1
|
Wang Y, Fang M, Ren Q, Qi W, Bai X, Amin N, Zhang X, Li Z, Zhang L. Sox17 protects human brain microvascular endothelial cells from AngII-induced injury by regulating autophagy and apoptosis. Mol Cell Biochem 2024; 479:2337-2350. [PMID: 37659973 PMCID: PMC11371885 DOI: 10.1007/s11010-023-04838-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023]
Abstract
Intracranial aneurysm (IA), is a localized dilation of the intracranial arteries, the rupture of which is catastrophic. Hypertension is major IA risk factor that mediates endothelial cell damage. Sox17 is highly expressed in intracranial vascular endothelial cells, and GWAS studies indicate that its genetic alteration is one of the major genetic risk factors for IA. Vascular endothelial cell injury plays a vital role in the pathogenesis of IA. The genetic ablation of Sox17 plus hypertension induced by AngII can lead to an increased incidence of intracranial aneurysms had tested in the previous animal experiments. In order to study the underlying molecular mechanisms, we established stable Sox17-overexpressing and knockdown cell lines in human brain microvascular endothelial cells (HBMECs) first. Then flow cytometry, western blotting, and immunofluorescence were employed. We found that the knockdown of Sox17 could worsen the apoptosis and autophagy of HBMECs caused by AngII, while overexpression of Sox17 had the opposite effect. Transmission electron microscopy displayed increased autophagosomes after the knockdown of Sox17 in HBMECs. The RNA-sequencing analysis shown that dysregulation of the Sox17 gene was closely associated with the autophagy-related pathways. Our study suggests that Sox17 could protect HBMECs from AngII-induced injury by regulating autophagy and apoptosis.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Marong Fang
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiannan Ren
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Qi
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinli Bai
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nashwa Amin
- Institute of System Medicine, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Department of Zoology, Faculty of Science, Aswan University, Qism Aswan, Egypt
| | - Xiangjian Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhenzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lihong Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, No 215 Heping West Road, Shijiazhuang, 050000, Hebei Province, China.
- The Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China.
| |
Collapse
|
2
|
Sahu Y, Jamadade P, Ch Maharana K, Singh S. Role of mitochondrial homeostasis in D-galactose-induced cardiovascular ageing from bench to bedside. Mitochondrion 2024; 78:101923. [PMID: 38925493 DOI: 10.1016/j.mito.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Ageing is an inevitable phenomenon which affects the cellular to the organism level in the progression of the time. Oxidative stress and inflammation are now widely regarded as the key processes involved in the aging process, which may then cause significant harm to mitochondrial DNA, leading to apoptosis. Normal circulatory function is a significant predictor of disease-free life expectancy. Indeed, disorders affecting the cardiovascular system, which are becoming more common, are the primary cause of worldwide morbidity, disability, and mortality. Cardiovascular aging may precede or possibly underpin overall, age-related health decline. Numerous studies have foundmitochondrial mechanistc approachplays a vital role in the in the onset and development of aging. The D-galactose (D-gal)-induced aging model is well recognized and commonly used in the aging study. In this review we redeposit the association of the previous and current studies on mitochondrial homeostasis and its underlying mechanisms in D-galactose cardiovascular ageing. Further we focus the novel and the treatment strategies to combat the major complication leading to the cardiovascular ageing.
Collapse
Affiliation(s)
- Yogita Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Pratiksha Jamadade
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Krushna Ch Maharana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hajipur, Vaishali, Bihar, India.
| |
Collapse
|
3
|
Zhang YF, Yuan LL, Wang ZC, Zhuang WB, Zhang WJ, Liu HT, Li M, Fan LH. DHEA down-regulates mitochondrial dynamics and promotes apoptosis of lung adenocarcinoma cells through FASTKD2. J Cancer 2024; 15:2110-2122. [PMID: 38495508 PMCID: PMC10937269 DOI: 10.7150/jca.93373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/20/2024] [Indexed: 03/19/2024] Open
Abstract
Background: DHEA is a steroid hormone produced by the gonads, adrenal cortex, brain, and gastrointestinal tract. While the anti-obesity, anti-atherosclerosis, anti-cancer, and memory-enhancing effects of DHEA have been substantiated through cell experiments, animal studies, and human trials, the precise mechanisms underlying these effects remain unclear. Altered mitochondrial dynamics can lead to mitochondrial dysfunction, which is closely related to many human diseases, especially cancer and aging. This study was to investigate whether DHEA inhibits lung adenocarcinoma through the mitochondrial pathway and its molecular mechanism. Methods: Through animal experiments and cell experiments, the effect of DHEA on tumor inhibition was determined. The correlation between FASTKD2 expression and DHEA was analyzed by Western blot, Reverse transcription-quantitative PCR, Immunohistochemistry, and TCGA database. Results: In this study, DHEA supplementation in the diet can inhibit the tumor size of mice, and the effect of adding DHEA one week before the experiment is the best. DHEA limits the glycolysis process by inhibiting G6PDH activity, increases the accumulation of reactive oxygen species, and initiates apoptosis in the mitochondrial pathway of cancer cells. Conclusion: DHEA suppresses mitochondrial fission and promotes mitochondrial fusion by downregulating the expression of FASTKD2, thereby inhibiting tumor growth and prolonging the overall survival of lung adenocarcinoma patients, which also provides a new target for the prevention and treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Liu-Liu Yuan
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Wen-Bin Zhuang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Jia Zhang
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-Tao Liu
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Li
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Hong Fan
- Nanjing Medical University, Nanjing, China
- Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Sun B, Lin L, Yao T, Yao J, Zhang G, Li Y, Li C. Jingfang Granule mitigates Coxsackievirus B3-induced myocardial damage by modulating mucolipin 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117396. [PMID: 37951374 DOI: 10.1016/j.jep.2023.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granules (JFG) originate from the traditional herbal formula Jingfang Baidu powder. It has the effects of inducing sweating and dispelling wind. It is a classic medication used for treating external pathogenic factors and viral diseases. However, the therapeutic mechanism of JFG for viral myocarditis needs further clarification. AIM OF THE STUDY This study aimed to explore the therapeutic efficacy of JFG on coxsackievirus B3-induced viral myocarditis (VMC), along with the elucidation of its underlying mechanisms. MATERIALS AND METHODS C57 BL/6JNifdc mice were divided randomly into several groups: control, model, Jingfang Granule groups (0.23, 0.46, and 0.69 g/20g, respectively), and a positive group (oseltamivir, 19.33 mg/kg). Following the establishment of the VMC model, the mice underwent an 8 -week treatment regimen. Pathological alterations in cardiac tissues and inflammatory protein expression were monitored. Differential gene analysis was conducted utilizing transcriptomic techniques. The differential gene mucolipin 1 (Mcoln1) was knocked down by transfection with siRNA in H9C2 cell, and investigative techniques such as immunoblotting, qRT-PCR, immunofluorescence, JC-1 staining, reactive oxygen species (ROS) detection, and mitochondrial stress testing were employed to examine its mechanism of action. RESULTS JFG significantly mitigates the pathological damage observed in the cardiac tissues of CVB3-induced VMC mice and attenuates the expression of inflammatory genes. Subsequently, differentially expressed genes are identified through transcriptomic analysis and validated via PCR. Among these, the upregulation of Mcoln1 promotes autophagy, facilitating the clearance of damaged mitochondria and excessive ROS. This has been substantiated through in vitro experiments. Excessive ROS precipitates a reduction in mitochondrial membrane potential, instigating cell apoptosis. In accordance with TUNEL staining results, JFG acts to inhibit cell apoptosis. To ascertain whether Mcoln1 is a crucial target for JFG in treating VMC, Mcoln1 was suppressed in H9C2 cells. The suppression of Mcoln1 hinders the elevation in autophagy levels post-JFG treatment, obstructs the enhancement of mitochondrial function, and impedes the clearance of ROS. Furthermore, the inhibitory effect of JFG on cell apoptosis is attenuated. CONCLUSION The research findings indicate that JFG has a protective effect on CVB3-induced H9C2 cell injury. JFG may exert its effects in VMC treatment by enhancing autophagy to suppress cell apoptosis through the mitochondrial pathway, thereby counteracting cell damage.
Collapse
Affiliation(s)
- Bowen Sun
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Lin
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tian Yao
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Yunlun Li
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
5
|
Stoicescu L, Crişan D, Morgovan C, Avram L, Ghibu S. Heart Failure with Preserved Ejection Fraction: The Pathophysiological Mechanisms behind the Clinical Phenotypes and the Therapeutic Approach. Int J Mol Sci 2024; 25:794. [PMID: 38255869 PMCID: PMC10815792 DOI: 10.3390/ijms25020794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is an increasingly frequent form and is estimated to be the dominant form of HF. On the other hand, HFpEF is a syndrome with systemic involvement, and it is characterized by multiple cardiac and extracardiac pathophysiological alterations. The increasing prevalence is currently reaching epidemic levels, thereby making HFpEF one of the greatest challenges facing cardiovascular medicine today. Compared to HF with reduced ejection fraction (HFrEF), the medical attitude in the case of HFpEF was a relaxed one towards the disease, despite the fact that it is much more complex, with many problems related to the identification of physiopathogenetic mechanisms and optimal methods of treatment. The current medical challenge is to develop effective therapeutic strategies, because patients suffering from HFpEF have symptoms and quality of life comparable to those with reduced ejection fraction, but the specific medication for HFrEF is ineffective in this situation; for this, we must first understand the pathological mechanisms in detail and correlate them with the clinical presentation. Another important aspect of HFpEF is the diversity of patients that can be identified under the umbrella of this syndrome. Thus, before being able to test and develop effective therapies, we must succeed in grouping patients into several categories, called phenotypes, depending on the pathological pathways and clinical features. This narrative review critiques issues related to the definition, etiology, clinical features, and pathophysiology of HFpEF. We tried to describe in as much detail as possible the clinical and biological phenotypes recognized in the literature in order to better understand the current therapeutic approach and the reason for the limited effectiveness. We have also highlighted possible pathological pathways that can be targeted by the latest research in this field.
Collapse
Affiliation(s)
- Laurențiu Stoicescu
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Cardiology Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Dana Crişan
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania
| | - Lucreţia Avram
- Internal Medicine Department, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400000 Cluj-Napoca, Romania; (L.S.); or (D.C.); or (L.A.)
- Internal Medicine Department, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Fear EJ, Torkelsen FH, Zamboni E, Chen K, Scott M, Jeffery G, Baseler H, Kennerley AJ. Use of 31 P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 2023; 22:e14005. [PMID: 37803929 PMCID: PMC10652330 DOI: 10.1111/acel.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long-wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31 P magnetisation transfer magnetic resonance spectroscopy (MT-MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits.
