicle development, or ovulation during maternal ageing. Similarly, this study also indicates that KU80 is not required for the repair of exogenously induced DSBs in the prophase-arrested oocytes of primordial follicles.
Collapse
Affiliation(s)
| | | | | | | | - Karla J. Hutt
- *Correspondence: Jessica M. Stringer, ; Karla J. Hutt,
| |
Collapse
|
3
|
Li X, Khan D, Rana M, Hänggi D, Muhammad S. Doxycycline Attenuated Ethanol-Induced Inflammaging in Endothelial Cells: Implications in Alcohol-Mediated Vascular Diseases. Antioxidants (Basel) 2022; 11:antiox11122413. [PMID: 36552622 PMCID: PMC9774758 DOI: 10.3390/antiox11122413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a potential risk factor for cardiovascular diseases and is linked to accelerated aging. Drug discovery to reduce toxic cellular events of alcohol is required. Here, we investigated the effects of ethanol on human umbilical vein endothelial cells (HUVECs) and explored if doxycycline attenuates ethanol-mediated molecular events in endothelial cells. Initially, a drug screening using a panel of 170 drugs was performed, and doxycycline was selected for further experiments. HUVECs were treated with different concentrations (300 mM and 400 mM) of ethanol with or without doxycycline (10 µg/mL). Telomere length was quantified as telomere to single-copy gene (T/S) ratio. Telomere length and the mRNA expression were quantified by qRT-PCR, and protein level was analyzed by Western blot (WB). Ethanol treatment accelerated cellular aging, and doxycycline treatment recovered telomere length. Pathway analysis showed that doxycycline inhibited mTOR and NFκ-B activation. Doxycycline restored the expression of aging-associated proteins, including lamin b1 and DNA repair proteins KU70 and KU80. Doxycycline reduced senescence and senescence-associated secretory phenotype (SASP) in ethanol-treated HUVECs. In conclusion, we report that ethanol-induced inflammation and aging in HUVECs were ameliorated by doxycycline.
Collapse
Affiliation(s)
- Xuanchen Li
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-21181-08782
| | - Majeed Rana
- Department of Oral and Maxillofacial Surgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
| |
Collapse
|
4
|
D'Amico AM, Vasquez KM. The multifaceted roles of DNA repair and replication proteins in aging and obesity. DNA Repair (Amst) 2021; 99:103049. [PMID: 33529944 DOI: 10.1016/j.dnarep.2021.103049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.
Collapse
Affiliation(s)
- Alexandra M D'Amico
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Boulevard, Austin, TX, 78723, USA.
| |
Collapse
|
5
|
Loshchenova PS, Sergeeva SV, Limonov DV, Guo Z, Dianov GL. Sp1-independent downregulation of NHEJ in response to BER deficiency. DNA Repair (Amst) 2020; 86:102740. [PMID: 31812125 DOI: 10.1016/j.dnarep.2019.102740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 11/24/2022]
Abstract
Base excision repair (BER) is the major repair pathway that removes DNA single strand breaks (SSBs) arising spontaneously due to the inherent instability of DNA. Unrepaired SSBs promote cell-cycle delay, which facilitates DNA repair prior to replication. On the other hand, in response to persistent DNA strand breaks, ATM-dependent degradation of transcription factor Sp1 leads to downregulation of BER genes expression, further accumulation of SSBs and renders cells susceptible to elimination via apoptosis. In contrast, many cancer cells are not able to block replication and to downregulate the expression of Sp1 in response to DNA damage. However, knockdown of BER in cancer cells leads to the accumulation of DNA double strand breaks (DSBs), suggesting deficiency in non-homologous end joining (NHEJ) repair of DSBs. Here we investigated whether DNA repair deficiency caused by knockdown of the XRCC1 gene expression in proliferating cells results in downregulation of NHEJ genes expression. We find that knockdown of the XRCC1 gene expression does not cause degradation of Sp1, but leads to downregulation of Lig4/XRCC4 and Ku70/80 at the transcription and protein levels. We thus propose the existence of Sp1-independent backup mechanism that in response to BER deficiency downregulates NHEJ in proliferating cells.
