1
|
Carrothers E, Appleby M, Lai V, Kozbenko T, Alomar D, Smith BJ, Hamada N, Hinton P, Ainsbury EA, Hocking R, Yauk C, Wilkins RC, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to cataracts. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:31-56. [PMID: 38644659 DOI: 10.1002/em.22594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.
Collapse
Affiliation(s)
- Emma Carrothers
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Meghan Appleby
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vita Lai
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Dalya Alomar
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Patricia Hinton
- Defense Research & Development Canada, Canadian Forces Environmental Medicine Establishment, Toronto, Ontario, Canada
| | - Elizabeth A Ainsbury
- Radiation, Chemical and Environmental Hazards Division, UK Health Security Agency, Birmingham, UK
- Environmental Research Group within the School of Public Health, Faculty of Medicine at Imperial College of Science, Technology and Medicine, London, UK
| | - Robyn Hocking
- Learning and Knowledge and Library Services, Health Canada, Ottawa, Ontario, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Wang Y, Yu X, Liu Z, Lv Z, Xia H, Wang Y, Li J, Li X. Influence of hypobaric hypoxic conditions on ocular structure and biological function at high attitudes: a narrative review. Front Neurosci 2023; 17:1149664. [PMID: 37229428 PMCID: PMC10203194 DOI: 10.3389/fnins.2023.1149664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Background With the development of science and technology, high-altitude environments, involving aviation, aerospace, and mountainous regions, have become the main areas for human exploration, while such complex environments can lead to rapid decreases in air and oxygen pressure. Although modern aircrafts have pressurized cabins and support equipment that allow passengers and crew to breathe normally, flight crew still face repeated exposure to hypobaric and hypoxic conditions. The eye is a sensory organ of the visual system that responds to light and oxygen plays a key role in the maintenance of normal visual function. Acute hypoxia changes ocular structure and function, such as the blood flow rate, and can cause retinal ischemia. Methods We reviewed researches, and summarized them briefly in a review. Results The acute hypobaric hypoxia affects corneal, anterior chamber angle and depth, pupils, crystal lens, vitreous body, and retina in structure; moreover, the acute hypoxia does obvious effect on visual function; for example, vision, intraocular pressure, oculometric features and dynamic visual performance, visual field, contrast sensitivity, and color perception. Conclusion We summarized the changes in the physiological structure and function of the eye in hypoxic conditions and to provide a biological basis for the response of the human eye at high-altitude.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xinli Yu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ziyuan Liu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Zhongsheng Lv
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Huaqin Xia
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yiren Wang
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Jiaxi Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Xuemin Li
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Alva R, Mirza M, Baiton A, Lazuran L, Samokysh L, Bobinski A, Cowan C, Jaimon A, Obioru D, Al Makhoul T, Stuart JA. Oxygen toxicity: cellular mechanisms in normobaric hyperoxia. Cell Biol Toxicol 2022; 39:111-143. [PMID: 36112262 PMCID: PMC9483325 DOI: 10.1007/s10565-022-09773-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/07/2022] [Indexed: 12/15/2022]
Abstract
In clinical settings, oxygen therapy is administered to preterm neonates and to adults with acute and chronic conditions such as COVID-19, pulmonary fibrosis, sepsis, cardiac arrest, carbon monoxide poisoning, and acute heart failure. In non-clinical settings, divers and astronauts may also receive supplemental oxygen. In addition, under current standard cell culture practices, cells are maintained in atmospheric oxygen, which is several times higher than what most cells experience in vivo. In all the above scenarios, the elevated oxygen levels (hyperoxia) can lead to increased production of reactive oxygen species from mitochondria, NADPH oxidases, and other sources. This can cause cell dysfunction or death. Acute hyperoxia injury impairs various cellular functions, manifesting ultimately as physiological deficits. Chronic hyperoxia, particularly in the neonate, can disrupt development, leading to permanent deficiencies. In this review, we discuss the cellular activities and pathways affected by hyperoxia, as well as strategies that have been developed to ameliorate injury.
