1
|
Ma S, He H, Ren X. Single-Cell and Transcriptome Analysis of Periodontitis: Molecular Subtypes and Biomarkers Linked to Mitochondrial Dysfunction and Immunity. J Inflamm Res 2024; 17:11659-11678. [PMID: 39741754 PMCID: PMC11687296 DOI: 10.2147/jir.s498739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/10/2024] [Indexed: 01/03/2025] Open
Abstract
Background Periodontitis represents an inflammatory disease with multiple contributing factors, affecting both oral and systemic health. The mechanisms linking mitochondrial dysfunction to immune responses in periodontitis remain unclear, limiting the development of individualized diagnostic and therapeutic approaches. Objective This study aims to elucidate the roles of mitochondrial dysfunction and immune responses in the pathogenesis of periodontitis, identify distinct molecular subtypes, and discover robust diagnostic biomarkers to support precision medicine approaches. Methods Single-cell RNA sequencing and transcriptome data from periodontitis patients were analyzed to identify gene signatures linked to macrophages and mitochondria. Consensus clustering was applied to classify molecular subtypes. Potential biomarkers were identified using five machine learning algorithms and validated in clinical samples through qPCR and IHC. Results Four molecular subtypes were identified: quiescent, macrophage-dominant, mitochondria-dominant, and mixed, each exhibiting unique gene expression patterns. From 13 potential biomarkers, eight were shortlisted using machine learning, and five (BNIP3, FAHD1, UNG, CBR3, and SLC25A43) were validated in clinical samples. Among them, BNIP3, FAHD1, and UNG were significantly downregulated (p < 0.05). Conclusion This study identifies novel molecular subtypes and biomarkers that elucidate the interplay between immune responses and mitochondrial dysfunction in periodontitis. These findings provide insights into the disease's heterogeneity and lay the foundation for developing non-invasive diagnostic tools and personalized therapeutic strategies.
Collapse
Affiliation(s)
- Sijia Ma
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming, 650106, People’s Republic of China
- Yunnan Key Laboratory of Stomatology, Kunming, 650106, People’s Republic of China
| |
Collapse
|
2
|
Cappuccio E, Holzknecht M, Petit M, Heberle A, Rytchenko Y, Seretis A, Pierri CL, Gstach H, Jansen-Dürr P, Weiss AKH. FAHD1 and mitochondrial metabolism: a decade of pioneering discoveries. FEBS J 2024. [PMID: 39642098 DOI: 10.1111/febs.17345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
This review consolidates a decade of research on fumarylacetoacetate hydrolase domain containing protein 1 (FAHD1), a mitochondrial oxaloacetate tautomerase and decarboxylase with profound implications in cellular metabolism. Despite its critical role as a regulator in mitochondrial metabolism, FAHD1 has remained an often-overlooked enzyme in broader discussions of mitochondrial function. After more than 12 years of research, it is increasingly clear that FAHD1's contributions to cellular metabolism, oxidative stress regulation, and disease processes such as cancer and aging warrant recognition in both textbooks and comprehensive reviews. The review delves into the broader implications of FAHD1 in mitochondrial function, emphasizing its roles in mitigating reactive oxygen species (ROS) levels and regulating complex II activity, particularly in cancer cells. This enzyme's significance is further highlighted in the context of aging, where FAHD1's activity has been shown to influence cellular senescence, mitochondrial quality control, and the aging process. Moreover, FAHD1's involvement in glutamine metabolism and its impact on cancer cell proliferation, particularly in aggressive breast cancer subtypes, underscores its potential as a therapeutic target. In addition to providing a comprehensive account of FAHD1's biochemical properties and structural insights, the review integrates emerging hypotheses regarding its role in metabolic reprogramming, immune regulation, and mitochondrial dynamics. By establishing a detailed understanding of FAHD1's physiological roles and therapeutic potential, this work advocates for FAHD1's recognition in foundational texts and resources, marking a pivotal step in its integration into mainstream metabolic research and clinical applications in treating metabolic disorders, cancer, and age-related diseases.
