1
|
Tu Q, Liu G, Liu X, Zhang J, Xiao W, Lv L, Zhao B. Perspective on using non-human primates in Exposome research. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117199. [PMID: 39426107 DOI: 10.1016/j.ecoenv.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
The physiological and pathological changes in the human body caused by environmental pressures are collectively referred to as the Exposome. Human society is facing escalating environmental pollution, leading to a rising prevalence of associated diseases, including respiratory diseases, cardiovascular diseases, neurological disorders, reproductive development disorders, among others. Vulnerable populations to the pathogenic effects of environmental pollution include those in the prenatal, infancy, and elderly stages of life. Conducting Exposome mechanistic research and proposing effective health interventions are urgent in addressing the current severe environmental pollution. In this review, we address the core issues and bottlenecks faced by current Exposome research, specifically focusing on the most toxic ultrafine nanoparticles. We summarize multiple research models being used in Exposome research. Especially, we discuss the limitations of rodent animal models in mimicking human physiopathological phenotypes, and prospect advantages and necessity of non-human primates in Exposome research based on their evolutionary relatedness, anatomical and physiological similarities to human. Finally, we declare the initiation of NHPE (Non-Human Primate Exposome) project for conducting Exposome research using non-human primates and provide insights into its feasibility and key areas of focus. SYNOPSIS: Non-human primate models hold unique advantages in human Exposome research.
Collapse
Affiliation(s)
- Qiu Tu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiuyun Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Jiao Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China
| | - Wenxian Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Longbao Lv
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China.
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan 650223, China; Primate Facility, National Research Facility for Phenotypic & Genetic Analysis of Model Animals, and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
2
|
Vays V, Vangeli I, Eldarov C, Popkov V, Holtze S, Hildebrandt T, Averina O, Zorov D, Bakeeva L. Unique Features of the Tissue Structure in the Naked Mole Rat ( Heterocephalus glaber): Hypertrophy of the Endoplasmic Reticulum and Spatial Mitochondrial Rearrangements in Hepatocytes. Int J Mol Sci 2022; 23:ijms23169067. [PMID: 36012332 PMCID: PMC9409344 DOI: 10.3390/ijms23169067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.
Collapse
Affiliation(s)
- Valeriya Vays
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina Vangeli
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Chupalav Eldarov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vasily Popkov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Susanne Holtze
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thomas Hildebrandt
- Department of Reproduction Management, Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Olga Averina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry Zorov
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (D.Z.); (L.B.); Tel.: +7-4959395944 (D.Z. & L.B.)
| | - Lora Bakeeva
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: (D.Z.); (L.B.); Tel.: +7-4959395944 (D.Z. & L.B.)
| |
Collapse
|
3
|
Saikumar J, Bonini NM. Synergistic effects of brain injury and aging: common mechanisms of proteostatic dysfunction. Trends Neurosci 2021; 44:728-740. [PMID: 34301397 DOI: 10.1016/j.tins.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
The aftermath of TBI is associated with an acute stress response and the accumulation of insoluble protein aggregates. Even after the symptoms of TBI are resolved, insidious molecular processes continue to develop, which often ultimately result in the development of age-associated neurodegenerative disorders. The precise molecular cascades that drive unhealthy brain aging are still largely unknown. In this review, we discuss proteostatic dysfunction as a converging mechanism contributing to accelerated brain aging after TBI. We examine evidence from human tissue and in vivo animal models, spanning both the aging and injury contexts. We conclude that TBI has a sustained debilitating effect on the proteostatic machinery, which may contribute to the accelerated pathological and cognitive hallmarks of aging that are observed following injury.
Collapse
Affiliation(s)
- Janani Saikumar
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
5
|
Osmulski PA, Karpowicz P, Jankowska E, Bohmann J, Pickering AM, Gaczyńska M. New Peptide-Based Pharmacophore Activates 20S Proteasome. Molecules 2020; 25:E1439. [PMID: 32235805 PMCID: PMC7145288 DOI: 10.3390/molecules25061439] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/01/2023] Open
Abstract
The proteasome is a pivotal element of controlled proteolysis, responsible for the catabolic arm of proteostasis. By inducing apoptosis, small molecule inhibitors of proteasome peptidolytic activities are successfully utilized in treatment of blood cancers. However, the clinical potential of proteasome activation remains relatively unexplored. In this work, we introduce short TAT peptides derived from HIV-1 Tat protein and modified with synthetic turn-stabilizing residues as proteasome agonists. Molecular docking and biochemical studies point to the α1/α2 pocket of the core proteasome α ring as the binding site of TAT peptides. We postulate that the TATs' pharmacophore consists of an N-terminal basic pocket-docking "activation anchor" connected via a β turn inducer to a C-terminal "specificity clamp" that binds on the proteasome α surface. By allosteric effects-including destabilization of the proteasomal gate-the compounds substantially augment activity of the core proteasome in vitro. Significantly, this activation is preserved in the lysates of cultured cells treated with the compounds. We propose that the proteasome-stimulating TAT pharmacophore provides an attractive lead for future clinical use.