Collapse
Affiliation(s)
- Ricardo Alva
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Maha Mirza
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Adam Baiton
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lucas Lazuran
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lyuda Samokysh
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Ava Bobinski
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Cale Cowan
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Alvin Jaimon
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Dede Obioru
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Tala Al Makhoul
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jeffrey A Stuart
- Department of Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| |
Collapse
|
4
|
Tessema B, Sack U, Serebrovska Z, König B, Egorov E. Effects of Hyperoxia on Aging Biomarkers: A Systematic Review. FRONTIERS IN AGING 2022; 2:783144. [PMID: 35822043 PMCID: PMC9261365 DOI: 10.3389/fragi.2021.783144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/15/2021] [Indexed: 11/23/2022]
Abstract
The effects of short-term hyperoxia on age-related diseases and aging biomarkers have been reported in animal and human experiments using different protocols; however, the findings of the studies remain conflicting. In this systematic review, we summarized the existing reports in the effects of short-term hyperoxia on age-related diseases, hypoxia-inducible factor 1α (HIF-1α), and other oxygen-sensitive transcription factors relevant to aging, telomere length, cellular senescence, and its side effects. This review was done as described in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. A systematic search was done in PubMed, Google Scholar, and Cochrane Library and from the references of selected articles to identify relevant studies until May 2021. Of the total 1,699 identified studies, 17 were included in this review. Most of the studies have shown significant effects of short-term hyperoxia on age-related diseases and aging biomarkers. The findings of the studies suggest the potential benefits of short-term hyperoxia in several clinical applications such as for patients undergoing stressful operations, restoration of cognitive function, and the treatment of severe traumatic brain injury. Short-term hyperoxia has significant effects in upregulation or downregulation of transcription factors relevant to aging such as HIF-1α, nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-kB), and nuclear factor (erythroid-derived 2)-like 2 (NRF2) among others. Short-term hyperoxia also has significant effects to increase antioxidant enzymes, and increase telomere length and clearance of senescent cells. Some of the studies have also reported adverse consequences including mitochondrial DNA damage and nuclear cataract formation depending on the dose and duration of oxygen exposure. In conclusion, short-term hyperoxia could be a feasible treatment option to treat age-related disease and to slow aging because of its ability to increase antioxidant enzymes, significantly increase telomere length and clearance of senescent cells, and improve cognitive function, among others. The reported side effects of hyperoxia vary depending on the dose and duration of exposure. Therefore, it seems that additional studies for better understanding the beneficial effects of short-term hyperoxia and for minimizing side effects are necessary for optimal clinical application.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Zoya Serebrovska
- Department of Hypoxic States Investigation, Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Egor Egorov
- Ipam Institute for Preventive and Anti-Aging Medicine, Berlin, Germany
| |
Collapse
|
5
|
Knockout of Mpv17-Like Protein (M-LPH) Gene in Human Hepatoma Cells Results in Impairment of mtDNA Integrity through Reduction of TFAM, OGG1, and LIG3 at the Protein Levels. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6956414. [PMID: 30310528 PMCID: PMC6166373 DOI: 10.1155/2018/6956414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/18/2018] [Accepted: 08/05/2018] [Indexed: 12/05/2022]
Abstract
Human Mpv17-like protein (M-LPH) has been suggested to participate in prevention of mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) damage. To clarify the molecular mechanism of M-LPH function, we knocked out M-LPH in human hepatoma HepG2 using CRISPR-Cas9 technology. An increase in mtDNA damage in M-LPH-KO HepG2 cells was demonstrated by PCR-based quantitation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) measurement. Furthermore, confocal immunofluorescence analysis and Western blot analysis of mitochondrial extracts demonstrated that M-LPH-KO caused reductions in the protein levels of mitochondrial transcription factor A (TFAM), an essential factor for transcription and maintenance of mtDNA, and two DNA repair enzymes, 8-oxoguanine DNA glycosylase (OGG1) and DNA ligase 3 (LIG3), both involved in mitochondrial base excision repair (BER). Accordingly, it was suggested that the increase in mtDNA damage was due to a cumulative effect of mtDNA instability resulting from deficiencies of TFAM and diminished ability for BER arising from deficiencies in BER-related enzymes. These findings suggest that M-LPH could be involved in the maintenance of mtDNA, and therefore mitochondrial function, by protecting proteins essential for mtDNA stability and maintenance, in an integrated manner.