Collapse
Affiliation(s)
- Elizabeth J. Fear
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | | | - Elisa Zamboni
- Department of PsychologyUniversity of YorkYorkUK
- School of PsychologyUniversity of NottinghamNottinghamUK
| | | | - Martin Scott
- Department of PsychologyUniversity of YorkYorkUK
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Glenn Jeffery
- Faculty of Brain SciencesInstitute of Ophthalmology, UCLLondonUK
| | - Heidi Baseler
- Hull York Medical SchoolUniversity of YorkYorkUK
- Department of PsychologyUniversity of YorkYorkUK
| | - Aneurin J. Kennerley
- Department of ChemistryUniversity of YorkYorkUK
- Institute of SportManchester Metropolitan UniversityManchesterUK
| |
Collapse
|
7
|
Kumar R, Chhikara BS, Er Zeybekler S, Gupta DS, Kaur G, Chhillar M, Aggarwal AK, Rahdar A. Nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) with repercussions toward apoptosis, necrosis, and cancer necrosis factor (TNF-α) at nano-biointerfaces. Toxicol Res (Camb) 2023; 12:716-740. [PMID: 37915472 PMCID: PMC10615831 DOI: 10.1093/toxres/tfad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 08/11/2023] [Accepted: 09/03/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Apoptosis, necrosis, and cancer necrosis factor (TNF-a) are all impacted by the nanotoxicity of multifunctional stoichiometric cobalt oxide nanoparticles (SCoONPs) at nano-biointerfaces. The creation of multi-functional nanoparticles has had a considerable impact on the transport of drugs and genes, nanotheranostics (in-vivo imaging, concurrent diagnostics), interventions for external healing, the creation of nano-bio interfaces, and the instigation of desired changes in nanotherapeutics. Objectives The quantitative structure-activity relationships, chemical transformations, biological interactions as well as toxicological analyses are considered as main objectives. Discrete dimensions of SCoNPs-cell interaction interfaces, their characteristic physical features (size, shape, shell structure, and surface chemistry), impact on cell proliferation and differentiation are the key factors responsible for nanotoxicity. Methods The development of multi-functional nanoparticles has been significant in drug/gene delivery, nanotheranostics (in-vivo imaging, coinciding diagnostics), and external healing interventions, designing a nano-bio interface, as well as inciting desired alterations in nanotherapeutics. Every so often, the cellular uptake of multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoONPs) influences cellular mechanics and initiates numerous repercussions (oxidative stress, DNA damage, cytogenotoxicity, and chromosomal damage) in pathways, including the generation of dysregulating factors involved in biochemical transformations. Results The concerns and influences of multifunctional SCoNPs on different cell mechanisms (mitochondria impermeability, hydrolysis of ATP, the concentration of Ca2+, impaired calcium clearance, defective autophagy, apoptosis, and necrosis), and interlinked properties (adhesion, motility, and internalization dynamics, role in toxicity, surface hydrophilic and hydrophobicity, biokinetics and biomimetic behaviors of biochemical reactions) have also been summarized. SCoONPs have received a lot of interest among the nanocarriers family because of its advantageous qualities such as biodegradability, biocompatibility, nontoxicity, and nonimmunogenicity. Conclusion Various applications, such as bio-imaging, cell labeling, gene delivery, enhanced chemical stability, and increased biocompatibility, concerning apoptosis, necrosis, and nano-bio interfaces, along with suitable examples. In this analysis, the multi-functional cobalt [Co, CoO, Co2(CO)8 and Co3O4] nanoparticles (SCoNPs) intricacies (cytogenotoxicity, clastogenicity, and immunomodulatory), nanotoxicity, and associated repercussions have been highlighted and explained.
Collapse
Affiliation(s)
- Rajiv Kumar
- University of Delhi, Mall Road, New Delhi 110007, India
| | - Bhupender S Chhikara
- Department of Chemistry, Aditi Mahavidyalaya, University of Delhi, Auchandi Road, Bawana, Delhi 110039, India
| | - Simge Er Zeybekler
- Biochemistry Department, Faculty of Science, Ege University, Hastanesi 9/3A 35100 Bornova-Izmir 35100, Turkey
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | | | - Anil K Aggarwal
- Department of Chemistry, Shivaji College, University of Delhi, Ring Road, Raja Garden, New Delhi 110027, India
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Sistan va Baluchestan, Zabol 538-98615, Iran
| |
Collapse
|
8
|
Shahait M, Usamentiaga R, Tong Y, Sandberg A, Lee DI, Udupa JK, Torigian DA. MRI-Based Radiomics Analysis of Levator Ani Muscle for Predicting Urine Incontinence after Robot-Assisted Radical Prostatectomy. Diagnostics (Basel) 2023; 13:2913. [PMID: 37761280 PMCID: PMC10528635 DOI: 10.3390/diagnostics13182913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The exact role of the levator ani (LA) muscle in male continence remains unclear, and so this study aims to shed light on the topic by characterizing MRI-derived radiomic features of LA muscle and their association with postoperative incontinence in men undergoing prostatectomy. METHOD In this retrospective study, 140 patients who underwent robot-assisted radical prostatectomy (RARP) for prostate cancer using preoperative MRI were identified. A biomarker discovery approach based on the optimal biomarker (OBM) method was used to extract features from MRI images, including morphological, intensity-based, and texture-based features of the LA muscle, along with clinical variables. Mathematical models were created using subsets of features and were evaluated based on their ability to predict continence outcomes. RESULTS Univariate analysis showed that the best discriminators between continent and incontinent patients were patients age and features related to LA muscle texture. The proposed feature selection approach found that the best classifier used six features: age, LA muscle texture properties, and the ratio between LA size descriptors. This configuration produced a classification accuracy of 0.84 with a sensitivity of 0.90, specificity of 0.75, and an area under the ROC curve of 0.89. CONCLUSION This study found that certain patient factors, such as increased age and specific texture properties of the LA muscle, can increase the odds of incontinence after RARP. The results showed that the proposed approach was highly effective and could distinguish and predict continents from incontinent patients with high accuracy.
Collapse
Affiliation(s)
- Mohammed Shahait
- Department of Surgery, Clemenceau Medical Center, Dubai P.O. Box 124412, United Arab Emirates;
| | - Ruben Usamentiaga
- Department of Computer Science and Engineering, University of Oviedo, 33204 Gijon, Spain;
| | - Yubing Tong
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.T.); (J.K.U.)
| | - Alex Sandberg
- Temple Medical School, Temple University, Philadelphia, PA 19140, USA;
| | - David I. Lee
- Department of Urology, University of California Irvine, Irvine, CA 92868, USA;
| | - Jayaram K. Udupa
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.T.); (J.K.U.)
| | - Drew A. Torigian
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (Y.T.); (J.K.U.)
| |
Collapse
|
9
|
Yang M, Wang Z, Xie J, Reyad‐ul‐Ferdous M, Li S, Song Y. Cyclophilin D as a potential therapeutic target of liver ischemia/reperfusion injury by mediating crosstalk between apoptosis and autophagy. Chronic Dis Transl Med 2023; 9:238-249. [PMID: 37711863 PMCID: PMC10497823 DOI: 10.1002/cdt3.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 09/16/2023] Open
Abstract
Background Liver ischemia/reperfusion (I/R) injury is a complex and multifactorial pathophysiological process. It is well recognized that the membrane permeability transition pore (mPTP) opening of mitochondria plays a crucial role in cell death after I/R injury. Cyclophilin D (CypD) is a critical positive regulator of mPTP. However, the effect of CypD on the pathogenesis of liver I/R injury and whether CypD is a potential therapeutic target are still unclear. Methods We constructed liver-specific CypD knockout and AAV8-peptidyl prolyl isomerase F (PPIF) overexpression mice. Then, a 70% liver I/R injury model was established in mice, with 90 min of ischemia and 6 h of reperfusion. The liver function was detected by the level of serum glutamic pyruvic transaminase (alanine transaminase) and glutamic oxaloacetic transaminase (aspartate aminotransferase), the liver damage score and degree of necrosis were measured by hematoxylin and eosin (H&E) staining of liver tissues. Reactive oxygen species (ROS) staining, apoptosis, and autophagy-related molecules were used to detect apoptosis and autophagy during liver I/R. Results The liver-specific knockout of CypD alleviated necrosis and dysfunction in liver I/R injury, by reducing the excessive production of ROS, and inhibiting cell apoptosis and autophagy. On the contrary, overexpression of CypD exacerbated I/R-induced liver damage. Conclusion We found that the downregulation of CypD expression alleviated liver I/R injury by reducing apoptosis and autophagy through caspase-3/Beclin1 crosstalk; in contrast, the upregulation of CypD expression aggravated liver I/R injury. Therefore, interfering with the expression of CypD seems to be a promising treatment for liver I/R injury.
Collapse
Affiliation(s)
- Mengjiao Yang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Zhihui Wang
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
| | - Jin Xie
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
| | - Md. Reyad‐ul‐Ferdous
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Siying Li
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yongfeng Song
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanShandongChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanShandongChina
- Department of Endocrinology and MetabolismCentral Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| |
Collapse
|
10
|
Wilkinson MS, Dunham-Snary KJ. Blood-based bioenergetics: a liquid biopsy of mitochondrial dysfunction in disease. Trends Endocrinol Metab 2023; 34:554-570. [PMID: 37414716 DOI: 10.1016/j.tem.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Mitochondria operate as hubs of cellular metabolism that execute important regulatory functions. Damaged/dysfunctional mitochondria are recognized as major pathogenic contributors to many common human diseases. Assessment of mitochondrial function relies upon invasive tissue biopsies; peripheral blood cells, specifically platelets, have emerged as an ideal candidate for mitochondrial function assessment. Accessibility and documented pathology-related dysfunction have prompted investigation into the role of platelets in disease, the contribution of platelet mitochondria to pathophysiology, and the capacity of platelets to reflect systemic mitochondrial health. Platelet mitochondrial bioenergetics are being investigated in neurodegenerative and cardiopulmonary diseases, infection, diabetes, and other (patho)physiological states such as aging and pregnancy. Early findings support the use of platelets as a biomarker for mitochondrial functional health.
Collapse
Affiliation(s)
- Mia S Wilkinson
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Kimberly J Dunham-Snary
- Department of Medicine, Queen's University, Kingston, ON, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
11
|
Mercader-Barceló J, Martín-Medina A, Truyols-Vives J, Escarrer-Garau G, Elowsson L, Montes-Worboys A, Río-Bocos C, Muncunill-Farreny J, Velasco-Roca J, Cederberg A, Kadefors M, Molina-Molina M, Westergren-Thorsson G, Sala-Llinàs E. Mitochondrial Dysfunction in Lung Resident Mesenchymal Stem Cells from Idiopathic Pulmonary Fibrosis Patients. Cells 2023; 12:2084. [PMID: 37626894 PMCID: PMC10453747 DOI: 10.3390/cells12162084] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by an aberrant repair response with uncontrolled turnover of extracellular matrix involving mesenchymal cell phenotypes, where lung resident mesenchymal stem cells (LRMSC) have been supposed to have an important role. However, the contribution of LRMSC in lung fibrosis is not fully understood, and the role of LRMSC in IPF remains to be elucidated. Here, we performed transcriptomic and functional analyses on LRMSC isolated from IPF and control patients (CON). Both over-representation and gene set enrichment analyses indicated that oxidative phosphorylation is the major dysregulated pathway in IPF LRMSC. The most relevant differences in biological processes included complement activation, mesenchyme development, and aerobic electron transport chain. Compared to CON LRMSC, IPF cells displayed impaired mitochondrial respiration, lower expression of genes involved in mitochondrial dynamics, and dysmorphic mitochondria. These changes were linked to an impaired autophagic response and a lower mRNA expression of pro-apoptotic genes. In addition, IPF TGFβ-exposed LRMSC presented different expression profiles of mitochondrial-related genes compared to CON TGFβ-treated cells, suggesting that TGFβ reinforces mitochondrial dysfunction. In conclusion, these results suggest that mitochondrial dysfunction is a major event in LRMSC and that their occurrence might limit LRMSC function, thereby contributing to IPF development.