Collapse
Affiliation(s)
- Polina S Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Svetlana V Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Dmitry V Limonov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russian Federation
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Grigory L Dianov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk, 630090, Russian Federation; Novosibirsk State University, Pirogova 2, Novosibirsk, 630090, Russian Federation; Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China; Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
6
|
Boteva E, Mironova R. Maillard reaction and aging: can bacteria shed light on the link? BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1590160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Elitsa Boteva
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Roumyana Mironova
- Department of Gene Regulation, Institute of Molecular Biology ‘Roumen Tsanev’, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
7
|
Pan MR, Li K, Lin SY, Hung WC. Connecting the Dots: From DNA Damage and Repair to Aging. Int J Mol Sci 2016; 17:ijms17050685. [PMID: 27164092 PMCID: PMC4881511 DOI: 10.3390/ijms17050685] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 01/15/2023] Open
Abstract
Mammalian cells evolve a delicate system, the DNA damage response (DDR) pathway, to monitor genomic integrity and to prevent the damage from both endogenous end exogenous insults. Emerging evidence suggests that aberrant DDR and deficient DNA repair are strongly associated with cancer and aging. Our understanding of the core program of DDR has made tremendous progress in the past two decades. However, the long list of the molecules involved in the DDR and DNA repair continues to grow and the roles of the new “dots” are under intensive investigation. Here, we review the connection between DDR and DNA repair and aging and discuss the potential mechanisms by which deficient DNA repair triggers systemic effects to promote physiological or pathological aging.
Collapse
Affiliation(s)
- Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsoung Medical University, Kaohsiung 807, Taiwan.
| | - Kaiyi Li
- The Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shiaw-Yih Lin
- Department of Systems Biology, MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| |
Collapse
|
8
|
Callegari AJ. Does transcription-associated DNA damage limit lifespan? DNA Repair (Amst) 2016; 41:1-7. [PMID: 27010736 DOI: 10.1016/j.dnarep.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/31/2022]
Abstract
Small mammals undergo an aging process similar to that of larger mammals, but aging occurs at a dramatically faster rate. This phenomenon is often assumed to be the result of damage caused by reactive oxygen species generated in mitochondria. An alternative explanation for the phenomenon is suggested here. The rate of RNA synthesis is dramatically elevated in small mammals and correlates quantitatively with the rate of aging among different mammalian species. The rate of RNA synthesis is reduced by caloric restriction and inhibition of TOR pathway signaling, two perturbations that increase lifespan in multiple metazoan species. From bacteria to man, the transcription of a gene has been found to increase the rate at which it is damaged, and a number of lines of evidence suggest that DNA damage is sufficient to induce multiple symptoms associated with normal aging. Thus, the correlations frequently found between the rate of RNA synthesis and the rate of aging could potentially reflect an important role for transcription-associated DNA damage in the aging process.
Collapse
Affiliation(s)
- A John Callegari
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
Abstract
Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data.
Collapse
Affiliation(s)
- L Harkema
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - S A Youssef
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Department of Pediatrics, Division of Molecular Genetics, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
10
|
Succoio M, Comegna M, D'Ambrosio C, Scaloni A, Cimino F, Faraonio R. Proteomic analysis reveals novel common genes modulated in both replicative and stress-induced senescence. J Proteomics 2015. [DOI: 10.1016/j.jprot.2015.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Comegna M, Succoio M, Napolitano M, Vitale M, D'Ambrosio C, Scaloni A, Passaro F, Zambrano N, Cimino F, Faraonio R. Identification of miR-494 direct targets involved in senescence of human diploid fibroblasts. FASEB J 2014; 28:3720-33. [PMID: 24823364 DOI: 10.1096/fj.13-239129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellular senescence is a permanent cell cycle arrest triggered by different stimuli. We recently identified up-regulation of microRNA (miR)-494 as a component of the genetic program leading to senescence of human diploid IMR90 fibroblasts. Here, we used 2-dimensional differential gel electrophoresis (2D-DIGE) coupled to mass spectrometry to profile protein expression changes induced by adoptive overexpression of miR-494 in IMR90 cells. miR-494 induced robust perturbation of the IMR90 proteome by significantly (P≤0.05) down-regulating a number of proteins. Combination of mass spectrometry-based identification of down-regulated proteins and bioinformatic prediction of the miR-494 binding sites on the relevant mRNAs identified 26 potential targets of miR-494. Among them, computational analysis identified 7 potential evolution-conserved miR-494 targets. Functional miR-494 binding sites were confirmed in 3'-untranslated regions (UTRs) of 4 of them [heterogeneous nuclear ribonucleoprotein A3 (hnRNPA3), protein disulfide isomerase A3 (PDIA3), UV excision repair protein RAD23 homolog B (RAD23B), and synaptotagmin-binding cytoplasmic RNA-interacting protein (SYNCRIP)/heterogeneous nuclear ribonucleoprotein Q (hnRNPQ)]. Their reduced expression correlated with miR-494 up-regulation in senescent cells. RNA interference-mediated knockdown of hnRNPA3 and, to a lesser extent, RAD23B mirrored the senescent phenotype induced by miR-494 overexpression, blunting cell proliferation and causing up-regulation of SA-β-galactosidase and DNA damage. Ectopic expression of hnRNPA3 or RAD23B slowed the appearance of the senescent phenotype induced by miR-494. Overall, these findings identify novel miR-494 direct targets that are involved in cellular senescence.