Collapse
|
6
|
Carbon monoxide (CO) modulates hydrogen peroxide (H 2O 2)-mediated cellular dysfunction by targeting mitochondria in rabbit lens epithelial cells. Exp Eye Res 2018; 169:68-78. [PMID: 29407220 DOI: 10.1016/j.exer.2018.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial components are of great importance for the maintenance of lens transparency. In our previous work, we confirmed that carbon monoxide (CO) can protect human and rabbit lens epithelial cells (LECs) from hydrogen peroxide (H2O2)-mediated apoptosis, while the mechanism remains undefined. Because CO can bind to mitochondrial cytochrome c oxidase (COX), we evaluated the effect of CO on the regulation of mitochondrial biogenesis and function in H2O2-treated rabbit LECs. To evaluate mitochondrial biogenesis, several mitochondrial transcription factors (PGC-1α, NRF-1, and mtTFA) were detected by western blot analysis. To assess cellular metabolism, adenosine triphosphate (ATP) levels and COX enzymatic activity were measured. In addition, mitochondrial permeability transition pores (mPTP) opening, dissipation of mitochondrial membrane potential (ΔΨm), cytochrome c mitochondrial translocation, and apoptotic molecules were also detected to evaluate mitochondrial apoptosis pathway. Furthermore, the interaction of Bcl-2 and COX was assessed by co-immunoprecipitation. Finally, CO-mediated regulation of cellular function was detected in Bcl-2-knockdown cells. Our results confirmed that CO pretreatment restored H2O2-induced down-regulation of mitochondrial transcription factors expression, COX activity and ATP production. Moreover, CO pretreatment attenuated mPTP opening, ΔΨm loss, cytochrome c mitochondrial translocation, and activation of apoptotic molecules. Bcl-2 was identified to bind to COX, and silence of Bcl-2 expression prevented CO-regulated cellular metabolism and cytoprotection. These data suggest that CO modulates H2O2-induced cellular dysfunction by increasing mitochondrial biogenesis, enhancing cellular metabolism, and attenuating mitochondrial apoptosis cascade. Moreover, Bcl-2 expression was vital for CO to regulate cellular metabolism and cytoprotection in LECs.
Collapse
|
7
|
Brennan L, Khoury J, Kantorow M. Parkin elimination of mitochondria is important for maintenance of lens epithelial cell ROS levels and survival upon oxidative stress exposure. Biochim Biophys Acta Mol Basis Dis 2016; 1863:21-32. [PMID: 27702626 DOI: 10.1016/j.bbadis.2016.09.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/09/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022]
Abstract
Age-related cataract is associated with oxidative stress and death of lens epithelial cells (LECs) whose survival is dependent on functional mitochondrial populations. Oxidative stress-induced depolarization/damage of LEC mitochondria results in increased reactive oxygen species (ROS) levels and cell death suggesting the need for a LEC mechanism to remove mitochondria depolarized/damaged upon oxidative stress exposure to prevent ROS release and LEC death. To date, a mechanism(s) for removal of depolarized/damaged LEC mitochondria has yet to be identified and the importance of eliminating oxidative stress-damaged mitochondria to prevent LEC ROS release and death has not been established. Here, we demonstrate that Parkin levels increase in LECs exposed to H2O2-oxidative stress. We establish that Parkin translocates to LEC mitochondria depolarized upon oxidative stress exposure and that Parkin recruits p62/SQSTM1 to depolarized LEC mitochondria. We demonstrate that translocation of Parkin results in the elimination of depolarized/damaged mitochondria and that Parkin clearance of LEC mitochondria is dependent on its ubiquitin ligase activity. Importantly, we demonstrate that Parkin elimination of damaged LEC mitochondria results in reduced ROS levels and increased survival upon oxidative stress exposure. These results establish that Parkin functions to eliminate LEC mitochondria depolarized/damaged upon oxidative stress exposure and that elimination of damaged mitochondria by Parkin is important for LEC homeostasis and survival. The data also suggest that mitochondrial quality control by Parkin could play a role in lens transparency.