Collapse
Affiliation(s)
- Josep Mercader-Barceló
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | - Aina Martín-Medina
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Joan Truyols-Vives
- MolONE Research Group, University of the Balearic Islands, 07122 Palma, Spain
| | | | - Linda Elowsson
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Ana Montes-Worboys
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Carlos Río-Bocos
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | | | - Julio Velasco-Roca
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Anna Cederberg
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, 08908 Lund, Sweden
| | - Maria Molina-Molina
- ILD Unit, Respiratory Department, University Hospital of Bellvitge-Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| | | | - Ernest Sala-Llinàs
- iRESPIRE Research Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centre of Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
- Respiratory Department, Son Espases University Hospital, 07120 Palma, Spain
| |
Collapse
|
12
|
Verma AK, Singh S, Rizvi SI. Therapeutic potential of melatonin and its derivatives in aging and neurodegenerative diseases. Biogerontology 2023; 24:183-206. [PMID: 36550377 DOI: 10.1007/s10522-022-10006-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Aging is associated with increasing impairments in brain homeostasis and represents the main risk factor across most neurodegenerative disorders. Melatonin, a neuroendocrine hormone that regulates mammalian chronobiology and endocrine functions is well known for its antioxidant potential, exhibiting both cytoprotective and chronobiotic abilities. Age-related decline of melatonin disrupting mitochondrial homeostasis and cytosolic DNA-mediated inflammatory reactions in neurons is a major contributory factor in the emergence of neurological abnormalities. There is scattered literature on the possible use of melatonin against neurodegenerative mechanisms in the aging process and its associated diseases. We have searched PUBMED with many combinations of key words for available literature spanning two decades. Based on the vast number of experimental papers, we hereby review recent advancements concerning the potential impact of melatonin on cellular redox balance and mitochondrial dynamics in the context of neurodegeneration. Next, we discuss a broader explanation of the involvement of disrupted redox homeostasis in the pathophysiology of age-related diseases and its connection to circadian mechanisms. Our effort may result in the discovery of novel therapeutic approaches. Finally, we summarize the current knowledge on molecular and circadian regulatory mechanisms of melatonin to overcome neurodegenerative diseases (NDDs) such as Alzheimer's, Parkinson's, Huntington's disease, and amyotrophic lateral sclerosis, however, these findings need to be confirmed by larger, well-designed clinical trials. This review is also expected to uncover the associated molecular alterations in the aging brain and explain how melatonin-mediated circadian restoration of neuronal homeodynamics may increase healthy lifespan in age-related NDDs.
Collapse
Affiliation(s)
- Avnish Kumar Verma
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India
| | - Sandeep Singh
- Biological Psychiatry Laboratory, Hadassah Medical Center - Hebrew University, Jerusalem, Israel
| | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, 211002, India.
| |
Collapse
|
13
|
Hoenig MC, Drzezga A. Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J Neurochem 2023; 164:325-345. [PMID: 35226362 DOI: 10.1111/jnc.15598] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
Abstract
With the advances in modern medicine and the adaptation towards healthier lifestyles, the average life expectancy has doubled since the 1930s, with individuals born in the millennium years now carrying an estimated life expectancy of around 100 years. And even though many individuals around the globe manage to age successfully, the prevalence of aging-associated neurodegenerative diseases such as sporadic Alzheimer's disease has never been as high as nowadays. The prevalence of Alzheimer's disease is anticipated to triple by 2050, increasing the societal and economic burden tremendously. Despite all efforts, there is still no available treatment defeating the accelerated aging process as seen in this disease. Yet, given the advances in neuroimaging techniques that are discussed in the current Review article, such as in positron emission tomography (PET) or magnetic resonance imaging (MRI), pivotal insights into the heterogenous effects of aging-associated processes and the contribution of distinct lifestyle and risk factors already have and are still being gathered. In particular, the concepts of resilience (i.e. coping with brain pathology) and resistance (i.e. avoiding brain pathology) have more recently been discussed as they relate to mechanisms that are associated with the prolongation and/or even stop of the progressive brain aging process. Better understanding of the underlying mechanisms of resilience and resistance may one day, hopefully, support the identification of defeating mechanism against accelerating aging.
Collapse
Affiliation(s)
- Merle C Hoenig
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany
| | - Alexander Drzezga
- Research Center Juelich, Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Juelich, Germany.,Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases, Bonn/Cologne, Germany
| |
Collapse
|
14
|
Age-Related Changes in Skeletal Muscle Oxygen Utilization. J Funct Morphol Kinesiol 2022; 7:jfmk7040087. [PMID: 36278748 PMCID: PMC9590092 DOI: 10.3390/jfmk7040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular and skeletal muscle systems are intrinsically interconnected, sharing the goal of delivering oxygen to metabolically active tissue. Deficiencies within those systems that affect oxygen delivery to working tissues are a hallmark of advancing age. Oxygen delivery and utilization are reflected as muscle oxygen saturation (SmO2) and are assessed using near-infrared resonance spectroscopy (NIRS). SmO2 has been observed to be reduced by ~38% at rest, ~24% during submaximal exercise, and ~59% during maximal exercise with aging (>65 y). Furthermore, aging prolongs restoration of SmO2 back to baseline by >50% after intense exercise. Regulatory factors that contribute to reduced SmO2 with age include blood flow, capillarization, endothelial cells, nitric oxide, and mitochondrial function. These mechanisms are governed by reactive oxygen species (ROS) at the cellular level. However, mishandling of ROS with age ultimately leads to alterations in structure and function of the regulatory factors tasked with maintaining SmO2. The purpose of this review is to provide an update on the current state of the literature regarding age-related effects in SmO2. Furthermore, we attempt to bridge the gap between SmO2 and associated underlying mechanisms affected by aging.
Collapse
|
15
|
Jiang XS, Cai MY, Li XJ, Zhong Q, Li ML, Xia YF, Shen Q, Du XG, Gan H. Activation of the Nrf2/ARE signaling pathway protects against palmitic acid-induced renal tubular epithelial cell injury by ameliorating mitochondrial reactive oxygen species-mediated mitochondrial dysfunction. Front Med (Lausanne) 2022; 9:939149. [PMID: 36177332 PMCID: PMC9513042 DOI: 10.3389/fmed.2022.939149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic kidney disease (CKD) is often accompanied by dyslipidemia, and abnormal lipid metabolism in proximal tubule cells is considered closely related to the dysfunction of proximal tubule cells and eventually leads to accelerated kidney damage. Nuclear factor E2-related factor 2 (Nrf2), known as a redox-sensitive transcription factor, is responsible for regulating cellular redox homeostasis. However, the exact role of Nrf2 in dyslipidemia-induced dysfunction of proximal tubule cells is still not fully elucidated. In the present study, we showed that palmitic acid (PA) induced mitochondrial damage, excessive mitochondrial reactive oxygen species (ROS) (mtROS) generation, and cell injury in HK-2 cells. We further found that mtROS generation was involved in PA-induced mitochondrial dysfunction, cytoskeletal damage, and cell apoptosis in HK-2 cells. In addition, we demonstrated that the Nrf2/ARE signaling pathway was activated in PA-induced HK-2 cells and that silencing Nrf2 dramatically aggravated PA-induced mtROS production, mitochondrial damage, cytoskeletal damage and cell apoptosis in HK-2 cells. However, the mitochondrial antioxidant MitoTEMPOL effectively eliminated these negative effects of Nrf2 silencing in HK-2 cells under PA stimulation. Moreover, activation of the Nrf2/ARE signaling pathway with tBHQ attenuated renal injury, significantly reduced mtROS generation, and improved mitochondrial function in rats with HFD-induced obesity. Taken together, these results suggest that the Nrf2/ARE-mediated antioxidant response plays a protective role in hyperlipidemia-induced renal injury by ameliorating mtROS-mediated mitochondrial dysfunction and that enhancing Nrf2 antioxidant signaling provides a potential therapeutic strategy for kidney injury in CKD with hyperlipidemia.
Collapse
Affiliation(s)
- Xu-shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meng-yao Cai
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xun-jia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Zhong
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Man-li Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-feng Xia
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Shen
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Xiao-gang Du,
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Gan,
| |
Collapse
|
16
|
Involvement of Mitophagy in Primary Cultured Rat Neurons Treated with Nanoalumina. Neurotox Res 2022; 40:1191-1207. [PMID: 35943706 DOI: 10.1007/s12640-022-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 10/15/2022]
Abstract
The aim of this study was to explore the influence of the neurotoxicity of nanoalumina on primarily cultured neurons. Normal control, particle size control, aluminum, micron-alumina, and nanoalumina at 50-nm and 13-nm particle sizes were included as subjects to evaluate the level of apoptosis, necrosis, and autophagy in primarily cultured neurons and further explore the mitophagy induced by nanoalumina. The results demonstrated that nanoalumina could induce neuronal cell apoptosis, necrosis, and autophagy, among which autophagy was the most notable. When the autophagy inhibitor was added to the nanoalumina-treated group, it significantly downregulated the protein expression levels of Beclin-1 and LC3II/LC3. Observation under a transmission electron microscope and a fluorescence microscope revealed mitophagy characteristics induced by nanoalumina. Additionally, the neurotoxicological effects induced by nanoalumina were more significant than those induced by aluminum and in a particle size-dependent manner.