Collapse
Affiliation(s)
- Marika Comegna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Mariangela Succoio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Marco Napolitano
- Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | - Monica Vitale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, National Research Council, Naples, Italy
| | - Fabiana Passaro
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Filiberto Cimino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Fondazione SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy; Center of Genetics Engineering (CEINGE) Biotecnologie Avanzate s.c. a r.l, Naples, Italy; and
| |
Collapse
|
12
|
The progeroid phenotype of Ku80 deficiency is dominant over DNA-PKCS deficiency. PLoS One 2014; 9:e93568. [PMID: 24740260 PMCID: PMC3989187 DOI: 10.1371/journal.pone.0093568] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/05/2014] [Indexed: 01/01/2023] Open
Abstract
Ku80 and DNA-PKCS are both involved in the repair of double strand DNA breaks via the nonhomologous end joining (NHEJ) pathway. While ku80-/- mice exhibit a severely reduced lifespan and size, this phenotype is less pronounced in dna-pkcs-/- mice. However, these observations are based on independent studies with varying genetic backgrounds. Here, we generated ku80-/-, dna-pkcs-/- and double knock out mice in a C57Bl6/J*FVB F1 hybrid background and compared their lifespan, end of life pathology and mutation frequency in liver and spleen using a lacZ reporter. Our data confirm that inactivation of Ku80 and DNA-PKCS causes reduced lifespan and bodyweights, which is most severe in ku80-/- mice. All mutant mice exhibited a strong increase in lymphoma incidence as well as other aging-related pathology (skin epidermal and adnexal atrophy, trabacular bone reduction, kidney tubular anisokaryosis, and cortical and medullar atrophy) and severe lymphoid depletion. LacZ mutation frequency analysis did not show strong differences in mutation frequencies between knock out and wild type mice. The ku80-/- mice had the most severe phenotype and the Ku80-mutation was dominant over the DNA-PKCS-mutation. Presumably, the more severe degenerative effect of Ku80 inactivation on lifespan compared to DNA-PKCS inactivation is caused by additional functions of Ku80 or activity of free Ku70 since both Ku80 and DNA-PKCS are essential for NHEJ.
Collapse
|
13
|
Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair. PLoS One 2014; 9:e86358. [PMID: 24466051 PMCID: PMC3900520 DOI: 10.1371/journal.pone.0086358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/07/2013] [Indexed: 01/25/2023] Open
Abstract
Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70-/- cells and ku80-/- cells also appeared to have a defect in base excision repair (BER). BER corrects base lesions, apurinic/apyrimidinic (AP) sites and single stand breaks (SSBs) utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1) and DNA Polymerase β (Pol β). In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80) and/or free Ku80 (not bound to Ku70) possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80-/- mice had a shorter life span than dna-pkcs-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT), an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.