Collapse
Affiliation(s)
- Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Josef Khoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
8
|
Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, Zhang JH. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res 2016; 6:20-32. [PMID: 27826420 PMCID: PMC5075679 DOI: 10.4103/2045-9912.179337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brain injury is the leading cause of death and disability worldwide and clinically there is no effective therapy for neuroprotection. Hyperbaric oxygen preconditioning (HBO-PC) has been experimentally demonstrated to be neuroprotective in several models and has shown efficiency in patients undergoing on-pump coronary artery bypass graft (CABG) surgery. Compared with other preconditioning stimuli, HBO is benign and has clinically translational potential. In this review, we will summarize the results in experimental brain injury and clinical studies, elaborate the mechanisms of HBO-PC, and discuss regimes and opinions for future interventions in acute brain injury.
Collapse
Affiliation(s)
- Qin Hu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Anatol Manaenko
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nathanael Matei
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhenni Guo
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Ting Xu
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jiping Tang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Departments of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
9
|
Jin L, Yang H, Fu J, Xue X, Yao L, Qiao L. Association between oxidative DNA damage and the expression of 8-oxoguanine DNA glycosylase 1 in lung epithelial cells of neonatal rats exposed to hyperoxia. Mol Med Rep 2015; 11:4079-86. [PMID: 25672835 PMCID: PMC4394948 DOI: 10.3892/mmr.2015.3339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that oxidative stress‑induced lung injury is involved in the occurrence and developmental process of bronchopulmonary dysplasia (BPD). The present study assessed whether oxidative DNA damage occurs in the early stages of hyperoxia‑induced BPD in neonatal rats and evaluated the expression and localization of the DNA repair gene, 8‑oxoguanine DNA glycosylase 1 (OGG1), upon exposure to hyperoxia. Neonatal rats and primary cultured neonatal rat alveolar epithelial type II (AECII) cells were exposed to hyperoxia (90% O2) or normoxia (21% O2) and the expression levels of 8‑hydroxy‑2'‑deoxyguanosine (8‑OHdG) in the lung tissues and AECII cells were determined using a competitive enzyme‑linked immunosorbent assay. DNA strand breaks in the AECII cells were detected using a comet assay. The expression and localization of the OGG1 protein in the lung tissues and AECII cells were determined by immunofluorescence confocal microscopy and western blotting. The mRNA expression levels of OGG1 in the lung tissues and AECII cells were determined by reverse transcription polymerase chain reaction. The expression of 8‑OHdG was elevated in the hyperoxia‑exposed neonatal rat lung tissue and the AECII cells compared with the normoxic controls. The occurrence of DNA strand breaks in the AECII cells increased with increasing duration of hyperoxia exposure. The protein expression of OGG1 was significantly increased in the hyperoxia‑exposed lung tissues and AECII cells, with OGG1 preferentially localized to the cytoplasm. No concomitant increase in the mRNA expression of OGG1 was detected. These results revealed that oxidative DNA damage occurred in lung epithelial cells during early‑stage BPD, as confirmed by in vitro and in vivo hyperoxia exposure experiments, and the increased expression of OGG1 was associated with this process.