Collapse
Affiliation(s)
- Elia Cappuccio
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Max Holzknecht
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Michèle Petit
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Anne Heberle
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Yana Rytchenko
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Athanasios Seretis
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Ciro L Pierri
- Department of Pharmacy-Pharmaceutical Sciences, Università di Bari, Italy
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Austria
| | - Pidder Jansen-Dürr
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| | - Alexander K H Weiss
- Faculty of Biology, Institute for Biomedical Aging Research, Universität Innsbruck, Austria
| |
Collapse
|
3
|
Heberle A, Cappuccio E, Andric A, Kuen T, Simonini A, Weiss AKH. Mitochondrial enzyme FAHD1 reduces ROS in osteosarcoma. Sci Rep 2024; 14:9231. [PMID: 38649439 PMCID: PMC11035622 DOI: 10.1038/s41598-024-60012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
This study investigated the impact of overexpressing the mitochondrial enzyme Fumarylacetoacetate hydrolase domain-containing protein 1 (FAHD1) in human osteosarcoma epithelial cells (U2OS) in vitro. While the downregulation or knockdown of FAHD1 has been extensively researched in various cell types, this study aimed to pioneer the exploration of how increased catalytic activity of human FAHD1 isoform 1 (hFAHD1.1) affects human cell metabolism. Our hypothesis posited that elevation in FAHD1 activity would lead to depletion of mitochondrial oxaloacetate levels. This depletion could potentially result in a decrease in the flux of the tricarboxylic acid (TCA) cycle, thereby accompanied by reduced ROS production. In addition to hFAHD1.1 overexpression, stable U2OS cell lines were established overexpressing a catalytically enhanced variant (T192S) and a loss-of-function variant (K123A) of hFAHD1. It is noteworthy that homologs of the T192S variant are present in animals exhibiting increased resistance to oxidative stress and cancer. Our findings demonstrate that heightened activity of the mitochondrial enzyme FAHD1 decreases cellular ROS levels in U2OS cells. However, these results also prompt a series of intriguing questions regarding the potential role of FAHD1 in mitochondrial metabolism and cellular development.
Collapse
Affiliation(s)
- Anne Heberle
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Elia Cappuccio
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Tatjana Kuen
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Anna Simonini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
Jiang GJ, You XG, Fan TJ. Carteolol triggers senescence via activation of β-arrestin-ERK-NOX4-ROS pathway in human corneal endothelial cells in vitro. Chem Biol Interact 2023; 380:110511. [PMID: 37120125 DOI: 10.1016/j.cbi.2023.110511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Carteolol is a commonly-used topical medication for primary open-angle glaucoma. However, long-term and frequent ocular application of carteolol entails its residuals at low concentration in the aqueous humor for a long duration and may exert latent toxicity in the human corneal endothelial cells (HCEnCs). Here, we treated the HCEnCs in vitro with 0.0117% carteolol for 10 days. Thereafter, we removed the cartelolol and normally cultured the cells for 25 days to investigate the chronical toxicity of carteolol and the underlying mechanism. The results exhibited that 0.0117% carteolol induces senescent features in the HCEnCs, such as increased senescence-associated β-galactosidase positive rates, enlarged relative cell area and upregulated p16INK4A and senescence-associated secretory phenotypes, including IL-1α, TGF-β1, IL-10, TNF-α, CCL-27, IL-6 and IL-8, as well as decreased Lamin B1 expression and cell viability and proliferation. Thereby, further exploration demonstrated that the carteolol activates β-arrestin-ERK-NOX4 pathway to increase reactive oxygen species (ROS) production that imposes oxidative stress on energetic metabolism causing a vicious cycle between declining ATP and increasing ROS production and downregulation of NAD+ resulting in metabolic disturbance-mediated senescence of the HCEnCs. The excess ROS also impair DNA to activate the DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with diminished poly(ADP-Ribose) polymerase (PARP) 1, a NAD+-dependent enzyme for DNA damage repair, resulting in cell cycle arrest and subsequent DDR-mediated senescence. Taken together, carteolol induces excess ROS to trigger HCEnC senescence via metabolic disturbance and DDR pathway.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China
| | - Xin-Guo You
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong province, 261053, China
| | - Ting-Jun Fan
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong province, 266003, China.