Collapse
|
17
|
Tang L, Yu J, Zhuge S, Chen H, Zhang L, Jiang G. Oxidative stress and Cx43-mediated apoptosis are involved in PFOS-induced nephrotoxicity. Toxicology 2022; 478:153283. [DOI: 10.1016/j.tox.2022.153283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023]
|
18
|
Feng Y, Lu H, Hu J, Zheng B, Zhang Y. Anti-Aging Effects of R-Phycocyanin from Porphyra haitanensis on HUVEC Cells and Drosophila melanogaster. Mar Drugs 2022; 20:md20080468. [PMID: 35892936 PMCID: PMC9329955 DOI: 10.3390/md20080468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Aging has become a global public health challenge. Many studies have revealed that the excessive generation of ROS and oxidative stress could be the major causative factors contributing to aging. In this study, R-phycocyanin (R-PC) was isolated from Porphyra haitanensis, and its anti-aging ability was explored by natural aging Drosophila melanogaster and H2O2-induced HUVEC cells as the aging model. Results showed that R-PC α and β subunits expressed have antioxidant activity and can inhibit the generation of radicals, exhibiting a protective effect against H2O2-induced apoptotic HUVEC cells death. R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell cycle-related protein. Furthermore, R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell-cycle-related protein expression. In vivo study also indicated that R-PC significantly increased the survival time and alleviated the oxidative stress of Drosophila melanogaster. Moreover, R-PC notably decreased levels of ROS in natural aging flies and inhibited lipid peroxidation by enhancing the expressions of the endogenous stress marker genes (SOD1, SOD2, CAT of Drosophila melanogaster). Taken together, a study on the antioxidation extract from Porphyra haitanensis, such as R-PC, may open a new window for the prevention of anti-aging.
Collapse
Affiliation(s)
- Yanyu Feng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Hanjin Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| |
Collapse
|
19
|
Gao Y, Ma Y, Xie D, Jiang H. ManNAc protects against podocyte pyroptosis via inhibiting mitochondrial damage and ROS/NLRP3 signaling pathway in diabetic kidney injury model. Int Immunopharmacol 2022; 107:108711. [PMID: 35338958 DOI: 10.1016/j.intimp.2022.108711] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022]
Abstract
Podocyte pyroptosis is an inflammatory form of cell death associated with Diabetic nephropathy (DN). It is reported that hyposialylated Angiopoietin-like-4 (Angptl4) secreted by glomerular podocytes plays an important role in the formation of proteinuria. Previous study indicated that supplementation of sialic acid precursor N-acetylmannosamine (ManNAc) could inhibit podocyte apoptosis and actin cytoskeleton rearrangement. Nevertheless, whether ManNAc could improve diabetic kidney damage by inhibiting podocyte pyroptosis remains unclear. This study aimed to explore the effect of ManNAc therapy on alleviating diabetic renal injury and podocyte pyroptosis, and its possible mechanism was also figured out. The male 8-week-old C57BL/6 mice were divided into three groups: control group, Streptozocin (STZ)-induced DN group, and ManNAc treated diabetic group. Then, the changes in renal function, renal histopathology, podocyte pyroptosis, reactive oxygen species (ROS), and mitochondrial dysfunction were measured. Herein, we observed that the upregulated expression of Angptl4 was involved in podocyte injury. ManNAc treatment ameliorated podocyte ultrastructure, renal function, and renal histopathology in STZ-induced DN mice. In addition, ManNAc administration attenuated podocyte cell death and suppressed the activation of Nucleotide leukin-rich polypeptide 3 (NLRP3), caspase-1, and interleukin-1β (IL-1β), and the cleavage of gasdermin-D (GSDMD). Moreover, ManNAc inhibited ROS production and restored mitochondrial morphology in vivo and vitro. Further, ManNAc administration significantly alleviated podocyte pyroptosis through inhibiting ROS/NLRP3 signaling pathway. Therefore, these results elucidated that the upregulated expression of Angptl4 was involved in podocyte injury and ManNAc treatment protected against podocyte pyroptosis via inhibiting mitochondrial injury and ROS/NLRP3 signaling pathway in DN mice.
Collapse
Affiliation(s)
- Yanmin Gao
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of General Practice, Kongjiang Community Health Service Center, Yangpu District, Shanghai 200093, China
| | - Yanli Ma
- Department of Pediatrics, Fourth People's Hospital Affiliated to Tongji University, Shanghai 200434, China
| | - Di Xie
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hua Jiang
- Department of General Practice, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
20
|
Brueggeman JM, Zhao J, Schank M, Yao ZQ, Moorman JP. Trained Immunity: An Overview and the Impact on COVID-19. Front Immunol 2022; 13:837524. [PMID: 35251030 PMCID: PMC8891531 DOI: 10.3389/fimmu.2022.837524] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 01/13/2023] Open
Abstract
Effectively treating infectious diseases often requires a multi-step approach to target different components involved in disease pathogenesis. Similarly, the COVID-19 pandemic has become a global health crisis that requires a comprehensive understanding of Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infection to develop effective therapeutics. One potential strategy to instill greater immune protection against COVID-19 is boosting the innate immune system. This boosting, termed trained immunity, employs immune system modulators to train innate immune cells to produce an enhanced, non-specific immune response upon reactivation following exposure to pathogens, a process that has been studied in the context of in vitro and in vivo clinical studies prior to the COVID-19 pandemic. Evaluation of the underlying pathways that are essential to inducing protective trained immunity will provide insight into identifying potential therapeutic targets that may alleviate the COVID-19 crisis. Here we review multiple immune training agents, including Bacillus Calmette-Guérin (BCG), β-glucan, and lipopolysaccharide (LPS), and the two most popular cell types involved in trained immunity, monocytes and natural killer (NK) cells, and compare the signaling pathways involved in innate immunity. Additionally, we discuss COVID-19 trained immunity clinical trials, emphasizing the potential of trained immunity to fight SARS-CoV-2 infection. Understanding the mechanisms by which training agents activate innate immune cells to reprogram immune responses may prove beneficial in developing preventive and therapeutic targets against COVID-19.
Collapse
Affiliation(s)
- Justin M. Brueggeman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Madison Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States
| | - Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University (ETSU), Johnson City, TN, United States,Hepatitis (HCV/HBV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States,*Correspondence: Jonathan P. Moorman,
| |
Collapse
|
21
|
Ashrafuzzaman M. Mitochondrial ion channels in aging and related diseases. Curr Aging Sci 2022; 15:97-109. [PMID: 35043775 DOI: 10.2174/1874609815666220119094324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/06/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Transport of materials and information across cellular boundaries, such as plasma, mitochondrial and nuclear membranes, happens mainly through varieties of ion channels and pumps. Various biophysical and biochemical processes play vital roles. The underlying mechanisms and associated phenomenological lipid membrane transports are linked directly or indirectly to the cell health condition. Mitochondrial membranes (mitochondrial outer membrane (MOM) and mitochondrial inner membrane (MIM)) host crucial cellular processes. Their malfunction is often found responsible for the rise of cell-originated diseases, including cancer, Alzheimer's, neurodegenerative disease, etc. A large number of ion channels active across MOM and MIM are known to belong to vital cell-based structures found to be linked directly to cellular signaling. Hence their malfunctions are often found to contribute to abnormalities in intracellular communication, which may even be associated with the rise of various diseases. In this article, the aim is to pinpoint ion channels that are directly or indirectly linked to especially aging and related abnormalities in health conditions. An attempt has been made to address the natural structures of these channels, their mutated conditions, and the ways we may cause interventions in their malfunctioning. The malfunction of ion channel subunits, including especially various proteins, involved directly in channel formation and/or indirectly in channel stabilization, leads to the rise of various channel-specific diseases, which are known as channelopathies. Channelopathies in aging will be discussed briefly. This mini-review may be found as an important reference for drug discovery scientists dealing with aging-related diseases.
Collapse
Affiliation(s)
- Md Ashrafuzzaman
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
22
|
Shahid A, Khurshid M, Aslam B, Muzammil S, Mehwish HM, Rajoka MSR, Hayat HF, Sarfraz MH, Razzaq MK, Nisar MA, Waseem M. Cyanobacteria derived compounds: Emerging drugs for cancer management. J Basic Microbiol 2021; 62:1125-1142. [PMID: 34747529 DOI: 10.1002/jobm.202100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
The wide diversity of cyanobacterial species and their role in a variety of biological activities have been reported in the previous few years. Cyanobacteria, especially from marine sources, constitutes a major source of biologically active metabolites that have gained great attention especially due to their anticancer potential. Numerous chemically diverse metabolites from various cyanobacterial species have been recognized to inhibit the growth and progression of tumor cells through the induction of apoptosis in many different types of cancers. These metabolites activate the apoptosis in the cancer cells by different molecular mechanisms, however, the dysregulation of the mitochondrial pathway, death receptors signaling pathways, and the activation of several caspases are the crucial mechanisms that got considerable interest. The array of metabolites and the range of mechanisms involved may also help to overcome the resistance acquired by the different tumor types against the ongoing therapeutic agents. Therefore, the primary or secondary metabolites from the cyanobacteria as well as their synthetic derivates could be used to develop novel anticancer drugs alone or in combination with other chemotherapeutic agents. In this study, we have discussed the role of cyanobacterial metabolites in the induction of cytotoxicity and the potential to inhibit the growth of cancer cells through the induction of apoptosis, cell signaling alteration, oxidative damage, and mitochondrial dysfunctions. Moreover, the various metabolites produced by cyanobacteria have been summarized with their anticancer mechanisms. Furthermore, the ongoing trials and future developments for the therapeutic implications of these compounds in cancer therapy have been discussed.
Collapse
Affiliation(s)
- Aqsa Shahid
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Shahid Riaz Rajoka
- School of Basic Medicine, Health Science Center, Shenzhen University, Shenzhen, China.,Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hafiz Fakhar Hayat
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Khuram Razzaq
- Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University, Faisalabad, Pakistan.,College of Science and Engineering, Flinders University, Bedford Park, Australia
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
23
|
Lushchak VI, Duszenko M, Gospodaryov DV, Garaschuk O. Oxidative Stress and Energy Metabolism in the Brain: Midlife as a Turning Point. Antioxidants (Basel) 2021; 10:1715. [PMID: 34829586 PMCID: PMC8614699 DOI: 10.3390/antiox10111715] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
Neural tissue is one of the main oxygen consumers in the mammalian body, and a plentitude of metabolic as well as signaling processes within the brain is accompanied by the generation of reactive oxygen (ROS) and nitrogen (RNS) species. Besides the important signaling roles, both ROS and RNS can damage/modify the self-derived cellular components thus promoting neuroinflammation and oxidative stress. While previously, the latter processes were thought to progress linearly with age, newer data point to midlife as a critical turning point. Here, we describe (i) the main pathways leading to ROS/RNS generation within the brain, (ii) the main defense systems for their neutralization and (iii) summarize the recent literature about considerable changes in the energy/ROS homeostasis as well as activation state of the brain's immune system at midlife. Finally, we discuss the role of calorie restriction as a readily available and cost-efficient antiaging and antioxidant lifestyle intervention.