Collapse
Affiliation(s)
- Paweł A. Osmulski
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
| | - Przemysław Karpowicz
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Elżbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland;
| | - Jonathan Bohmann
- Southwest Research Institute, San Antonio, Texas, TX 78238, USA;
| | - Andrew M. Pickering
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
- The Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, UT Health San Antonio, TX 78229, USA
| | - Maria Gaczyńska
- Department of Molecular Medicine, UT Health San Antonio, Texas, TX 78245, USA;
- Barshop Institute for Longevity and Aging Studies, UT Health San Antonio, Texas, TX 78245, USA
| |
Collapse
|
6
|
Pomatto LC, Wong S, Carney C, Shen B, Tower J, Davies KJA. The age- and sex-specific decline of the 20s proteasome and the Nrf2/CncC signal transduction pathway in adaption and resistance to oxidative stress in Drosophila melanogaster. Aging (Albany NY) 2017; 9:1153-1185. [PMID: 28373600 PMCID: PMC5425120 DOI: 10.18632/aging.101218] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 03/09/2017] [Indexed: 11/25/2022]
Abstract
Hallmarks of aging include loss of protein homeostasis and dysregulation of stress-adaptive pathways. Loss of adaptive homeostasis, increases accumulation of DNA, protein, and lipid damage. During acute stress, the Cnc-C (Drosophila Nrf2 orthologue) transcriptionally-regulated 20S proteasome degrades damaged proteins in an ATP-independent manner. Exposure to very low, non-toxic, signaling concentrations of the redox-signaling agent hydrogen peroxide (H2O2) cause adaptive increases in the de novo expression and proteolytic activity/capacity of the 20S proteasome in female D. melanogaster (fruit-flies). Female 20S proteasome induction was accompanied by increased tolerance to a subsequent normally toxic but sub-lethal amount of H2O2, and blocking adaptive increases in proteasome expression also prevented full adaptation. We find, however, that this adaptive response is both sex- and age-dependent. Both increased proteasome expression and activity, and increased oxidative-stress resistance, in female flies, were lost with age. In contrast, male flies exhibited no H2O2 adaptation, irrespective of age. Furthermore, aging caused a generalized increase in basal 20S proteasome expression, but proteolytic activity and adaptation were both compromised. Finally, continual knockdown of Keep1 (the cytosolic inhibitor of Cnc-C) in adults resulted in older flies with greater stress resistance than their age-matched controls, but who still exhibited an age-associated loss of adaptive homeostasis.
Collapse
Affiliation(s)
- Laura C.D. Pomatto
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Wong
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Caroline Carney
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Brenda Shen
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - John Tower
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Kelvin J. A. Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
7
|
Hassanpour M, Cheraghi O, Siavashi V, Rahbarghazi R, Nouri M. A reversal of age-dependent proliferative capacity of endothelial progenitor cells from different species origin in in vitro condition. J Cardiovasc Thorac Res 2016; 8:102-106. [PMID: 27777694 PMCID: PMC5075357 DOI: 10.15171/jcvtr.2016.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023] Open
Abstract
Introduction: A large number of cardiovascular disorders and abnormalities, notably accelerated vascular deficiencies could be related to aging changes and increased length of life. During the past decades, the discovery of different stem cells facilitates ongoing attempts for attenuating many disorders, especially in vascular beds. Endothelial progenitor cells (EPCs) are a subtype of stem cells that have potent capacity to differentiate into mature endothelial cells (ECs). However, some documented studies reported an age-related decline in proliferation and function of many stem cells. There is no data on aging effect upon proliferation and morphological feature of EPCs. Methods: To show aging effect on EPCs proliferation and multipotentiality, bone marrow samples were provided from old and young cases in three different species; human, mouse and dog. After 7 days of culture, the cell morphology and clonogenic capacity were evaluated. We also calculated the mean number of colonies both in bone marrow samples from old and young subjects. To confirm the cell phenotype, isolated cells were immune-phenotyped by a panel of antibodies against Tie-2, CD133 and CD309 markers. Results: Our results showed that EPCs exhibited prominent spindle form in all bone marrow samples from young cases while the cell shape became more round by aging. Notably, the number of colonies was reduced in aged samples as compared to parallel young subject samples (P < 0.05). We also detected that the expression of endothelial related markers diminished by aging. Conclusion: The results of this study suggest that the age-related vascular abnormalities could be presumably related to the decline in stemness capacity of EPCs.
Collapse
Affiliation(s)
- Mehdi Hassanpour
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Cheraghi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran ; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Siavashi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Hamilton R, Walsh M, Singh R, Rodriguez K, Gao X, Rahman MM, Chaudhuri A, Bhattacharya A. Oxidative damage to myelin proteins accompanies peripheral nerve motor dysfunction in aging C57BL/6 male mice. J Neurol Sci 2016; 370:47-52. [PMID: 27772785 DOI: 10.1016/j.jns.2016.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/01/2016] [Accepted: 09/12/2016] [Indexed: 01/31/2023]
Abstract
Aging is associated with a decline in peripheral nerve function of both motor and sensory nerves. The decline in function of peripheral sensorimotor nerves with aging has been linked to sarcopenia, the age-related decline in muscle mass and function that significantly compromises the quality of life in older humans. In this study, we report a significant increase in oxidized fatty acids and insoluble protein carbonyls in sciatic nerves of aged C57BL/6 male mice (28-30mo) that exhibit a profound decline in motor nerve function and degenerative changes in both axon and myelin structure, compared to young mice (6-8mo). Our data further suggests that this age-related loss of function of peripheral motor nerves is likely precipitated by changes in mechanisms that protect and/or repair oxidative damage. We predict that interventions that target these mechanisms may protect against age-related decline in peripheral sensorimotor nerve function and likely improve the debilitating outcome of sarcopenia in older humans.