| |
Collapse
|
5
|
Jiang GJ, You XG, Fan TJ. Ultraviolet B irradiation induces senescence of human corneal endothelial cells in vitro by DNA damage response and oxidative stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112568. [PMID: 36137302 DOI: 10.1016/j.jphotobiol.2022.112568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The human corneal endothelial cells (HCEnCs) play a vital role in the maintenance of corneal transparency and visual acuity. In our daily life, HCEnCs are inevitably exposed to ultraviolet B (UVB) radiation leading to decreases of visual acuity and corneal transparency resulting in visual loss eventually. Therefore, understanding the UVB-induced cytotoxicity in HCEnCs is of importance for making efficient strategies to protect our vision from UVB-damage. However, in-depth knowledge about UVB-induced cytotoxicity in HCEnCs is missing. Herein, we pulse-irradiated the HCEnCs in vitro with 150 mJ/cm2 UVB (the environmental dose) at each subculture for 4 passages to explore the insights into UVB-induced phototoxicity. The results showed that the UVB-treated HCEnCs exhibit typical senescent characteristics, including significantly enlarged relative cell area, increased senescence-associated β-galactosidase positive staining, and upregulated p16INK4A and senescence associated secretory phenotypes (SASPs) such as CCL-27, IL-1α/6/8/10, TGF-β1 and TNF-α, as well as decreased cell proliferation and Lamin B1 expression, and translocation of Lamin B1. Furthermore, we explored the causative mechanisms of senescence and found that 150 mJ/cm2 UVB pulse-irradiation impairs DNA to activate DNA damage response (DDR) pathway of ATM-p53-p21WAF1/CIP1 with downregulated DNA repair enzyme PARP1, leading to cell cycle arrest resulting in DDR-mediated senescence. Meanwhile, UVB pulse-irradiation also elicits a consistent increase of ROS production to aggravate DNA damage and impose oxidative stress on energy metabolism leading to metabolic disturbance resulting in metabolic disturbance-mediated senescence. Altogether, the repeated pulse-irradiation of 150 mJ/cm2 UVB induces HCEnC senescence via both DDR pathway and energy metabolism disturbance.
Collapse
Affiliation(s)
- Guo-Jian Jiang
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China
| | - Xin-Guo You
- School of bioscience and technology, Weifang medical university, Weifang, Shandong province 261053, China
| | - Ting-Jun Fan
- College of marine life sciences, Ocean university of China, Qingdao, Shandong province 266003, China.
| |
Collapse
|
6
|
Holzknecht M, Guerrero‐Navarro L, Petit M, Albertini E, Damisch E, Simonini A, Schmitt F, Parson W, Fiegl H, Weiss A, Jansen‐Duerr P. The mitochondrial enzyme
FAHD1
regulates complex
II
activity in breast cancer cells and is indispensable for basal
BT
‐20 cells
in vitro. FEBS Lett 2022; 596:2781-2794. [DOI: 10.1002/1873-3468.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Max Holzknecht
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Lena Guerrero‐Navarro
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Michele Petit
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Eva Albertini
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Elisabeth Damisch
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Anna Simonini
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Fernando Schmitt
- Medical Faculty of University of Porto CINTESIS@RISE (Health Research Network), Alameda Prof. Hernâni Monteiro 4200‐319 Porto Portugal
| | - Walther Parson
- Institute of Legal Medicine Medical University of Innsbruck 6020 Innsbruck Austria
- Forensic Science Program, The Pennsylvania State University University Park PA 16801 USA
| | - Heidelinde Fiegl
- Medical University of Innsbruck, Department of Obstetrics and Gynaecology Anichstraße 35 6020 Innsbruck Austria
| | - Alexander Weiss
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| | - Pidder Jansen‐Duerr
- Leopold‐Franzens University of Innsbruck Institute for Biomedical Aging Research Rennweg 10 6020 Innsbruck Austria
| |
Collapse
|
7
|
Integrated Analysis of Cancer Tissue and Vitreous Humor from Retinoblastoma Eyes Reveals Unique Tumor-Specific Metabolic and Cellular Pathways in Advanced and Non-Advanced Tumors. Cells 2022; 11:cells11101668. [PMID: 35626705 PMCID: PMC9139581 DOI: 10.3390/cells11101668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/16/2022] Open