Collapse
Affiliation(s)
- Linlin Jin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Haiping Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xindong Xue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Li Yao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lin Qiao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
10
|
Kang L, Zhao W, Zhang G, Wu J, Guan H. Acetylated 8-oxoguanine DNA glycosylase 1 and its relationship with p300 and SIRT1 in lens epithelium cells from age-related cataract. Exp Eye Res 2015; 135:102-8. [PMID: 25660075 DOI: 10.1016/j.exer.2015.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 12/20/2022]
Abstract
The human 8-oxoguanine-DNA glycosylase 1 (OGG1) is the major DNA glycosylase responsible for repair of 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened fapyguanine, critical mutagenic DNA lesions that are induced by reactive oxygen species. OGG1 acetylation has been demonstrated playing an important role in response to DNA damage. Here, we investigated the relationship between acetylated OGG1 (Ac-OGG1) and ARC, and clarified the effect of p300 and SIRT1 on the 8-oxoG excision ability of OGG1 in ARC development. Our results showed that anterior lens capsules from ARC group had higher proportion of 8-oxoG positive LECs than those from control group. OGG1 mRNA and protein levels significantly increased in ARC group compared with control group, while the protein levels of Ac-OGG1 were lower in ARC group. We investigated the factors involved in OGG1 acetylation and found that p300 and SIRT1 are the major acetyltransferases for OGG1 acetylation. We also identified acetylation of K338/K341 lysine residues in OGG1 has an important role on the repair activity of OGG1 to oxidative damage after H2O2 exposure in human lens epithelial cells (HLE-B3). Taken together, these data demonstrate that OGG1 acetylation regulates its function in response to DNA damage and could be one of the mechanisms of ARC.
Collapse
Affiliation(s)
- Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weijie Zhao
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China; Department of Ophthalmology, First People's Hospital of Changshu City, Affiliated Hospital of Soochow University, Changshu, Jiangsu Province, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
11
|
Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130439. [PMID: 24864310 DOI: 10.1098/rstb.2013.0439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various molecular and cellular pathways are active in eukaryotes to control the quality and integrity of mitochondria. These pathways are involved in keeping a 'healthy' population of this essential organelle during the lifetime of the organism. Quality control (QC) systems counteract processes that lead to organellar dysfunction manifesting as degenerative diseases and ageing. We discuss disease- and ageing-related pathways involved in mitochondrial QC: mtDNA repair and reorganization, regeneration of oxidized amino acids, refolding and degradation of severely damaged proteins, degradation of whole mitochondria by mitophagy and finally programmed cell death. The control of the integrity of mtDNA and regulation of its expression is essential to remodel single proteins as well as mitochondrial complexes that determine mitochondrial functions. The redundancy of components, such as proteases, and the hierarchies of the QC raise questions about crosstalk between systems and their precise regulation. The understanding of the underlying mechanisms on the genomic, proteomic, organellar and cellular levels holds the key for the development of interventions for mitochondrial dysfunctions, degenerative processes, ageing and age-related diseases resulting from impairments of mitochondria.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Marco Nooteboom
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Heinz D Osiewacz
- Faculty for Biosciences and Cluster of Excellence 'Macromolecular Complexes', Goethe University, Molecular Developmental Biology, 60438 Frankfurt am Main, Germany
| |
Collapse
|
12
|