Collapse
Affiliation(s)
- Ryan Hamilton
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Michael Walsh
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Rashmi Singh
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Karl Rodriguez
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
| | - Xiaoli Gao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Md Mizanur Rahman
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, USA
| | - Asish Chaudhuri
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Arunabh Bhattacharya
- Department of Cell Systems and Anatomy, The University of Texas Health Science Center, San Antonio, TX, USA; Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA.
| |
Collapse
|
9
|
Rodriguez KA, Valentine JM, Kramer DA, Gelfond JA, Kristan DM, Nevo E, Buffenstein R. Determinants of rodent longevity in the chaperone-protein degradation network. Cell Stress Chaperones 2016; 21:453-66. [PMID: 26894765 PMCID: PMC4837185 DOI: 10.1007/s12192-016-0672-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022] Open
Abstract
Proteostasis is an integral component of healthy aging, ensuring maintenance of protein structural and functional integrity with concomitant impact upon health span and longevity. In most metazoans, increasing age is accompanied by a decline in protein quality control resulting in the accrual of damaged, self-aggregating cytotoxic proteins. A notable exception to this trend is observed in the longest-lived rodent, the naked mole-rat (NMR, Heterocephalus glaber) which maintains proteostasis and proteasome-mediated degradation and autophagy during aging. We hypothesized that high levels of the proteolytic degradation may enable better maintenance of proteostasis during aging contributing to enhanced species maximum lifespan potential (MLSP). We test this by examining proteasome activity, proteasome-related HSPs, the heat-shock factor 1 (HSF1) transcription factor, and several markers of autophagy in the liver and quadriceps muscles of eight rodent species with divergent MLSP. All subterranean-dwelling species had higher levels of proteasome activity and autophagy, possibly linked to having to dig in soils rich in heavy metals and where underground atmospheres have reduced oxygen availability. Even after correcting for phylogenetic relatedness, a significant (p < 0.02) positive correlation between MLSP, HSP25, HSF1, proteasome activity, and autophagy-related protein 12 (ATG12) was observed, suggesting that the proteolytic degradation machinery and maintenance of protein quality play a pivotal role in species longevity among rodents.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Anne Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
| | - Joseph M Valentine
- Sam and Anne Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA
- Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX, 78229, USA
| | - David A Kramer
- Department of Medicine, UTHSCSA, San Antonio, TX, 78229, USA
| | - Jonathan A Gelfond
- Department of Epidemiology and Biostatistics, UTHSCSA, San Antonio, TX, 78229, USA
| | - Deborah M Kristan
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92096, USA
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa, 3498838, Israel
| | - Rochelle Buffenstein
- Sam and Anne Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, 78229, USA.
- Department of Physiology, UTHSCSA, San Antonio, TX, 78229, USA.
- Calico, 1170 Veterans Blvd, San Francisco, CA, 94080, USA.
| |
Collapse
|
10
|
Proteasomes regulate hepatitis B virus replication by degradation of viral core-related proteins in a two-step manner. Virus Genes 2016; 52:597-605. [PMID: 27105855 DOI: 10.1007/s11262-016-1341-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/11/2016] [Indexed: 01/13/2023]
Abstract
The cellular proteasomes presumably inhibit the replication of hepatitis B virus (HBV) due to degradation of the viral core protein (HBcAg). Common proteasome inhibitors, however, either enhance or inhibit HBV replication. In this study, the exact degradation process of HBcAg and its influences on HBV replication were further studied using bioinformatic analysis, protease digestion assays of recombinant HBcAg, and proteasome inhibitor treatments of HBV-producing cell line HepG2.2.15. Besides HBcAg and hepatitis B e antigen precursor, common hepatitis B core-related antigens (HBcrAgs), the small and the large degradation intermediates of these HBcrAgs (HBcrDIs), were regularly found in cytosol of HepG2.2.15 cells. Further, the results of investigation reveal that the degradation process of cytosolic HBcrAgs in proteasomes consists of two steps: the limited proteolysis into HBcrDIs by the trypsin-like (TL) activity and the complete degradation of HBcrDIs by the chymotrypsin-like (chTL) activity. Concordantly, HBcrAgs and the large HBcrDI or HBcrDIs (including the small HBcrDI) were accumulated when the TL or chTL activity was inhibited, which generally correlated with enhancement and inhibition of HBV replication, respectively. The small HBcrDI inhibited HBV replication by assembling into the nucleocapsids and preventing the victim particles from being mature enough for envelopment. The two-step degradation manner may highlight some new anti-HBV strategies.
Collapse
|
11
|
Multifactorial processes to slowing the biological clock: Insights from a comparative approach. Exp Gerontol 2015; 71:27-37. [DOI: 10.1016/j.exger.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
|
12
|
Sympatric speciation revealed by genome-wide divergence in the blind mole rat Spalax. Proc Natl Acad Sci U S A 2015; 112:11905-10. [PMID: 26340990 DOI: 10.1073/pnas.1514896112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].