Abstract
Retinoblastoma (Rb) is a pediatric intraocular malignancy that is proposed to originate from maturing cone cell precursors in the developing retina. The molecular mechanisms underlying the biological and clinical behaviors are important to understand in order to improve the management of advanced-stage tumors. While the genetic causes of Rb are known, an integrated understanding of the gene expression and metabolic processes in tumors of human eyes is deficient. By integrating transcriptomic profiling from tumor tissues and metabolomics from tumorous eye vitreous humor samples (with healthy, age-matched pediatric retinae and vitreous samples as controls), we uncover unique functional associations between genes and metabolites. We found distinct gene expression patterns between clinically advanced and non-advanced Rb. Global metabolomic analysis of the vitreous humor of the same Rb eyes revealed distinctly altered metabolites, indicating how tumor metabolism has diverged from healthy pediatric retina. Several key enzymes that are related to cellular energy production, such as hexokinase 1, were found to be reduced in a manner corresponding to altered metabolites; notably, a reduction in pyruvate levels. Similarly, E2F2 was the most significantly elevated E2F family member in our cohort that is part of the cell cycle regulatory circuit. Ectopic expression of the wild-type RB1 gene in the Rb-null Y79 and WERI-Rb1 cells rescued hexokinase 1 expression, while E2F2 levels were repressed. In an additional set of Rb tumor samples and pediatric healthy controls, we further validated differences in the expression of HK1 and E2F2. Through an integrated omics analysis of the transcriptomics and metabolomics of Rb, we uncovered a significantly altered tumor-specific metabolic circuit that reduces its dependence on glycolytic pathways and is governed by Rb1 and HK1.
Collapse
|
8
|
Kushnareva Y, Moraes V, Suess J, Peters B, Newmeyer DD, Kuwana T. Disruption of mitochondrial quality control genes promotes caspase-resistant cell survival following apoptotic stimuli. J Biol Chem 2022; 298:101835. [PMID: 35304098 PMCID: PMC9018395 DOI: 10.1016/j.jbc.2022.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
In cells undergoing cell-intrinsic apoptosis, mitochondrial outer membrane permeabilization (MOMP) typically marks an irreversible step in the cell death process. However, in some cases, a subpopulation of treated cells can exhibit a sublethal response, termed "minority MOMP." In this phenomenon, the affected cells survive, despite a low level of caspase activation and subsequent limited activation of the endonuclease caspase-activated DNase (DNA fragmentation factor subunit beta). Consequently, these cells can experience DNA damage, increasing the probability of oncogenesis. However, little is known about the minority MOMP response. To discover genes that affect the MOMP response in individual cells, we conducted an imaging-based phenotypic siRNA screen. We identified multiple candidate genes whose downregulation increased the heterogeneity of MOMP within single cells, among which were genes related to mitochondrial dynamics and mitophagy that participate in the mitochondrial quality control (MQC) system. Furthermore, to test the hypothesis that functional MQC is important for reducing the frequency of minority MOMP, we developed an assay to measure the clonogenic survival of caspase-engaged cells. We found that cells deficient in various MQC genes were indeed prone to aberrant post-MOMP survival. Our data highlight the important role of proteins involved in mitochondrial dynamics and mitophagy in preventing apoptotic dysregulation and oncogenesis.
Collapse
Affiliation(s)
- Yulia Kushnareva
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vivian Moraes
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Julian Suess
- Department of Biochemical Pharmacology, University of Konstanz, Konstanz, Germany
| | - Bjoern Peters
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Donald D Newmeyer
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Tomomi Kuwana
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, California, USA.