Collapse
Affiliation(s)
- Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46002 Ternopil, Ukraine
- Research and Development University, 13a Shota Rustaveli Str., 76018 Ivano-Frankivsk, Ukraine
| | - Michael Duszenko
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| | - Dmytro V. Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivsk, Ukraine; (V.I.L.); (D.V.G.)
| | - Olga Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany;
| |
Collapse
|
24
|
Talarska P, Boruczkowski M, Żurawski J. Current Knowledge of Silver and Gold Nanoparticles in Laboratory Research-Application, Toxicity, Cellular Uptake. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2454. [PMID: 34578770 PMCID: PMC8466515 DOI: 10.3390/nano11092454] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/14/2022]
Abstract
Silver and gold nanoparticles can be found in a range of household products related to almost every area of life, including patches, bandages, paints, sportswear, personal care products, food storage equipment, cosmetics, disinfectants, etc. Their confirmed ability to enter the organism through respiratory and digestive systems, skin, and crossing the blood-brain barrier raises questions of their potential effect on cell function. Therefore, this manuscript aimed to summarize recent reports concerning the influence of variables such as size, shape, concentration, type of coating, or incubation time, on effects of gold and silver nanoparticles on cultured cell lines. Due to the increasingly common use of AgNP and AuNP in multiple branches of the industry, further studies on the effects of nanoparticles on different types of cells and the general natural environment are needed to enable their long-term use. However, some environmentally friendly solutions to chemically synthesized nanoparticles are also investigated, such as plant-based synthesis methods.
Collapse
Affiliation(s)
- Patrycja Talarska
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| | | | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznań, Poland;
| |
Collapse
|
25
|
Zhao S, Feng J, Li J, Cao R, Zhang Y, Yang S, Yin L. The RNA binding protein hnRNPK protects against adriamycin-induced podocyte injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1303. [PMID: 34532440 PMCID: PMC8422093 DOI: 10.21037/atm-21-3577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Podocytes maintain the integrity of the glomerular filtration barrier and serve as the final barrier to protein loss. Podocyte injury may induce severe apoptosis, which can result in serious kidney damage and disease. Therefore, it is necessary to explore how podocyte injury can be prevented and to thereby discover a feasible therapy for kidney disease. However, the mechanism of podocyte injury is still unclear. METHODS The mRNA and protein expression levels of synaptopodin and nephrin in MPC5 podocytes with adriamycin (ADR)-induced injury were detected by quantitative real-time PCR and western blot. The expression levels of heterogeneous nucleotide protein K (hnRNPK), caspase-3, Bax, and Bcl-2 protein in cells and tissues were measured using western blot. Proliferation were measured in treated MPC5 podocytes by Cell Counting Kit-8 (CCK-8) assay, EdU assay, and apoptosis was measured by Hoechst 32258 staining. Mitochondrial membrane potential disruption, lactate dehydrogenase (LDH) leakage, and reactive oxygen species (ROS) generation were measured using JC-1 staining, an LDH reagent kit, and a ROS detection kit. Hematoxylin and eosin (HE) staining was used to observe histological changes in mouse tissues. RESULTS Synaptopodin and nephrin were downregulated in ADR-treated podocytes. Overexpression of hnRNPK ameliorated the inhibitive effect of ADR treatment on podocyte proliferation and reduced its promotion of podocyte apoptosis. LDH leakage and ROS generation were increased in ADR-treated podocytes, but were reduced by hnRNPK treatment. CONCLUSIONS ADR-induced podocyte injury is ameliorated by hnRNPK both in vivo and in vitro. This observation provides a basis for a feasible therapy to prevent podocyte injury and subsequent kidney disease.
Collapse
Affiliation(s)
- Shili Zhao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, Affiliated Huadu Hospital, (People’s Hospital of Huadu District) The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junxia Feng
- Department of Nephrology, Affiliated Huadu Hospital, (People’s Hospital of Huadu District) The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jingchun Li
- Department of Nephrology, Affiliated Huadu Hospital, (People’s Hospital of Huadu District) The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Rui Cao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Affiliated Huadu Hospital, (People’s Hospital of Huadu District) The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shen Yang
- Department of Nephrology, Affiliated Huadu Hospital, (People’s Hospital of Huadu District) The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Pink1/PARK2/mROS-Dependent Mitophagy Initiates the Sensitization of Cancer Cells to Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5595652. [PMID: 34306311 PMCID: PMC8279859 DOI: 10.1155/2021/5595652] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/26/2021] [Accepted: 06/20/2021] [Indexed: 01/10/2023]
Abstract
Autophagy plays a double-edged sword for cancer; particularly, mitophagy plays important roles in the selective degradation of damaged mitochondria. However, whether mitophagy is involved in killing effects of tumor cells by ionizing radiation (IR) and its underlying mechanism remain elusive. The purpose is to evaluate the effects of mitochondrial ROS (mROS) on autophagy after IR; furthermore, we hypothesized that KillerRed (KR) targeting mitochondria could induce mROS generation, subsequent mitochondrial depolarization, accumulation of Pink1, and recruitment of PARK2 to promote the mitophagy. Thereby, we would achieve a new strategy to enhance mROS accumulation and clarify the roles and mechanisms of radiosensitization by KR and IR. Our data demonstrated that IR might cause autophagy of both MCF-7 and HeLa cells, which is related to mitochondria and mROS, and the ROS scavenger N-acetylcysteine (NAC) could reduce the effects. Based on the theory, mitochondrial targeting vector sterile α- and HEAT/armadillo motif-containing protein 1- (Sarm1-) mtKR has been successfully constructed, and we found that ROS levels have significantly increased after light exposure. Furthermore, mitochondrial depolarization of HeLa cells was triggered, such as the decrease of Na+K+ ATPase, Ca2+Mg2+ ATPase, and mitochondrial respiratory complex I and III activities, and mitochondrial membrane potential (MMP) has significantly decreased, and voltage-dependent anion channel 1 (VDAC1) protein has significantly increased in the mitochondria. Additionally, HeLa cell proliferation was obviously inhibited, and the cell autophagic rates dramatically increased, which referred to the regulation of the Pink1/PARK2 pathway. These results indicated that mitophagy induced by mROS can initiate the sensitization of cancer cells to IR and might be regulated by the Pink1/PARK2 pathway.
Collapse
|
27
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
28
|
Youssef MM, El-Mansy MN, El-Borady OM, Hegazy EM. Impact of biosynthesized silver nanoparticles cytotoxicity on dental pulp of albino rats (histological and immunohistochemical study). J Oral Biol Craniofac Res 2021; 11:386-392. [PMID: 33996434 DOI: 10.1016/j.jobcr.2021.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
This study aimed to evaluate the potential cytotoxic effect of oral administration of silver nanoparticles (Ag-NPs) on adult albino rats' pulp tissue; due to the enormous uses of Ag-NPs in the medical and dental field. The Ag-NPs were synthesized via the green process using peels of pomegranate extract. The pomegranate-mediated Ag-NPs were subjected to morphological and spectral analysis through ultraviolet visible absorption spectra, transmission electron microscopy, Fourier transforms infrared, Zeta-potential measurements, and energy dispersive X-ray spectroscopy. The structural and morphological characterization techniques confirmed the proper synthesis of biosynthesized Ag-NPs with a size around 20 nm and the surface plasmon resonance peak within 400-450 nm. The oral cytotoxic effect of Ag-NPs was assessed through detecting the histological (hematoxylin & eosin, Masson's trichrome) and immunohistochemical (vascular endothelial growth factor (VEGF), Caspase-3 proteins) variations. The data was analyzed statistically through using the SPSS software. Dental pulp tissues of albino rats-treated with Ag-NPs revealed that most of the odontoblasts with marked hydropic degeneration, vacuolization of their cytoplasm, loss of organization and apoptosis. Marked vasodilatation and cognition of blood vessels were detected. There was weak to moderate positive reactivity to Masson's trichrome stain. There was statistically significant decrease in the expression of VEGF in the treated group and highly statistically significant increase in the expression of Caspase-3 in comparison with the control group. Conclusion Oral administration of Ag-NPs induced size and dose-dependent structural changes in the pulp tissue of adult male albino rats.
Collapse
Affiliation(s)
- Mervat M Youssef
- Faculty of Dentistry, Suez Canal University, Kilo 4.5 Ring Road., Ismailia, Egypt
| | - Merhan N El-Mansy
- Faculty of Dentistry, Suez Canal University, Kilo 4.5 Ring Road., Ismailia, Egypt
| | - Ola M El-Borady
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt
| | - Enas M Hegazy
- Faculty of Dentistry, Suez Canal University, Kilo 4.5 Ring Road., Ismailia, Egypt
| |
Collapse
|
29
|
Kalugina KK, Sukhareva KS, Churkinа AI, Kostareva AA. Autophagy as a Pathogenetic Link and
a Target for Therapy of Musculoskeletal System Diseases. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Song J, Li Q, Ke L, Liang J, Jiao W, Pan H, Li Y, Du Q, Song Y, Ji A, Chen Z, Li J, Li L. Qiangji Jianli Decoction Alleviates Hydrogen Peroxide-Induced Mitochondrial Dysfunction via Regulating Mitochondrial Dynamics and Biogenesis in L6 Myoblasts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6660616. [PMID: 33936383 PMCID: PMC8060107 DOI: 10.1155/2021/6660616] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
Oxidative stress can cause the excessive generation of reactive oxygen species (ROS) and has various adverse effects on muscular mitochondria. Qiangji Jianli decoction (QJJLD) is an effective traditional Chinese medicine (TCM) that is widely applied to improve muscle weakness, and it has active constituents that prevent mitochondrial dysfunction. To investigate the protective mechanism of QJJLD against hydrogen peroxide- (H2O2-) mediated mitochondrial dysfunction in L6 myoblasts. Cell viability was determined with MTT assay. Mitochondrial ultrastructure was detected by transmission electron microscope (TEM). ROS and mitochondrial membrane potential (MMP) were analyzed by fluorescence microscope and flow cytometry. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, and malondialdehyde (MDA) level were determined by WST-1, TBA, and DTNB methods, respectively. The mRNA and protein levels were measured by quantitative real-time PCR (qRT-PCR) and Western blot. The cell viability was decreased, and the cellular ROS level was increased when L6 myoblasts were exposed to H2O2. After treatment with QJJLD-containing serum, the SOD and GSH-Px activities were increased. MDA level was decreased concurrently. ROS level was decreased while respiratory chain complex activity and ATP content were increased in L6 myoblasts. MMP loss was attenuated. Mitochondrial ultrastructure was also improved. Simultaneously, the protein expressions of p-AMPK, PGC-1α, NRF1, and TFAM were upregulated. The mRNA and protein expressions of Mfn1/2 and Opa1 were also upregulated while Drp1 and Fis1 were downregulated. These results suggest that QJJLD may alleviate mitochondrial dysfunction through the regulation of mitochondrial dynamics and biogenesis, the inhibition of ROS generation, and the promotion of mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Jingwei Song
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qing Li
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lingling Ke
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jian Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 Guangdong, China
| | - Wei Jiao
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Pan
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanwu Li
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qun Du
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yafang Song
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Aidong Ji
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhiwei Chen
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jinqiu Li
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lanqi Li
- Institute of Pi-Wei, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
31
|
Cheshchevik VT, Krylova NG, Сheshchevik NG, Lapshina EA, Semenkova GN, Zavodnik IB. Role of mitochondrial calcium in hypochlorite induced oxidative damage of cells. Biochimie 2021; 184:104-115. [PMID: 33607241 DOI: 10.1016/j.biochi.2021.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/09/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022]
Abstract
Hypochlorite (HOCl) is one of the most important mediators of inflammatory processes. Recent evidence demonstrates that changes in intracellular calcium pool play a significant role in the damaging effects of hypochlorite and other oxidants. Mitochondria are shown to be one of the intracellular targets of hypochlorite. But little is known about the mitochondrial calcium pool changes in HOCl-induced mitochondrial dysfunction. Using isolated rat liver mitochondria, we showed the oxidative damage of mitochondria (GSH oxidation and mixed protein-glutathione formation without membrane lipid peroxidation) and alterations in the mitochondrial functional parameters (decrease of respiratory activity and efficiency of oxidative phosphorylation, NADH and FADH coenzyme levels, and membrane potential) under hypochlorite action (50-300 μM). Simultaneously, the mitochondrial calcium release and swelling were demonstrated. In the presence of EGTA, the damaging effects of HOCl were less pronounced, reflecting direct involvement of mitochondrial Ca2+ in mechanisms of oxidant-induced injury. Furthermore, exposure of HeLa cells to hypochlorite resulted in a considerable increase in cytoplasmic calcium concentrations and a decrease in mitochondrial ones. Applying specific inhibitors of calcium transfer systems, we demonstrated that mitochondria play a key role in the redistribution of cytoplasmic Ca2+ ions under hypochlorite action and act as mediators of calcium release from the endoplasmic reticulum into the cytoplasm.