Collapse
|
13
|
Jeong SG, Cho GW. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun 2015; 460:971-6. [DOI: 10.1016/j.bbrc.2015.03.136] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/16/2023]
|
14
|
Rodriguez KA, Dodds SG, Strong R, Galvan V, Sharp ZD, Buffenstein R. Divergent tissue and sex effects of rapamycin on the proteasome-chaperone network of old mice. Front Mol Neurosci 2014; 7:83. [PMID: 25414638 PMCID: PMC4220119 DOI: 10.3389/fnmol.2014.00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/11/2014] [Indexed: 01/05/2023] Open
Abstract
Rapamycin, an allosteric inhibitor of the mTOR kinase, increases longevity in mice in a sex-specific manner. In contrast to the widely accepted theory that a loss of proteasome activity is detrimental to both life- and healthspan, biochemical studies in vitro reveal that rapamycin inhibits 20S proteasome peptidase activity. We tested if this unexpected finding is also evident after chronic rapamycin treatment in vivo by measuring peptidase activities for both the 26S and 20S proteasome in liver, fat, and brain tissues of old, male and female mice fed encapsulated chow containing 2.24 mg/kg (14 ppm) rapamycin for 6 months. Further we assessed if rapamycin altered expression of the chaperone proteins known to interact with the proteasome-mediated degradation system (PMDS), heat shock factor 1 (HSF1), and the levels of key mTOR pathway proteins. Rapamycin had little effect on liver proteasome activity in either gender, but increased proteasome activity in female brain lysates and lowered its activity in female fat tissue. Rapamycin-induced changes in molecular chaperone levels were also more substantial in tissues from female animals. Furthermore, mTOR pathway proteins showed more significant changes in female tissues compared to those from males. These data show collectively that there are divergent tissue and sex effects of rapamycin on the proteasome-chaperone network and that these may be linked to the disparate effects of rapamycin on males and females. Further our findings suggest that rapamycin induces indirect regulation of the PMDS/heat-shock response through its modulation of the mTOR pathway rather than via direct interactions between rapamycin and the proteasome.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Sherry G Dodds
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Randy Strong
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Pharmacology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Veronica Galvan
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Z D Sharp
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| | - Rochelle Buffenstein
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio San Antonio, TX, USA ; Department of Physiology, University of Texas Health Science Center at San Antonio San Antonio, TX, USA
| |
Collapse
|
15
|
Rodriguez KA, Osmulski PA, Pierce A, Weintraub ST, Gaczynska M, Buffenstein R. A cytosolic protein factor from the naked mole-rat activates proteasomes of other species and protects these from inhibition. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2060-72. [PMID: 25018089 PMCID: PMC4829350 DOI: 10.1016/j.bbadis.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
The naked mole-rat maintains robust proteostasis and high levels of proteasome-mediated proteolysis for most of its exceptional (~31years) life span. Here, we report that the highly active proteasome from the naked mole-rat liver resists attenuation by a diverse suite of proteasome-specific small molecule inhibitors. Moreover, mouse, human, and yeast proteasomes exposed to the proteasome-depleted, naked mole-rat cytosolic fractions, recapitulate the observed inhibition resistance, and mammalian proteasomes also show increased activity. Gel filtration coupled with mass spectrometry and atomic force microscopy indicates that these traits are supported by a protein factor that resides in the cytosol. This factor interacts with the proteasome and modulates its activity. Although Heat shock protein 72 kDa (HSP72) and Heat shock protein 40 kDa (Homolog of bacterial DNAJ1) (HSP40(Hdj1)) are among the constituents of this factor, the observed phenomenon, such as increasing peptidase activity and protecting against inhibition cannot be reconciled with any known chaperone functions. This novel function may contribute to the exceptional protein homeostasis in the naked mole-rat and allow it to successfully defy aging.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Pawel A Osmulski
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | - Anson Pierce
- Mitchell Center for Neurodegenerative Diseases, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Susan T Weintraub
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Maria Gaczynska
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA
| | - Rochelle Buffenstein
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr., San Antonio, TX 78245, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
16
|
Bellavista E, Martucci M, Vasuri F, Santoro A, Mishto M, Kloss A, Capizzi E, Degiovanni A, Lanzarini C, Remondini D, Dazzi A, Pellegrini S, Cescon M, Capri M, Salvioli S, D'Errico-Grigioni A, Dahlmann B, Grazi GL, Franceschi C. Lifelong maintenance of composition, function and cellular/subcellular distribution of proteasomes in human liver. Mech Ageing Dev 2014; 141-142:26-34. [PMID: 25265087 DOI: 10.1016/j.mad.2014.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
Owing to organ shortage, livers from old donors are increasingly used for transplantation. The function and duration of such transplanted livers are apparently comparable to those from young donors, suggesting that, despite some morphological and structural age-related changes, no major functional changes do occur in liver with age. We tested this hypothesis by performing a comprehensive study on proteasomes, major cell organelles responsible for proteostasis, in liver biopsies from heart-beating donors. Oxidized and poly-ubiquitin conjugated proteins did not accumulate with age and the three major proteasome proteolytic activities were similar in livers from young and old donors. Analysis of proteasomes composition showed an age-related increased of β5i/α4 ratio, suggesting a shift toward proteasomes containing inducible subunits and a decreased content of PA28α subunit, mainly in the cytosol of hepatocytes. Thus our data suggest that, proteasomes activity is well preserved in livers from aged donors, concomitantly with subtle changes in proteasome subunit composition which might reflect the occurrence of a functional remodelling to maintain an efficient proteostasis. Gender differences are emerging and they deserve further investigations owing to the different aging trajectories between men and women. Finally, our data support the safe use of livers from old donors for transplantation.