| |
Collapse
|
9
|
Fink BD, Rauckhorst AJ, Taylor EB, Yu L, Sivitz WI. Membrane potential-dependent regulation of mitochondrial complex II by oxaloacetate in interscapular brown adipose tissue. FASEB Bioadv 2022; 4:197-210. [PMID: 35392250 PMCID: PMC8973305 DOI: 10.1096/fba.2021-00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/11/2022] Open
Abstract
Classically, mitochondrial respiration responds to decreased membrane potential (ΔΨ) by increasing respiration. However, we found that for succinate-energized complex II respiration in skeletal muscle mitochondria (unencumbered by rotenone), low ΔΨ impairs respiration by a mechanism culminating in oxaloacetate (OAA) inhibition of succinate dehydrogenase (SDH). Here, we investigated whether this phenomenon extends to far different mitochondria of a tissue wherein ΔΨ is intrinsically low, i.e., interscapular brown adipose tissue (IBAT). Also, to advance our knowledge of the mechanism, we performed isotopomer studies of metabolite flux not done in our previous muscle studies. In additional novel work, we addressed possible ways ADP might affect the mechanism in IBAT mitochondria. UCP1 activity, and consequently ΔΨ, were perturbed both by GDP, a well-recognized potent inhibitor of UCP1 and by the chemical uncoupler carbonyl cyanide m-chlorophenyl hydrazone (FCCP). In succinate-energized mitochondria, GDP increased ΔΨ but also increased rather than decreased (as classically predicted under low ΔΨ) O2 flux. In GDP-treated mitochondria, FCCP reduced potential but also decreased respiration. Metabolite studies by NMR and flux analyses by LC-MS support a mechanism, wherein ΔΨ effects on the production of reactive oxygen alters the NADH/NAD+ ratio affecting OAA accumulation and, hence, OAA inhibition of SDH. We also found that ADP-altered complex II respiration in complex fashion probably involving decreased ΔΨ due to ATP synthesis, a GDP-like nucleotide inhibition of UCP1, and allosteric enzyme action. In summary, complex II respiration in IBAT mitochondria is regulated by UCP1-dependent ΔΨ altering substrate flow through OAA and OAA inhibition of SDH.
Collapse
Affiliation(s)
- Brian D. Fink
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| | - Adam J. Rauckhorst
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Eric B. Taylor
- Department of Molecular Physiology and BiophysicsUniversity of IowaIowa CityIowaUSA
| | - Liping Yu
- Department of Biochemistry and Molecular BiologyUniversity of IowaIowa CityIowaUSA
- NMR Core FacilityUniversity of IowaIowa CityIowaUSA
| | - William I. Sivitz
- Department of Internal Medicine/Endocrinology and MetabolismUniversity of Iowa and the Iowa City Veterans Affairs Medical CenterIowa CityIowaUSA
| |
Collapse
|
10
|
Weiss AKH, Wurzer R, Klapec P, Eder MP, Loeffler JR, von Grafenstein S, Monteleone S, Liedl KR, Jansen-Dürr P, Gstach H. Inhibitors of Fumarylacetoacetate Hydrolase Domain Containing Protein 1 (FAHD1). Molecules 2021; 26:5009. [PMID: 34443596 PMCID: PMC8398924 DOI: 10.3390/molecules26165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/05/2022] Open
Abstract
FAH domain containing protein 1 (FAHD1) acts as oxaloacetate decarboxylase in mitochondria, contributing to the regulation of the tricarboxylic acid cycle. Guided by a high-resolution X-ray structure of FAHD1 liganded by oxalate, the enzymatic mechanism of substrate processing is analyzed in detail. Taking the chemical features of the FAHD1 substrate oxaloacetate into account, the potential inhibitor structures are deduced. The synthesis of drug-like scaffolds afforded first-generation FAHD1-inhibitors with activities in the low micromolar IC50 range. The investigations disclosed structures competing with the substrate for binding to the metal cofactor, as well as scaffolds, which may have a novel binding mode to FAHD1.
Collapse
Affiliation(s)
- Alexander K. H. Weiss
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
| | - Richard Wurzer
- Department of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, A-1090 Vienna, Austria;
| | - Patrycia Klapec
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Konrad-Lorenz-Straße 10, A-3430 Tulln an der Donau, Austria; (P.K.); (M.P.E.)
| | - Manuel Philip Eder
- Campus Tulln, University of Applied Sciences Wiener Neustadt, Konrad-Lorenz-Straße 10, A-3430 Tulln an der Donau, Austria; (P.K.); (M.P.E.)
| | - Johannes R. Loeffler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria; (J.R.L.); (S.v.G.); (S.M.); (K.R.L.)
| | - Susanne von Grafenstein
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria; (J.R.L.); (S.v.G.); (S.M.); (K.R.L.)
| | - Stefania Monteleone
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria; (J.R.L.); (S.v.G.); (S.M.); (K.R.L.)