Collapse
Affiliation(s)
- Vitali T Cheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus.
| | - Nina G Krylova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Nina G Сheshchevik
- Department of Biotechnology, Polessky State University, ulitsa Dnieprovskoy Flotilii, 23, 225710, Pinsk, Belarus
| | - Elena A Lapshina
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| | - Galina N Semenkova
- Department of Biophysics, Belarusian State University, Prospekt Nezavisimosti 4, 220030, Minsk, Belarus
| | - Ilya B Zavodnik
- Department of Biochemistry, Yanka Kupala State University of Grodno, Bulvar Leninskogo Komsomola 50, 230030, Grodno, Belarus
| |
Collapse
|
32
|
Fujii S, Hara H, Araya J, Takasaka N, Kojima J, Ito S, Minagawa S, Yumino Y, Ishikawa T, Numata T, Kawaishi M, Hirano J, Odaka M, Morikawa T, Nishimura S, Nakayama K, Kuwano K. Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology 2021; 1:630-641. [PMID: 22934255 PMCID: PMC3429567 DOI: 10.4161/onci.20297] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tobacco smoke-induced accelerated cell senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cell senescence is accompanied by the accumulation of damaged cellular components suggesting that in COPD, inhibition of autophagy may contribute to cell senescence. Here we look at whether autophagy contributes to cigarette smoke extract (CSE) - induced cell senescence of primary human bronchial epithelial cells (HBEC), and further evaluate p62 and ubiquitinated protein levels in lung homogenates from COPD patients. We demonstrate that CSE transiently induces activation of autophagy in HBEC, followed by accelerated cell senescence and concomitant accumulation of p62 and ubiquitinated proteins. Autophagy inhibition further enhanced accumulations of p62 and ubiquitinated proteins, resulting in increased senescence and senescence-associated secretory phenotype (SASP) with interleukin (IL)-8 secretion. Conversely, autophagy activation by Torin1, a mammalian target of rapamycin (mTOR inhibitor), suppressed accumulations of p62 and ubiquitinated proteins and inhibits cell senescence. Despite increased baseline activity, autophagy induction in response to CSE was significantly decreased in HBEC from COPD patients. Increased accumulations of p62 and ubiquitinated proteins were detected in lung homogenates from COPD patients. Insufficient autophagic clearance of damaged proteins, including ubiquitinated proteins, is involved in accelerated cell senescence in COPD, suggesting a novel protective role for autophagy in the tobacco smoke-induced senescence-associated lung disease, COPD.
Collapse
Affiliation(s)
- Satoko Fujii
- Division of Respiratory Diseases; Department of Internal Medicine; Jikei University School of Medicine; Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zhang C, Tao L, Yue Y, Ren L, Zhang Z, Wang X, Tian J, An L. Mitochondrial transfer from induced pluripotent stem cells rescues developmental potential of in vitro fertilized embryos from aging females†. Biol Reprod 2021; 104:1114-1125. [PMID: 33511405 DOI: 10.1093/biolre/ioab009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/09/2020] [Accepted: 01/21/2021] [Indexed: 11/14/2022] Open
Abstract
Conventional heterologous mitochondrial replacement therapy is clinically complicated by "tri-parental" ethical concerns and limited source of healthy donor oocytes or zygotes. Autologous mitochondrial transfer is a promising alternative in rescuing poor oocyte quality and impaired embryo developmental potential associated with mitochondrial disorders, including aging. However, the efficacy and safety of mitochondrial transfer from somatic cells remains largely controversial, and unsatisfying outcomes may be due to distinct mitochondrial state in somatic cells from that in oocytes. Here, we propose a potential strategy for improving in vitro fertilization (IVF) outcomes of aging female patients via mitochondrial transfer from induced pluripotent stem (iPS) cells. Using naturally aging mice and well-established cell lines as models, we found iPS cells and oocytes share similar mitochondrial morphology and functions, whereas the mitochondrial state in differentiated somatic cells is substantially different. By microinjection of isolated mitochondria into fertilized oocytes following IVF, our results indicate that mitochondrial transfer from iPS, but not MEF cells, can rescue the impaired developmental potential of embryos from aging female mice and obtain an enhanced implantation rate following embryo transfer. The beneficial effect may be explained by the fact that mitochondrial transfer from iPS cells not only compensates for aging-associated loss of mtDNA, but also rescues mitochondrial metabolism of subsequent preimplantation embryos. Using mitochondria from iPS cells as the donor, our study not only proposes a promising strategy for improving IVF outcomes of aging females, but also highlights the importance of synchronous mitochondrial state in supporting embryo developmental potential.
Collapse
Affiliation(s)
- Chao Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Li Tao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuan Yue
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Likun Ren
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Zhenni Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodong Wang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jianhui Tian
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Lei An
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs; College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
34
|
Gary AS, Dorr MM, Rochette PJ. The T414G mitochondrial DNA mutation: a biomarker of ageing in human eye. Mutagenesis 2021; 36:187-192. [PMID: 33453104 DOI: 10.1093/mutage/geab003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 11/14/2022] Open
Abstract
The mitochondrial mutation T414G (mtDNAT414G) has been shown to accumulate in aged and sun-exposed skin. The human eye is also exposed to solar harmful rays. More precisely, the anterior structures of the eye (cornea, iris) filter UV rays and the posterior portion of the eye (retina) is exposed to visible light. These rays can catalyse mutations in mitochondrial DNA such as the mtDNAT414G, but the latter has never been investigated in the human ocular structures. In this study, we have developed a technique to precisely assess the occurrence of mtDNAT414G. Using this technique, we have quantified mtDNAT414G in different human ocular structures. We found an age-dependent accumulation of mtDNAT414G in the corneal stroma, the cellular layer conferring transparency and rigidity to the human cornea, and in the iris. Since cornea and iris are two anterior ocular structures exposed to solar UV rays, this suggests that the mtDNAT414G mutation is resulting from cumulative solar exposure and this could make the mtDNAT414G a good marker of solar exposure. We have previously shown that the mtDNACD4977 and mtDNA3895 deletions accumulate over time in photo-exposed ocular structures. With the addition of mtDNAT414G mutation, it becomes feasible to combine the levels of these different mtDNA mutations to obtain an accurate assessment of the solar exposure that an individual has accumulated during his/her lifetime.
Collapse
Affiliation(s)
- Anne-Sophie Gary
- Centre de recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrment, Québec, Qc, Canada.,Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
| | - Marie M Dorr
- Centre de recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrment, Québec, Qc, Canada.,Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec - Université Laval, Axe Médecine Régénératrice, Hôpital du Saint-Sacrment, Québec, Qc, Canada.,Centre de recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada.,Département d'Ophtalmologie et ORL-Chirurgie Cervico-Faciale, Université Laval, Québec, Qc, Canada
| |
Collapse
|
35
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
36
|
Luo F, Sandhu AF, Rungratanawanich W, Williams GE, Akbar M, Zhou S, Song BJ, Wang X. Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21197174. [PMID: 32998479 PMCID: PMC7584015 DOI: 10.3390/ijms21197174] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
With aging, the nervous system gradually undergoes degeneration. Increased oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and cell death are considered to be common pathophysiological mechanisms of various neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), organophosphate-induced delayed neuropathy (OPIDN), and amyotrophic lateral sclerosis (ALS). Autophagy is a cellular basic metabolic process that degrades the aggregated or misfolded proteins and abnormal organelles in cells. The abnormal regulation of neuronal autophagy is accompanied by the accumulation and deposition of irregular proteins, leading to changes in neuron homeostasis and neurodegeneration. Autophagy exhibits both a protective mechanism and a damage pathway related to programmed cell death. Because of its "double-edged sword", autophagy plays an important role in neurological damage and NDDs including AD, PD, HD, OPIDN, and ALS. Melatonin is a neuroendocrine hormone mainly synthesized in the pineal gland and exhibits a wide range of biological functions, such as sleep control, regulating circadian rhythm, immune enhancement, metabolism regulation, antioxidant, anti-aging, and anti-tumor effects. It can prevent cell death, reduce inflammation, block calcium channels, etc. In this review, we briefly discuss the neuroprotective role of melatonin against various NDDs via regulating autophagy, which could be a new field for future translational research and clinical studies to discover preventive or therapeutic agents for many NDDs.
Collapse
Affiliation(s)
- Fang Luo
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Aaron F. Sandhu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - George E. Williams
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
| | - Mohammed Akbar
- Division of Neuroscience & Behavior, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shuanhu Zhou
- Departments of Orthopedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA; (W.R.); (B.-J.S.)
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.L.); (A.F.S.); (G.E.W.)