Collapse
Affiliation(s)
- Elena Bellavista
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Morena Martucci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Vasuri
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Michele Mishto
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany; Centro Interdipartimentale di Ricerca sul Cancro "Giorgio Prodi" (CIRC), University of Bologna, 40126 Bologna, Italy.
| | - Alexander Kloss
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany.
| | - Elisa Capizzi
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Alessio Degiovanni
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Catia Lanzarini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Daniel Remondini
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Physics and Astronomy (DIFA) and INFN Sez. Bologna, Alma Mater Studiorum, University of Bologna, 40127 Bologna, Italy.
| | - Alessandro Dazzi
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Sara Pellegrini
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Matteo Cescon
- Department of General Surgery and Organ Transplantation, S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Miriam Capri
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Stefano Salvioli
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Antonia D'Errico-Grigioni
- "F. Addarii" Institute of Oncology and Transplant Pathology at Department of Experimental, Diagnostic and Specialty Medicine (DIMES), S. Orsola-Malpighi Hospital, 40138 Bologna, Italy.
| | - Burkhardt Dahlmann
- Institute of Biochemistry, Charité Universitaetsmedizin Berlin, 10117 Berlin, Germany.
| | | | - Claudio Franceschi
- Interdepartmental Centre "L. Galvani" for Integrated Studies on Biophysics, Bioinformatics and Biocomplexity (CIG), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; IRCCS Institute of Neurological Sciences, 40139 Bologna, Italy; National Research Council of Italy, CNR, Institute for Organic Synthesis and Photoreactivity (ISOF), 40129 Bologna, Italy; National Research Council of Italy, CNR, Institute of Molecular Genetics, Unit of Bologna IOR, 40136 Italy.
| |
Collapse
|
17
|
Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle 2014; 13:1063-77. [PMID: 24603410 PMCID: PMC4013158 DOI: 10.4161/cc.28433] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Evolutionary theories of aging predict the existence of certain genes that provide selective advantage early in life with adverse effect on lifespan later in life (antagonistic pleiotropy theory) or longevity insurance genes (disposable soma theory). Indeed, the study of human and animal genetics is gradually identifying new genes that increase lifespan when overexpressed or mutated: gerontogenes. Furthermore, genetic and epigenetic mechanisms are being identified that have a positive effect on longevity. The gerontogenes are classified as lifespan regulators, mediators, effectors, housekeeping genes, genes involved in mitochondrial function, and genes regulating cellular senescence and apoptosis. In this review we demonstrate that the majority of the genes as well as genetic and epigenetic mechanisms that are involved in regulation of longevity are highly interconnected and related to stress response.
Collapse
Affiliation(s)
- Alexey A Moskalev
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Institute of Biology; Komi Science Center of Russian Academy of Sciences; Syktyvkar, Russian Federation; Syktyvkar State University; Syktyvkar, Russian Federation
| | - Alexander M Aliper
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Institute of Biology; Komi Science Center of Russian Academy of Sciences; Syktyvkar, Russian Federation
| | - Zeljka Smit-McBride
- Department of Ophthalmology and Vision Science; School of Medicine; University of California at Davis; Davis, CA USA
| | - Anton Buzdin
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Federal Clinical Research Center of Pediatric Hematology, Oncology, and Immunology; Moscow, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Moscow, Russian Federation; First Oncology Research and Advisory Center; Moscow, Russian Federation
| | - Alex Zhavoronkov
- Moscow Institute of Physics and Technology; Moscow, Russian Federation; Federal Clinical Research Center of Pediatric Hematology, Oncology, and Immunology; Moscow, Russian Federation; The Biogerontology Research Foundation; London, UK
| |
Collapse
|
18
|
Gohlke S, Mishto M, Textoris-Taube K, Keller C, Giannini C, Vasuri F, Capizzi E, D’Errico-Grigioni A, Kloetzel PM, Dahlmann B. Molecular alterations in proteasomes of rat liver during aging result in altered proteolytic activities. AGE (DORDRECHT, NETHERLANDS) 2014; 36:57-72. [PMID: 23690132 PMCID: PMC3889881 DOI: 10.1007/s11357-013-9543-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/08/2013] [Indexed: 06/02/2023]
Abstract
Aging induces alterations of tissue protein homoeostasis. To investigate one of the major systems catalysing intracellular protein degradation we have purified 20S proteasomes from rat liver of young (2 months) and aged (23 months) animals and separated them into three subpopulations containing different types of intermediate proteasomes with standard- and immuno-subunits. The smallest subpopulation ΙΙΙ and the major subpopulation Ι comprised proteasomes containing immuno-subunits β1i and β5i beside small amounts of standard-subunits, whereas proteasomes of subpopulation ΙΙ contained only β5i beside standard-subunits. In favour of a relative increase of the major subpopulation Ι, subpopulation ΙΙ and ΙΙΙ were reduced for about 55 % and 80 %, respectively, in aged rats. Furthermore, in all three 20S proteasome subpopulations from aged animals standard-active site subunits were replaced by immuno-subunits. Overall, this transformation resulted in a relative increase of immuno-subunit-containing proteasomes, paralleled by reduced activity towards short fluorogenic peptide substrates. However, depending on the substrate their hydrolysing activity of long polypeptide substrates was significantly higher or unchanged. Furthermore, our data revealed an altered MHC class I antigen-processing efficiency of 20S proteasomes from liver of aged rats. We therefore suggest that the age-related intramolecular alteration of hepatic proteasomes modifies its cleavage preferences without a general decrease of its activity. Such modifications could have implications on protein homeostasis as well as on MHC class I antigen presentation as part of the immunosenescence process.