Collapse
|
14
|
Ahmed EA, Sfeir A, Takai H, Scherthan H. Ku70 and non-homologous end joining protect testicular cells from DNA damage. J Cell Sci 2013; 126:3095-104. [PMID: 23857907 DOI: 10.1242/jcs.122788] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spermatogenesis is a complex process that generates haploid germ cells or spores and implements meiosis, a succession of two special cell divisions that are required for homologous chromosome segregation. During prophase to the first meiotic division, homologous recombination (HR) repairs Spo11-dependent DNA double-strand breaks (DSBs) in the presence of telomere movements to allow for chromosome pairing and segregation at the meiosis I division. In contrast to HR, non-homologous end joining (NHEJ), the major DSB repair mechanism during the G1 cell cycle phase, is downregulated during early meiotic prophase. At somatic mammalian telomeres, the NHEJ factor Ku70/80 inhibits HR, as does the Rap1 component of the shelterin complex. Here, we investigated the role of Ku70 and Rap1 in meiotic telomere redistribution and genome protection in spermatogenesis by studying single and double knockout mice. Ku70(-/-) mice display reduced testis size and compromised spermatogenesis, whereas meiotic telomere dynamics and chromosomal bouquet formation occurred normally in Ku70(-/-) and Ku70(-/-)Rap1(Δ/Δ) knockout spermatocytes. Elevated mid-preleptotene frequencies were associated with significantly increased DNA damage in Ku-deficient B spermatogonia, and in differentiated Sertoli cells. Significantly elevated levels of γH2AX foci in Ku70(-/-) diplotene spermatocytes suggest compromised progression of DNA repair at a subset of DSBs. This might explain the elevated meiotic metaphase apoptosis that is present in Ku70-deficient stage XII testis tubules, indicating spindle assembly checkpoint activation. In summary, our data indicate that Ku70 is important for repairing DSBs in somatic cells and in late spermatocytes of the testis, thereby assuring the fidelity of spermatogenesis.
Collapse
Affiliation(s)
- Emad A Ahmed
- Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität, Ulm, Neuherbergstrasse 1, D-80937 München, Germany
| | | | | | | |
Collapse
|
15
|
Dmitrieva NI, Chen HT, Nussenzweig A, Burg MB. Knockout of Ku86 accelerates cellular senescence induced by high NaCl. Aging (Albany NY) 2010; 1:245-53. [PMID: 19946467 PMCID: PMC2783634 DOI: 10.18632/aging.100022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
NaCl induces DNA breaks, thus leading to cellular senescence. Here we showed that Ku86 deficiency accelerated the high NaCl-induced cellular senescence. We find that 1) high NaCl induces rapid cellular senescence in Ku86 deficient(xrs5) cells, 2) Ku86 deficiency shortens lifespan of C. elegans in high NaCl, and 3) cellular senescence is greatly accelerated in renal inner medullas of Ku86 (-/-) mice. Further, although water balance is known to be compromised in old mice, this occurs at much earlier age in Ku86(-/-) mice. When subjected to mild water restriction, 3 month old Ku86(-/-), but not Ku86(+/+),mice rapidly become dehydrated as evidenced by decrease in body weight, increased production of antidiuretic hormone,increased urine osmolality and decreased urine volume. The deficiency in water balance does not occur in Ku86(+/+)mice until they are much older (14 months). We conclude that Ku86 deficiency accelerates high NaCl(-) induced cellular senescence,particularly in the renal medulla where NaCl normally is high.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
16
|
Brenkman AB, Broek NJF, Keizer PLJ, Gent DC, Burgering BMT. The DNA damage repair protein Ku70 interacts with FOXO4 to coordinate a conserved cellular stress response. FASEB J 2010; 24:4271-80. [DOI: 10.1096/fj.10-158717] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Arjan B. Brenkman
- Department of Physiological ChemistryUniversity Medical Centre Utrecht Utrecht The Netherlands
- Centre for Biomedical GeneticsUniversity Medical Centre Utrecht Utrecht The Netherlands
- Department of Metabolic and Endocrine DiseasesUniversity Medical Centre Utrecht Utrecht The Netherlands
- Netherlands Metabolomics Centre Utrecht The Netherlands
| | - Niels J. F. Broek
- Centre for Biomedical GeneticsUniversity Medical Centre Utrecht Utrecht The Netherlands
- Department of Metabolic and Endocrine DiseasesUniversity Medical Centre Utrecht Utrecht The Netherlands
- Netherlands Metabolomics Centre Utrecht The Netherlands
| | - Peter L. J. Keizer
- Department of Physiological ChemistryUniversity Medical Centre Utrecht Utrecht The Netherlands
- Centre for Biomedical GeneticsUniversity Medical Centre Utrecht Utrecht The Netherlands