- Correspondence:
| |
Collapse
|
37
|
Olgar Y, Tuncay E, Degirmenci S, Billur D, Dhingra R, Kirshenbaum L, Turan B. Ageing-associated increase in SGLT2 disrupts mitochondrial/sarcoplasmic reticulum Ca 2+ homeostasis and promotes cardiac dysfunction. J Cell Mol Med 2020; 24:8567-8578. [PMID: 32652890 PMCID: PMC7412693 DOI: 10.1111/jcmm.15483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/30/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
The prevalence of death from cardiovascular disease is significantly higher in elderly populations; the underlying factors that contribute to the age‐associated decline in cardiac performance are poorly understood. Herein, we identify the involvement of sodium/glucose co‐transporter gene (SGLT2) in disrupted cellular Ca2+‐homeostasis, and mitochondrial dysfunction in age‐associated cardiac dysfunction. In contrast to younger rats (6‐month of age), older rats (24‐month of age) exhibited severe cardiac ultrastructural defects, including deformed, fragmented mitochondria with high electron densities. Cardiomyocytes isolated from aged rats demonstrated increased reactive oxygen species (ROS), loss of mitochondrial membrane potential and altered mitochondrial dynamics, compared with younger controls. Moreover, mitochondrial defects were accompanied by mitochondrial and cytosolic Ca2+ ([Ca2+]i) overload, indicative of disrupted cellular Ca2+‐homeostasis. Interestingly, increased [Ca2+]i coincided with decreased phosphorylation of phospholamban (PLB) and contractility. Aged‐cardiomyocytes also displayed high Na+/Ca2+‐exchanger (NCX) activity and blood glucose levels compared with young‐controls. Interestingly, the protein level of SGLT2 was dramatically increased in the aged cardiomyocytes. Moreover, SGLT2 inhibition was sufficient to restore age‐associated defects in [Ca2+]i‐homeostasis, PLB phosphorylation, NCX activity and mitochondrial Ca2+‐loading. Hence, the present data suggest that deregulated SGLT2 during ageing disrupts mitochondrial function and cardiac contractility through a mechanism that impinges upon [Ca2+]i‐homeostasis. Our studies support the notion that interventions that modulate SGLT2‐activity can provide benefits in maintaining [Ca2+]i and cardiac function with advanced age.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Sinan Degirmenci
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Deniz Billur
- Departments of Histology-Embriyology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Rimpy Dhingra
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lorrie Kirshenbaum
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Belma Turan
- Departments of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
38
|
Dickinson K, Case AJ, Kupzyk K, Saligan L. Exploring Biologic Correlates of Cancer-Related Fatigue in Men With Prostate Cancer: Cell Damage Pathways and Oxidative Stress. Biol Res Nurs 2020; 22:514-519. [PMID: 32515205 DOI: 10.1177/1099800420933347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The pathobiology of cancer-related fatigue (CRF) remains elusive, hindering the development of targeted treatments. Radiation therapy (RT), a common treatment for men with prostate cancer, induces cell damage through the generation of free radicals and oxidative stress. We hypothesized that disruption in cellular responses to this surge of nonphysiological oxidative stress might contribute to CRF in men with prostate cancer treated with RT. We evaluated the potential role of three cell damage pathways (apoptosis, autophagy, necrosis) and oxidative stress in CRF in men with prostate cancer receiving RT. Fatigue was measured by the Functional Assessment of Cancer Therapy-Fatigue (FACT-F) questionnaire. Gene expression was measured in whole blood using RT2 profiler™ PCR arrays. Data were collected at two time points: either baseline or Day 1 of treatment (T1) and completion of treatment (T2). Participants were grouped into either the fatigued or nonfatigued phenotype at T2 using the recommended FACT-F cut-off score for clinical significance. We observed significant upregulation of seven genes related to three cell damage pathways in the fatigued group from T1 to T2 and no significant changes in the nonfatigued group. We also observed significant downregulation of two genes related to oxidative stress in the fatigued group compared to the nonfatigued group at T2. These collective results provide preliminary evidence that cell damage might be upregulated in the CRF phenotype. Validation of these findings using a larger and more diverse sample is warranted.
Collapse
Affiliation(s)
- Kristin Dickinson
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA.,Symptom Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kevin Kupzyk
- College of Nursing, University of Nebraska Medical Center, Omaha, NE, USA
| | - Leorey Saligan
- Symptom Biology Unit, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
40
|
Xu Y, Wang X, Geng N, Zhu Y, Zhang S, Liu Y, Liu J. Mitophagy is involved in chromium (VI)-induced mitochondria damage in DF-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110414. [PMID: 32151870 DOI: 10.1016/j.ecoenv.2020.110414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Cr (VI), which is a common heavy metal pollutant with strong oxidizing property, exists widely in nature. Organisms can be exposed to Cr (VI) through various means. Cr (VI) causes mitochondrial dysfunction after being absorbed by cells. Whether Cr (VI) induces the selective autophagic degradation of mitochondria, which is a biological process called mitophagy, remains unclear. Mitophagy not only recycles intracellularly damaged mitochondria to compensate for nutrient deprivation but also is involved in mitochondria quality control. Thus, this study investigated whether Cr (VI) could induce mitophagy in DF-1 cells. Carbonyl cyanide m-chlorophenylhydrazone, which is a mitochondrial-uncoupling reagent that induces mitophagy, was used. DF-1 cells were incubated with different doses of Cr (VI) for varying durations. The autophagy-related proteins LC3-II and p62 levels decreased after 6 h of Cr (VI) treatment but recovered within 24 h. The mitochondrial membrane potential, which is an indicator of mitochondrial damage, was detected by flow cytometry. We found that different durations of Cr (VI) treatment induced mitochondrial mass decrease and depolarization. Furthermore, the expression of the protein translocase of outer mitochondrial membrane 20 (TOMM20), which is a mitochondrial outer membrane protein, was decreased significantly in the presence of Cr (VI). Our findings indicate that Cr (VI) may contribute to the mitochondrial morphology and function damage and may therefore lead to the autophagic clearance of mitochondria.
Collapse
Affiliation(s)
- Yuliang Xu
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, Shandong, 271018, China
| | - Xiaozhou Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taìan, Shandong, 271018, China
| | - Na Geng
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, Shandong, 271018, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, Shandong, 271018, China
| | - Shuo Zhang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taìan, Shandong, 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taìan, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taìan, Shandong, 271018, China.
| |
Collapse
|
41
|
Olgar Y, Billur D, Tuncay E, Turan B. MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol 2020; 136:110961. [PMID: 32325093 DOI: 10.1016/j.exger.2020.110961] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/16/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
The death prevalence from cardiovascular disease is significantly high in elderly-populations, while mitochondrial-aging plays an important in abnormal function of vital organs through high mitochondrial ROS production. Mitochondria have a unique mode of action by providing ATP production and modulating the cytosolic Ca2+-signaling and maintain the redox status of cardiomyocytes. There is an aging-associated impairment in oxidative phosphorylation which causes a marked dysregulation of mitochondrial biogenesis. Therefore, we aimed to examine whether a mitochondria-targeting antioxidant, MitoTEMPO, can directly provide a cardioprotective effect on ventricular cardiomyocyte function under in vitro conditions. The MitoTEMPO-treatment (0.1 μM for 4-h) of aged-ventricular cardiomyocytes (from 24-mo-old rats), compared to those of the adults (from 8-mo-old rats) markedly augmented not only the depressed biochemical parameters but also the ultrastructure of mitochondria. It also provided marked protective action against increased mitochondrial superoxide formation and Bnip3 overexpression, which both markedly induce depolarized mitochondrial potential, increase reactive oxygen species, mitochondrial swelling and fission, and accelerate mitochondrial turnover via autophagy. Furthermore, it provided marked protection against spontaneous action potentials, via shortening the prolonged action potential duration, at most, through recovery in depressed K+-channel currents. Moreover, we determined significant recovery in the depressed intracellular Ca2+-changes under electrical stimulation in MitoTEMPO-treated the aged-cardiomyocytes. Overall, we provided important information associated with an antiarrhythmic action, thereby controlling cytosolic and mitochondrial Ca2+-handling, implying its possible protective role of mitochondria-targeting antioxidant-treatment during aging.
Collapse
Affiliation(s)
- Yusuf Olgar
- Departments of Biophysics, Ankara University, School of Medicine, Ankara, Turkey
| | - Deniz Billur
- Histology-Embryology, Ankara University, School of Medicine, Ankara, Turkey
| | - Erkan Tuncay
- Departments of Biophysics, Ankara University, School of Medicine, Ankara, Turkey
| | - Belma Turan
- Departments of Biophysics, Ankara University, School of Medicine, Ankara, Turkey.
| |
Collapse
|
42
|
Zhou X, Bouitbir J, Liechti ME, Krähenbühl S, Mancuso RV. Para-Halogenation of Amphetamine and Methcathinone Increases the Mitochondrial Toxicity in Undifferentiated and Differentiated SH-SY5Y Cells. Int J Mol Sci 2020; 21:ijms21082841. [PMID: 32325754 PMCID: PMC7215714 DOI: 10.3390/ijms21082841] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/05/2023] Open
Abstract
Halogenation of amphetamines and methcathinones has become a common method to obtain novel psychoactive substances (NPS) also called “legal highs”. The para-halogenated derivatives of amphetamine and methcathinone are available over the internet and have entered the illicit drug market but studies on their potential neurotoxic effects are rare. The primary aim of this study was to explore the neurotoxicity of amphetamine, methcathinone and their para-halogenated derivatives 4-fluoroamphetamine (4-FA), 4-chloroamphetamine (PCA), 4-fluoromethcathinone (4-FMC), and 4-chloromethcathinone (4-CMC) in undifferentiated and differentiated SH-SY5Y cells. We found that 4-FA, PCA, and 4-CMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) for both cell types, whereby differentiated cells were less sensitive. IC50 values for cellular ATP depletion were in the range of 1.4 mM for 4-FA, 0.4 mM for PCA and 1.4 mM for 4-CMC. The rank of cytotoxicity observed for the para-substituents was chloride > fluoride > hydrogen for both amphetamines and cathinones. Each of 4-FA, PCA and 4-CMC decreased the mitochondrial membrane potential in both cell types, and PCA and 4-CMC impaired the function of the electron transport chain of mitochondria in SH-SY5Y cells. 4-FA, PCA, and 4-CMC increased the ROS level and PCA and 4-CMC induced apoptosis by the endogenous pathway. In conclusion, para-halogenation of amphetamine and methcathinone increases their neurotoxic properties due to the impairment of mitochondrial function and induction of apoptosis. Although the cytotoxic concentrations were higher than those needed for pharmacological activity, the current findings may be important regarding the uncontrolled recreational use of these compounds.