Collapse
Affiliation(s)
- Sabrina Gohlke
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Michele Mishto
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
- />Centro Interdipartimentale di Ricerca sul Cancro “Giorgio Prodi”, University of Bologna, Bologna, Italy
| | - Kathrin Textoris-Taube
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Christin Keller
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Carolin Giannini
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Francesco Vasuri
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Elisa Capizzi
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Antonia D’Errico-Grigioni
- />“F. Addarii” Institute of Oncology and Transplant Pathology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Peter-Michael Kloetzel
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkhardt Dahlmann
- />Institute of Biochemistry, Charité-Universitätsmedizin Berlin, CCM, CharitéCrossOver, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
19
|
Soares H, Marinho HS, Real C, Antunes F. Cellular polarity in aging: role of redox regulation and nutrition. GENES AND NUTRITION 2013; 9:371. [PMID: 24306961 DOI: 10.1007/s12263-013-0371-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/19/2013] [Indexed: 02/06/2023]
Abstract
Cellular polarity concerns the spatial asymmetric organization of cellular components and structures. Such organization is important not only for biological behavior at the individual cell level, but also for the 3D organization of tissues and organs in living organisms. Processes like cell migration and motility, asymmetric inheritance, and spatial organization of daughter cells in tissues are all dependent of cell polarity. Many of these processes are compromised during aging and cellular senescence. For example, permeability epithelium barriers are leakier during aging; elderly people have impaired vascular function and increased frequency of cancer, and asymmetrical inheritance is compromised in senescent cells, including stem cells. Here, we review the cellular regulation of polarity, as well as the signaling mechanisms and respective redox regulation of the pathways involved in defining cellular polarity. Emphasis will be put on the role of cytoskeleton and the AMP-activated protein kinase pathway. We also discuss how nutrients can affect polarity-dependent processes, both by direct exposure of the gastrointestinal epithelium to nutrients and by indirect effects elicited by the metabolism of nutrients, such as activation of antioxidant response and phase-II detoxification enzymes through the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In summary, cellular polarity emerges as a key process whose redox deregulation is hypothesized to have a central role in aging and cellular senescence.
Collapse
Affiliation(s)
- Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
20
|
Edrey YH, Oddo S, Cornelius C, Caccamo A, Calabrese V, Buffenstein R. Oxidative damage and amyloid-β metabolism in brain regions of the longest-lived rodents. J Neurosci Res 2013; 92:195-205. [PMID: 24273049 DOI: 10.1002/jnr.23320] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 12/16/2022]
Abstract
Naked mole rats (NMRs) are the longest-lived rodents, with young individuals having high levels of Aβ in their brains. The purpose of this study was twofold: to assess the distribution of Aβ in key regions of NMR brains (cortex, hippocampus, cerebellum) and to understand whether the accumulation of Aβ is due to enhanced production or decreased degradation. Recent evidence indicates that lipid peroxides directly participate in induction of cytoprotective proteins, such as heat shock proteins (Hsps), which play a central role in the cellular mechanisms of stress tolerance. Amyloid precursor protein processing, lipid peroxidation, Hsps, redox status, and protein degradation processes were therefore assessed in key NMR brain regions. NMR brains had high levels of lipid peroxidation compared with mice, and the NMR hippocampus had the highest levels of the most toxic moiety of Aβ (soluble Aβ1 - 42 ). This was due not to increased Aβ production but rather to low antioxidant potential, which was associated with low induction of Hsp70 and heme oxygenase-1 as well as low ubiquitin-proteasome activity. NMRs may therefore serve as natural models for understanding the relationship between oxidative stress and Aβ levels and its effects on the brain.