Wang Y, Li F, Zhang G, Kang L, Qin B, Guan H. Altered DNA Methylation and Expression Profiles of 8-Oxoguanine DNA Glycosylase 1 in Lens Tissue from Age-related Cataract Patients. Curr Eye Res 2014; 40:815-21. [PMID: 25310012 DOI: 10.3109/02713683.2014.957778] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Oxidative stress and DNA damage contribute to the pathogenesis of age-related cataract (ARC). Most oxidative DNA lesions are repaired via the base excision repair (BER) proteins including 8-oxoguanine DNA glycosylase 1 (OGG1). This study examined DNA methylation of CpG islands upstream of OGG1 and their relation to the gene expression in lens cortex from ARC patients. METHODS The clinical case-control study consisted of 15 cortical type of ARC patients and 15 age-matched non-ARC controls who received transparent lens extraction due to vitreoretinal diseases. OGG1 expression in lens cortex was analyzed by qRT-PCR and Western blot. The localization and the proportion of cells positive for OGG1 were determined by immunofluorescence. Bisulfite-sequencing PCR (BSP) was performed to evaluate the methylation status of CpG islands near OGG1 in DNA extracted from lens cortex. To test relationship between the methylation and the expression of the gene of interest, 5-Aza-2'-deoxycytidine (5-Aza-dC) was used to induce demethylation of cultured human lens epithelium B-3 (HLE B-3). To test the role of OGG1 in the repair of cellular damage, HLE B-3 was transfected with OGG1 vector, followed by ultraviolet radiation b (UVB) exposure to induce apoptosis. RESULTS The mRNA and protein levels of OGG1 were significantly reduced in the lens cortex of ARC. Immunofluorescence showed that the proportion of OGG1-positive cells decreased significantly in ARC cortex in comparison with the control. The CpG island in first exon of OGG1 displayed hypermethylation in the DNA extracted from the lens cortex of ARC. Treatment of HLEB-3 cells with 5-Aza-dC upregulated OGG1 expression. UVB-induced apoptosis was attenuated after transfection with OGG1. CONCLUSION A reduced OGG1 expression was correlated with hypermethylation of a CpG island of OGG1 in lens cortex of ARC. The role of epigenetic change in OGG1 gene in the susceptibility to oxidative stress induced cortical ARC is warranted to further study.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University , Nantong, Jiangsu Province , China and
| | | | | | | | | | | |
Collapse
|
13
|
Xu B, Kang L, Zhang G, Wu J, Zhu R, Yang M, Guan H. The Changes of 8-OHdG, hOGG1, APE1 and Pol β in Lenses of Patients with Age-Related Cataract. Curr Eye Res 2014; 40:378-85. [DOI: 10.3109/02713683.2014.924148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Drenjancevic I, Kibel A. Restoring Vascular Function with Hyperbaric Oxygen Treatment: Recovery Mechanisms. J Vasc Res 2013; 51:1-13. [DOI: 10.1159/000355925] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/05/2013] [Indexed: 11/19/2022] Open
|
15
|
Saccà SC, Roszkowska AM, Izzotti A. Environmental light and endogenous antioxidants as the main determinants of non-cancer ocular diseases. Mutat Res 2013; 752:153-171. [PMID: 23337404 DOI: 10.1016/j.mrrev.2013.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 02/03/2023]
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Exogenous sources of reactive oxygen species (ROS) such as UV light, visible light, ionizing radiation, chemotherapeutics, and environmental toxins contribute to oxidative damage in ocular tissues. Long-term exposure to these insults places the aging eye at considerable risk for pathological consequences of oxidative stress. Furthermore, in eye tissues, mitochondria are an important endogenous source of ROS. Over time, all ocular structures, from the tear film to the retina, undergo oxidative stress, and therefore, the antioxidant defenses of each tissue assume the role of a safeguard against degenerative ocular pathologies. The ocular surface and cornea protect the other ocular tissues and are significantly exposed to oxidative stress of environmental origin. Overwhelming of antioxidant defenses in these tissues clinically manifests as pathologies including pterygium, corneal dystrophies, and endothelial Fuch's dystrophy. The crystalline lens is highly susceptible to oxidative damage in aging because its cells and their intracellular proteins are not turned over or replaced, thus providing the basis for cataractogenesis. The trabecular meshwork, which is the anterior chamber tissue devoted to aqueous humor drainage, has a particular susceptibility to mitochondrial oxidative injury that affects its endothelium and leads to an intraocular pressure increase that marks the beginning of glaucoma. Photo-oxidative stress can cause acute or chronic retinal damage. The pathogenesis of age-related macular degeneration involves oxidative stress and death of the retinal pigment epithelium followed by death of the overlying photoreceptors. Accordingly, converging evidence indicates that mutagenic mechanisms of environmental and endogenous sources play a fundamental pathogenic role in degenerative eye diseases.