| | - Dik C. Gent
- Department of Cell Biology and GeneticsErasmus Medical CenterUniversity Medical Center Rotterdam Rotterdam The Netherlands
| | - Boudewijn M. T. Burgering
- Department of Physiological ChemistryUniversity Medical Centre Utrecht Utrecht The Netherlands
- Centre for Biomedical GeneticsUniversity Medical Centre Utrecht Utrecht The Netherlands
| |
Collapse
|
17
|
Li H, Choi YJ, Hanes MA, Marple T, Vogel H, Hasty P. Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells. Oncogene 2009; 28:1875-8. [DOI: 10.1038/onc.2009.57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Zhao B, Benson EK, Qiao R, Wang X, Kim S, Manfredi JJ, Lee SW, Aaronson SA. Cellular senescence and organismal ageing in the absence of p21(CIP1/WAF1) in ku80(-/-) mice. EMBO Rep 2008; 10:71-8. [PMID: 19079133 DOI: 10.1038/embor.2008.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/26/2008] [Accepted: 10/29/2008] [Indexed: 12/14/2022] Open
Abstract
Ku80 is important in the repair of DNA double-strand breaks by its essential function in non-homologous end-joining. The absence of Ku80 causes the accumulation of DNA damage and leads to premature ageing in mice. We showed that mouse embryonic fibroblasts (MEFs) from ku80(-/-) mice senesced rapidly with elevated levels of p53 and p21. Deletion of p21 delayed the early senescence phenotype in ku80(-/-) MEFs, despite an otherwise intact response of p53. In contrast to ku80(-/-)p53(-/-) mice, which die rapidly primarily from lymphomas, there was no significant increase in tumorigenesis in ku80(-/-)p21(-/-) mice. However, ku80(-/-)p21(-/-) mice showed no improvement with respect to rough fur coat or osteopaenia, and even showed a shortened lifespan compared with ku80(-/-) mice. These results show that the increased lifespan of ku80(-/-) MEFs owing to the loss of p21 is not associated with an improvement of the premature ageing phenotypes of ku80(-/-) mice observed at the organismal level.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Holcomb VB, Rodier F, Choi Y, Busuttil RA, Vogel H, Vijg J, Campisi J, Hasty P. Ku80 deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response. Cancer Res 2008; 68:9497-502. [PMID: 19010925 DOI: 10.1158/0008-5472.can-08-2085] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ku80 facilitates DNA repair and therefore should suppress cancer. However, ku80(-/-) mice exhibit reduced cancer, although they age prematurely and have a shortened life span. We tested the hypothesis that Ku80 deletion suppresses cancer by enhancing cellular tumor-suppressive responses to inefficiently repaired DNA damage. In support of this hypothesis, Ku80 deletion ameliorated tumor burden in APC(MIN) mice and increased a p53-mediated DNA damage response, DNA lesions, and chromosomal rearrangements. Thus, contrary to its assumed role as a caretaker tumor suppressor, Ku80 facilitates tumor growth most likely by dampening baseline cellular DNA damage responses.
Collapse
Affiliation(s)
- Valerie B Holcomb
- Department of Molecular Medicine, Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245-3207, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li H, Mitchell JR, Hasty P. DNA double-strand breaks: a potential causative factor for mammalian aging? Mech Ageing Dev 2008; 129:416-24. [PMID: 18346777 PMCID: PMC2517577 DOI: 10.1016/j.mad.2008.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/11/2008] [Accepted: 02/07/2008] [Indexed: 11/30/2022]
Abstract
Aging is a pleiotropic and stochastic process influenced by both genetics and environment. As a result the fundamental underlying causes of aging are controversial and likely diverse. Genome maintenance and in particular the repair of DNA damage is critical to ensure longevity needed for reproduction and as a consequence imperfections or defects in maintaining the genome may contribute to aging. There are many forms of DNA damage with double-strand breaks (DSBs) being the most toxic. Here we discuss DNA DSBs as a potential causative factor for aging including factors that generate DNA DSBs, pathways that repair DNA DSBs, consequences of faulty or failed DSB repair and how these consequences may lead to age-dependent decline in fitness. At the end we compare mouse models of premature aging that are defective for repairing either DSBs or UV light-induced lesions. Based on these comparisons we believe the basic mechanisms responsible for their aging phenotypes are fundamentally different demonstrating the complex and pleiotropic nature of this process.
Collapse
Affiliation(s)
- Han Li
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA.
| | | | | |
Collapse
|