Collapse
Affiliation(s)
- Yael H Edrey
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas; The Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | | | | | | | | | | |
Collapse
|
21
|
Ungvari Z, Csiszar A, Sosnowska D, Philipp EE, Campbell CM, McQuary PR, Chow TT, Coelho M, Didier ES, Gelino S, Holmbeck MA, Kim I, Levy E, Sonntag WE, Whitby PW, Austad SN, Ridgway I. Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J Gerontol A Biol Sci Med Sci 2012; 68:359-67. [PMID: 22904097 DOI: 10.1093/gerona/gls159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Bivalve species with exceptional longevity are newly introduced model systems in biogerontology to test evolutionarily conserved mechanisms of aging. Here, we tested predictions based on the oxidative stress hypothesis of aging using one of the tropical long-lived sessile giant clam species, the smooth giant clam (Tridacna derasa; predicted maximum life span: >100 years) and the short-lived Atlantic bay scallop (Argopecten irradians irradians; maximum life span: 2 years). The warm water-dwelling giant clams warrant attention because they challenge the commonly held view that the exceptional longevity of bivalves is a consequence of the cold water they reside in. No significant interspecific differences in production of H2O2 and O2- in the gills, heart, or adductor muscle were observed. Protein carbonyl content in gill and muscle tissues were similar in T derasa and A i irradians. In tissues of T derasa, neither basal antioxidant capacities nor superoxide dismutase and catalase activities were consistently greater than in A i irradians. We observed a positive association between longevity and resistance to mortality induced by exposure to tert-butyl hydroperoxide (TBHP). This finding is consistent with the prediction based on the oxidative stress hypothesis of aging. The findings that in tissues of T derasa, proteasome activities are significantly increased as compared with those in tissues of A i irradians warrant further studies to test the role of enhanced protein recycling activities in longevity of bivalves.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma HSC, 975 N. E. 10th Street – BRC 1303, Oklahoma City, Oklahoma 73104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rodriguez KA, Wywial E, Perez VI, Lambert AJ, Edrey YH, Lewis KN, Grimes K, Lindsey ML, Brand MD, Buffenstein R. Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm Des 2012; 17:2290-307. [PMID: 21736541 DOI: 10.2174/138161211797052457] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/07/2011] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), by-products of aerobic metabolism, cause oxidative damage to cells and tissue and not surprisingly many theories have arisen to link ROS-induced oxidative stress to aging and health. While studies clearly link ROS to a plethora of divergent diseases, their role in aging is still debatable. Genetic knock-down manipulations of antioxidants alter the levels of accrued oxidative damage, however, the resultant effect of increased oxidative stress on lifespan are equivocal. Similarly the impact of elevating antioxidant levels through transgenic manipulations yield inconsistent effects on longevity. Furthermore, comparative data from a wide range of endotherms with disparate longevity remain inconclusive. Many long-living species such as birds, bats and mole-rats exhibit high-levels of oxidative damage, evident already at young ages. Clearly, neither the amount of ROS per se nor the sensitivity in neutralizing ROS are as important as whether or not the accrued oxidative stress leads to oxidative-damage-linked age-associated diseases. In this review we examine the literature on ROS, its relation to disease and the lessons gleaned from a comparative approach based upon species with widely divergent responses. We specifically focus on the longest lived rodent, the naked mole-rat, which maintains good health and provides novel insights into the paradox of maintaining both an extended healthspan and lifespan despite high oxidative stress from a young age.
Collapse
Affiliation(s)
- Karl A Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Dr. San Antonio, TX 78245, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rodriguez KA, Edrey YH, Osmulski P, Gaczynska M, Buffenstein R. Altered composition of liver proteasome assemblies contributes to enhanced proteasome activity in the exceptionally long-lived naked mole-rat. PLoS One 2012; 7:e35890. [PMID: 22567116 PMCID: PMC3342291 DOI: 10.1371/journal.pone.0035890] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023] Open
Abstract
The longest-lived rodent, the naked mole-rat (Bathyergidae; Heterocephalus glaber), maintains robust health for at least 75% of its 32 year lifespan, suggesting that the decline in genomic integrity or protein homeostasis routinely observed during aging, is either attenuated or delayed in this extraordinarily long-lived species. The ubiquitin proteasome system (UPS) plays an integral role in protein homeostasis by degrading oxidatively-damaged and misfolded proteins. In this study, we examined proteasome activity in naked mole-rats and mice in whole liver lysates as well as three subcellular fractions to probe the mechanisms behind the apparently enhanced effectiveness of UPS. We found that when compared with mouse samples, naked mole-rats had significantly higher chymotrypsin-like (ChT-L) activity and a two-fold increase in trypsin-like (T-L) in both whole lysates as well as cytosolic fractions. Native gel electrophoresis of the whole tissue lysates showed that the 20S proteasome was more active in the longer-lived species and that 26S proteasome was both more active and more populous. Western blot analyses revealed that both 19S subunits and immunoproteasome catalytic subunits are present in greater amounts in the naked mole-rat suggesting that the observed higher specific activity may be due to the greater proportion of immunoproteasomes in livers of healthy young adults. It thus appears that proteasomes in this species are primed for the efficient removal of stress-damaged proteins. Further characterization of the naked mole-rat proteasome and its regulation could lead to important insights on how the cells in these animals handle increased stress and protein damage to maintain a longer health in their tissues and ultimately a longer life.
Collapse
Affiliation(s)
- Karl A. Rodriguez
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yael H. Edrey
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Pawel Osmulski
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Maria Gaczynska
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Rochelle Buffenstein
- Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Uchiki T, Weikel KA, Jiao W, Shang F, Caceres A, Pawlak D, Handa JT, Brownlee M, Nagaraj R, Taylor A. Glycation-altered proteolysis as a pathobiologic mechanism that links dietary glycemic index, aging, and age-related disease (in nondiabetics). Aging Cell 2012; 11:1-13. [PMID: 21967227 DOI: 10.1111/j.1474-9726.2011.00752.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions. However, mice that consumed the lower vs. higher GI diet had significantly reduced frequency (P < 0.02) and severity (P < 0.05) of hallmark age-related retinal lesions such as basal deposits. Consuming higher GI diets was associated with > 3 fold higher accumulation of advanced glycation end products (AGEs) in retina, lens, liver, and brain in the age-matched mice, suggesting that higher GI diets induce systemic glycative stress that is etiologic for lesions. Data from live cell and cell-free systems show that the ubiquitin-proteasome system (UPS) and lysosome/autophagy pathway [lysosomal proteolytic system (LPS)] are involved in the degradation of AGEs. Glycatively modified substrates were degraded significantly slower than unmodified substrates by the UPS. Compounding the detriments of glycative stress, AGE modification of ubiquitin and ubiquitin-conjugating enzymes impaired UPS activities. Furthermore, ubiquitin conjugates and AGEs accumulate and are found in lysosomes when cells are glycatively stressed or the UPS or LPS/autophagy are inhibited, indicating that the UPS and LPS interact with one another to degrade AGEs. Together, these data explain why AGEs accumulate as glycative stress increases.