Collapse
Affiliation(s)
- Sergio C Saccà
- Department of Head/Neck Pathologies, St Martino Hospital, Ophthalmology unit, Genoa, Italy
| | - Anna Maria Roszkowska
- Department of Specialized Surgery, University Hospital, Ophthalmology Unit, Messina, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132, Genoa, Italy.
| |
Collapse
|
16
|
Cui X, Zhang J, Du R, Wang L, Archacki S, Zhang Y, Yuan M, Ke T, Li H, Li D, Li C, Li DWC, Tang Z, Yin Z, Liu M. HSF4 is involved in DNA damage repair through regulation of Rad51. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1308-15. [PMID: 22587838 DOI: 10.1016/j.bbadis.2012.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/26/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
Heat shock factor protein 4 (HSF4) is expressed exclusively in the ocular lens and plays a critical role in the lens formation and differentiation. Mutations in the HSF4 gene lead to congenital and senile cataract. However, the molecular mechanisms causing this disease have not been well characterized. DNA damage in lens is a crucial risk factor in senile cataract formation, and its timely repair is essential for maintaining the lens' transparency. Our study firstly found evidence that HSF4 contributes to the repair of DNA strand breaks. Yet, this does not occur with cataract causative mutations in HSF4. We verify that DNA damage repair is mediated by the binding of HSF4 to a heat shock element in the Rad51 promoter, a gene which assists in the homologous recombination (HR) repair of DNA strand breaks. HSF4 up-regulates Rad51 expression while mutations in HSF4 fail, and DNA does not get repaired. Camptothecin, which interrupts the regulation of Rad51 by HSF4, also affects DNA damage repair. Additionally, with HSF4 knockdown in the lens of Zebrafish, DNA damage was observed and the protein level of Rad51 was significantly lower. Our study presents the first evidence demonstrating that HSF4 plays a role in DNA damage repair and may contribute a better understanding of congenital cataract formation.
Collapse
Affiliation(s)
- Xiukun Cui
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Koltai E, Zhao Z, Lacza Z, Cselenyak A, Vacz G, Nyakas C, Boldogh I, Ichinoseki-Sekine N, Radak Z. Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage. Rejuvenation Res 2011; 14:585-96. [PMID: 21867412 DOI: 10.1089/rej.2011.1178] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We have investigated the effects of 2 weeks of insulin-like growth factor-1 (IGF-1) supplementation (5 μg/kg per day) and 6 weeks of exercise training (60% of the maximal oxygen consumption [VO₂ max]) on neurogenesis, DNA damage/repair, and sirtuin content in the hippocampus of young (3 months old) and old (26 months old) rats. Exercise improved the spatial memory of the old group, but IGF-1 supplementation eliminated this effect. An age-associated decrease in neurogenesis was attenuated by exercise and IGF-1 treatment. Aging increased the levels of 8-oxo-7,8-dihydroguanine (8-oxoG) and the protein Ku70, indicating the role of DNA damage in age-related neuropathology. Acetylation of 8-oxoguanine DNA glycosylase (OGG1) was detected in vivo, and this decreased with aging. However, in young animals, exercise and IGF-1 treatment increased acetylated (ac) OGG1 levels. Sirtuin 1 (SIRT1) and SIRT3, as DNA damage-associated lysine deacetylases, were measured, and SIRT1 decreased with aging, resulting in a large increase in acetylated lysine residues in the hippocampus. On the other hand, SIRT3 increased with aging. Exercise-induced neurogenesis might not be a causative factor of increased spatial memory, because IGF-1 plus exercise can induce neurogenesis in the hippocampus of older rats. Data revealed that the age-associated increase in 8-oxoG levels is due to decreased acetylation of OGG1. Age-associated decreases in SIRT1 and the associated increase in lysine acetylation, in the hippocampus, could have significant impact on function and thus, could suggest a therapeutic target.
Collapse
Affiliation(s)
- Erika Koltai
- Semmelweis University , Research Institute of Sport Science, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|