Collapse
Affiliation(s)
- Xun Zhou
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Jamal Bouitbir
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Swiss Centre for Applied Human Toxicology, 4031 Basel, Switzerland
| | - Riccardo V Mancuso
- Division of Clinical Pharmacology & Toxicology, University Hospital Basel, 4031 Basel, Switzerland
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
43
|
Wang X, Li Z, Gao Z, Li Q, Jiang L, Geng C, Yao X, Shi X, Liu Y, Cao J. Cadmium induces cell growth in A549 and HELF cells via autophagy-dependent glycolysis. Toxicol In Vitro 2020; 66:104834. [PMID: 32200033 DOI: 10.1016/j.tiv.2020.104834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd) is a pervasive harmful metal in the environment. It is a well-known inducer of tumorigenesis, but its mechanism is still unclear. We have previously reported that Cd-induced autophagy was apoptosis-dependent and prevents apoptotic cell death to ensure the growth of A549 cells. In this study, the mechanism was further investigated. Cd treatment increased glucose uptake and lactate release significantly. Meanwhile, the protein level of GLUT1,HKII,PKM2 and LDHA increased in a time-dependent manner, indicating that Cd induced aerobic glycolysis in A549 and HELF cells. The inhibitors of autophagy, 3MA, and CQ, repressed Cd-induced glycolysis-related proteins, indicating that autophagy was involved in Cd-induced glycolysis in A549 and HELF cells. Knockdown of ATG4B or ATG5 by siATG4B and siATG5 decreased Cd-induced glycolysis, while overexpression of ATG4B enhanced glycolysis. These results demonstrated that Cd-induced glycolysis was autophagy-dependent. Then, glycolysis inhibitor, 2DG and siPKM2 could inhibit Cd-induced cell viability and cell cycle progression compared to only Cd treatment, indicating that glycolysis played an important role in Cd-induced cell growth. Finally, co-treatment of transfection of ATG4B-DNA plasmids with 2DG or siPKM2 further demonstrated that the autophagy-glycolysis axis played an important role in Cd-induced cell cycle progression. Taken together, our results suggested that Cd-induced glycolysis is autophagy-dependent and the autophagy-glycolysis axis underlies the mechanism of Cd-induced cell growth in A549 and HELF cells.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Zhiguo Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
44
|
Jiang XS, Chen XM, Hua W, He JL, Liu T, Li XJ, Wan JM, Gan H, Du XG. PINK1/Parkin mediated mitophagy ameliorates palmitic acid-induced apoptosis through reducing mitochondrial ROS production in podocytes. Biochem Biophys Res Commun 2020; 525:954-961. [PMID: 32173525 DOI: 10.1016/j.bbrc.2020.02.170] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/28/2020] [Indexed: 01/02/2023]
Abstract
Diabetic nephropathy (DN), the primary cause of end-stage renal disease (ESRD), is often accompanied by dyslipidemia, which is closely related to the occurrence and development of DN and even the progression to ESRD. Mitophagy, the selective degradation of damaged and dysfunctional mitochondria by autophagy, is a crucial mitochondrial quality control mechanism, and largely regulated by PINK1 (PTEN-induced putative kinase 1)/Parkin signaling pathway. In the present study, we demonstrated that PA induced mitochondrial damage and excessive mitoROS generation in podocytes. We also found PA treatment resulted in the activation of mitophagy by increasing co-localization of GFP-LC3 with mitochondria and enhancing the formation of mitophagosome, stabilization of PINK1 and mitochondrial translocation of Parkin, which indicated that PINK1/Parkin pathway was involved in PA-induced mitophagy in podocytes. Furthermore, inhibition of mitophagy by silencing Parkin dramatically aggravated PA-induced mitochondrial dysfunction, mitoROS production, and further enhanced PA-induced apoptosis of podocytes. Finally, we showed that PINK1/Parkin pathway were up-regulated in kidney of high fat diet (HFD)-induced obese rats. Taken together, our results suggest that PINK1/Parkin mediated mitophagy plays a protective role in PA-induced podocytes apoptosis through reducing mitochondrial ROS production and that enhancing mitophagy provides a potential therapeutic strategy for kidney diseases with hyperlipidemia, such as DN.
Collapse
Affiliation(s)
- Xu-Shun Jiang
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Xue-Mei Chen
- Emergency Department, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Wei Hua
- Department of Nephrology, Occupational Disease Prevention and Control Hospital of Chongqing, Chongqing, China
| | - Jun-Ling He
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ting Liu
- Department of Nephrology, Chengdu Fifth People's Hospital, Chengdu, 611130, China
| | - Xun-Jia Li
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Jiang-Min Wan
- Department of Nephrology, Chongqing Qijiang People's Hospital, Tuowai, Chongqing, 401420, China
| | - Hua Gan
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China
| | - Xiao-Gang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China; The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Youyi Road 1, Chongqing, 400042, China.
| |
Collapse
|
45
|
Liao PC, Franco-Iborra S, Yang Y, Pon LA. Live cell imaging of mitochondrial redox state in mammalian cells and yeast. Methods Cell Biol 2020; 155:295-319. [PMID: 32183963 DOI: 10.1016/bs.mcb.2019.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The redox state of mitochondria is determined by the levels of reducing and oxidizing species in the organelle, which reflects mitochondrial metabolic activity and overall fitness. Mitochondria are also the primary endogenous source of reactive oxygen species (ROS). This chapter describes methods to measure the mitochondrial superoxide levels and the redox state of the organelle in mammalian cells and yeast. We describe the use of dihydroethidium (DHE) and MitoSOX (a derivative of dihydroethidium bound to a lipophilic cation) to detect mitochondrial superoxide in yeast and mammalian cells, respectively. We also describe the use of genetically encoded fluorescent biosensors for quantitative analysis of mitochondrial NADPH levels (iNap) in mammalian cells and mitochondrial redox state (mito-roGFP) in yeast.
Collapse
Affiliation(s)
- Pin-Chao Liao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Sandra Franco-Iborra
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory, Key State Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, China
| | - Liza A Pon
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.
| |
Collapse
|
46
|
Zhao C, Li G, Li J. Non-coding RNAs and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:247-258. [PMID: 32285416 DOI: 10.1007/978-981-15-1671-9_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aging is an important risk factor for cardiovascular diseases. Aging increasing the morbidity and mortality in cardiovascular disease patients. With the society is aging rapidly in the world, medical burden of aging-related cardiovascular diseases increasing drastically. Hence, it is urgent to explore the underlying mechanism and treatment of cardiac aging. Noncoding RNAs (ncRNAs, including microRNAs, long noncoding RNAs and circular RNAs) have been reported to be involved in many pathological processes, including cell proliferation, cell death differentiation, hypertrophy and aging in wide variety of cells and tissues. In this chapter, we will summarize the physiology and molecular mechanisms of cardiac aging. Then, the recent research advances of ncRNAs in cardiac aging will be provided. The lessons learned from ncRNAs and cardiac aging studies would bring new insights into the regulatory mechanisms ncRNAs as well as treatment of aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guoping Li
- Cardiovascular Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jin Li
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, China.
| |
Collapse
|
47
|
Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. BIOLOGY 2019; 8:biology8020032. [PMID: 31083551 PMCID: PMC6628177 DOI: 10.3390/biology8020032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial function declines with age, leading to a variety of age-related diseases (metabolic, central nervous system-related, cancer, etc.) and medication usage increases with age due to the increase in diseases. Drug-induced mitochondrial toxicity has been described for many different drug classes and can lead to liver, muscle, kidney and central nervous system injury and, in rare cases, to death. Many of the most prescribed medications in the geriatric population carry mitochondrial liabilities. We have demonstrated that, over the past decade, each class of drugs that demonstrated mitochondrial toxicity contained drugs with both more and less adverse effects on mitochondria. As patient treatment is often essential, we suggest using medication(s) with the best safety profile and the avoidance of concurrent usage of multiple medications that carry mitochondrial liabilities. In addition, we also recommend lifestyle changes to further improve one’s mitochondrial function, such as weight loss, exercise and nutrition.
Collapse
|
48
|
Murtha LA, Morten M, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Ngo DT, Sverdlov AL, Knight DA, Boyle AJ. The Role of Pathological Aging in Cardiac and Pulmonary Fibrosis. Aging Dis 2019; 10:419-428. [PMID: 31011486 PMCID: PMC6457057 DOI: 10.14336/ad.2018.0601] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022] Open
Abstract
Aging promotes a range of degenerative pathologies characterized by progressive losses of tissue and/or cellular function. Fibrosis is the hardening, overgrowth and scarring of various tissues characterized by the accumulation of extracellular matrix components. Aging is an important predisposing factor common for fibrotic heart and respiratory disease. Age-related processes such as senescence, inflammaging, autophagy and mitochondrial dysfunction are interconnected biological processes that diminish the regenerative capacity of the aged heart and lung and have been shown to play a crucial role in cardiac fibrosis and idiopathic pulmonary fibrosis. This review focuses on these four processes of aging in relation to their role in fibrosis. It has long been established that the heart and lung are linked both functionally and anatomically when it comes to health and disease, with an ever-expanding aging population, the incidence of fibrotic disease and therefore the number of fibrosis-related deaths will continue to rise. There are currently no feasible therapies to treat the effects of chronic fibrosis therefore highlighting the importance of exploring the processes of aging and its role in inducing and exacerbating fibrosis of each organ. The focus of this review may help to highlight potential avenues of therapeutic exploration
Collapse
Affiliation(s)
- Lucy A Murtha
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew Morten
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nishani S Mabotuwana
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Janette K Burgess
- 4University of Groningen, University Medical Center Groningen, Department of Pathology & Medical Biology, GRIAC (Groningen Research Institute for Asthma and COPD), Groningen and W. J. Kolff Research Institute, The Netherlands.,5Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW 2037, Australia.,6Discipline of Pharmacology, The University of Sydney, NSW 2006, Australia
| | - Doan Tm Ngo
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aaron L Sverdlov
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- 2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,7Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada.,8Adjunct Professor, Department of Medicine, University of Western Australia, Australia.,9Research and Innovation Conjoint, Hunter New England Health District, Australia
| | - Andrew J Boyle
- 1School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.,3Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
49
|
Hwang SH, Kim MC, Ji S, Yang Y, Jeong Y, Kim Y. Glucose starvation induces resistance to metformin through the elevation of mitochondrial multidrug resistance protein 1. Cancer Sci 2019; 110:1256-1267. [PMID: 30689265 PMCID: PMC6447852 DOI: 10.1111/cas.13952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Metformin, a drug for type 2 diabetes mellitus, has shown therapeutic effects for various cancers. However, it had no beneficial effects on the survival rate of human malignant mesothelioma (HMM) patients. The present study was performed to elucidate the underlying mechanism of metformin resistance in HMM cells. Glucose‐starved HMM cells had enhanced resistance to metformin, demonstrated by decreased apoptosis and autophagy and increased cell survival. These cells showed abnormalities in mitochondria, such as decreased ATP synthesis, morphological elongation, altered mitochondrial permeability transition pore and hyperpolarization of mitochondrial membrane potential (MMP). Intriguingly, Mdr1 was significantly upregulated in mitochondria but not in cell membrane. The upregulated mitochondrial Mdr1 was reversed by treatment with carbonyl cyanide m‐chlorophenyl hydrazone, an MMP depolarization inducer. Furthermore, apoptosis and autophagy were increased in multidrug resistance protein 1 knockout HMM cells cultured under glucose starvation with metformin treatment. The data suggest that mitochondrial Mdr1 plays a critical role in the chemoresistance to metformin in HMM cells, which could be a potential target for improving its therapeutic efficacy.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Myung-Chul Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sumin Ji
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeseul Yang
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yeji Jeong
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea.,Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
50
|
Gonos ES, Chondrogianni N, Djordjevic AM. Where ageing goes nowadays: Mechanisms, pathways, biomarkers and anti-ageing strategies. Mech Ageing Dev 2018; 177:1-3. [PMID: 30576693 DOI: 10.1016/j.mad.2018.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece.
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece.
| | | |
Collapse
|