Collapse
Affiliation(s)
- Tomoaki Uchiki
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Adult stem cells exist in most mammalian organs and tissues and are indispensable for normal tissue homeostasis and repair. In most tissues, there is an age-related decline in stem cell functionality but not a depletion of stem cells. Such functional changes reflect deleterious effects of age on the genome, epigenome, and proteome, some of which arise cell autonomously and others of which are imposed by an age-related change in the local milieu or systemic environment. Notably, some of the changes, particularly epigenomic and proteomic, are potentially reversible, and both environmental and genetic interventions can result in the rejuvenation of aged stem cells. Such findings have profound implications for the stem cell–based therapy of age-related diseases.
Collapse
Affiliation(s)
- Ling Liu
- Paul F. Glenn Laboratories for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
26
|
Ungvari Z, Ridgway I, Philipp EER, Campbell CM, McQuary P, Chow T, Coelho M, Didier ES, Gelino S, Holmbeck MA, Kim I, Levy E, Sosnowska D, Sonntag WE, Austad SN, Csiszar A. Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A Biol Sci Med Sci 2011; 66:741-50. [PMID: 21486920 DOI: 10.1093/gerona/glr044] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We assess whether reactive oxygen species production and resistance to oxidative stress might be causally involved in the exceptional longevity exhibited by the ocean quahog Arctica islandica. We tested this hypothesis by comparing reactive oxygen species production, resistance to oxidative stress, antioxidant defenses, and protein damage elimination processes in long-lived A islandica with the shorter-lived hard clam, Mercenaria mercenaria. We compared baseline biochemical profiles, age-related changes, and responses to exposure to the oxidative stressor tert-butyl hydroperoxide (TBHP). Our data support the premise that extreme longevity in A islandica is associated with an attenuated cellular reactive oxygen species production. The observation of reduced protein carbonyl concentration in A islandica gill tissue compared with M mercenaria suggests that reduced reactive oxygen species production in long-living bivalves is associated with lower levels of accumulated macromolecular damage, suggesting cellular redox homeostasis may determine life span. Resistance to aging at the organismal level is often reflected in resistance to oxidative stressors at the cellular level. Following TBHP exposure, we observed not only an association between longevity and resistance to oxidative stress-induced mortality but also marked resistance to oxidative stress-induced cell death in the longer-living bivalves. Contrary to some expectations from the oxidative stress hypothesis, we observed that A islandica exhibited neither greater antioxidant capacities nor specific activities than in M mercenaria nor a more pronounced homeostatic antioxidant response following TBHP exposure. The study also failed to provide support for the exceptional longevity of A islandica being associated with enhanced protein recycling. Our findings demonstrate an association between longevity and resistance to oxidative stress-induced cell death in A islandica, consistent with the oxidative stress hypothesis of aging and provide justification for detailed evaluation of pathways involving repair of free radical-mediated macromolecular damage and regulation of apoptosis in the world's longest-living non-colonial animal.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dasuri K, Ebenezer PJ, Zhang L, Fernandez-Kim SO, Uranga RM, Gavilán E, Di Blasio A, Keller JN. Selective vulnerability of neurons to acute toxicity after proteasome inhibitor treatment: implications for oxidative stress and insolubility of newly synthesized proteins. Free Radic Biol Med 2010; 49:1290-7. [PMID: 20678570 PMCID: PMC3175605 DOI: 10.1016/j.freeradbiomed.2010.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 12/19/2022]
Abstract
Maintaining protein homeostasis is vital to cell viability, with numerous studies demonstrating a role for proteasome inhibition occurring during the aging of a variety of tissues and, presumably, contributing to the disruption of cellular homeostasis during aging. In this study we sought to elucidate the differences between neurons and astrocytes in regard to basal levels of protein synthesis, proteasome-mediated protein degradation, and sensitivity to cytotoxicity after proteasome inhibitor treatment. In these studies we demonstrate that neurons have an increased vulnerability, compared to astrocyte cultures, to proteasome-inhibitor-induced cytotoxicity. No significant difference was observed between these two cell types in regard to the basal rates of protein synthesis, or basal rates of protein degradation, in the pool of short-lived proteins. After proteasome inhibitor treatment neuronal crude lysates were observed to undergo greater increases in the levels of ubiquitinated and oxidized proteins and selectively exhibited increased levels of newly synthesized proteins accumulating within the insoluble protein pool, compared to astrocytes. Together, these data suggest a role for increased oxidized proteins and sequestration of newly synthesized proteins in the insoluble protein pool, as potential mediators of the selective neurotoxicity after proteasome inhibitor treatment. The implications for neurons exhibiting increased sensitivity to acute proteasome inhibitor exposure, and the corresponding changes in protein homeostasis observed after proteasome inhibition, are discussed in the context of both aging and age-related disorders of the nervous system.
Collapse
Affiliation(s)
- Kalavathi Dasuri
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Le Zhang
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Romina M. Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca,Argentina
| | - Elena Gavilán
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Alessia Di Blasio
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
| | - Jeffrey N Keller
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
- Corresponding author: Dr Jeffrey N. Keller, Pennington Biomedical Research Center/LSU System, 6400 Perkins Road, Baton Rouge, LA 70808-4124, (P): 225-763-3190; (E):
| |
Collapse
|