| | - Klaus R. Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria; (J.R.L.); (S.v.G.); (S.M.); (K.R.L.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 58, A-6020 Innsbruck, Austria
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Division, Faculty of Life Sciences, University of Vienna, Althanstraße 14, UZ2 E349, A-1090 Vienna, Austria
| |
Collapse
|
11
|
High Glycolytic Activity Enhances Stem Cell Reprogramming of Fahd1-KO Mouse Embryonic Fibroblasts. Cells 2021; 10:cells10082040. [PMID: 34440809 PMCID: PMC8392800 DOI: 10.3390/cells10082040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondria play a key role in metabolic transitions involved in the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs), but the underlying molecular mechanisms remain largely unexplored. To obtain new insight into the mechanisms of cellular reprogramming, we studied the role of FAH domain-containing protein 1 (FAHD1) in the reprogramming of murine embryonic fibroblasts (MEFs) into iPSCs and their subsequent differentiation into neuronal cells. MEFs from wild type (WT) and Fahd1-knock-out (KO) mice were reprogrammed into iPSCs and characterized for alterations in metabolic parameters and the expression of marker genes indicating mitochondrial biogenesis. Fahd1-KO MEFs showed a higher reprogramming efficiency accompanied by a significant increase in glycolytic activity as compared to WT. We also observed a strong increase of mitochondrial DNA copy number and expression of biogenesis marker genes in Fahd1-KO iPSCs relative to WT. Neuronal differentiation of iPSCs was accompanied by increased expression of mitochondrial biogenesis genes in both WT and Fahd1-KO neurons with higher expression in Fahd1-KO neurons. Together these observations establish a role of FAHD1 as a potential negative regulator of reprogramming and add additional insight into mechanisms by which FAHD1 modulates mitochondrial functions.
Collapse
|
12
|
Koendjbiharie JG, van Kranenburg R, Kengen SWM. The PEP-pyruvate-oxaloacetate node: variation at the heart of metabolism. FEMS Microbiol Rev 2021; 45:fuaa061. [PMID: 33289792 PMCID: PMC8100219 DOI: 10.1093/femsre/fuaa061] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
At the junction between the glycolysis and the tricarboxylic acid cycle-as well as various other metabolic pathways-lies the phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node (PPO-node). These three metabolites form the core of a network involving at least eleven different types of enzymes, each with numerous subtypes. Obviously, no single organism maintains each of these eleven enzymes; instead, different organisms possess different subsets in their PPO-node, which results in a remarkable degree of variation, despite connecting such deeply conserved metabolic pathways as the glycolysis and the tricarboxylic acid cycle. The PPO-node enzymes play a crucial role in cellular energetics, with most of them involved in (de)phosphorylation of nucleotide phosphates, while those responsible for malate conversion are important redox enzymes. Variations in PPO-node therefore reflect the different energetic niches that organisms can occupy. In this review, we give an overview of the biochemistry of these eleven PPO-node enzymes. We attempt to highlight the variation that exists, both in PPO-node compositions, as well as in the roles that the enzymes can have within those different settings, through various recent discoveries in both bacteria and archaea that reveal deviations from canonical functions.
Collapse
Affiliation(s)
- Jeroen G Koendjbiharie
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| | - Richard van Kranenburg
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
- Corbion, Arkelsedijk 46, 4206 AC Gorinchem, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Stippeneng4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
13
|
Structural and functional comparison of fumarylacetoacetate domain containing protein 1 in human and mouse. Biosci Rep 2021; 40:222164. [PMID: 32068790 PMCID: PMC7056447 DOI: 10.1042/bsr20194431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
FAH domain containing protein 1 (FAHD1) is a mammalian mitochondrial protein, displaying bifunctionality as acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. We report the crystal structure of mouse FAHD1 and structural mapping of the active site of mouse FAHD1. Despite high structural similarity with human FAHD1, a rabbit monoclonal antibody (RabMab) could be produced that is able to recognize mouse FAHD1, but not the human form, whereas a polyclonal antibody recognized both proteins. Epitope mapping in combination with our deposited crystal structures revealed that the epitope overlaps with a reported SIRT3 deacetylation site in mouse FAHD1.
Collapse
|
14
|
Gerna D, Arc E, Holzknecht M, Roach T, Jansen-Dürr P, Weiss AK, Kranner I. AtFAHD1a: A New Player Influencing Seed Longevity and Dormancy in Arabidopsis? Int J Mol Sci 2021; 22:2997. [PMID: 33804275 PMCID: PMC8001395 DOI: 10.3390/ijms22062997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) proteins form a superfamily found in Archaea, Bacteria, and Eukaryota. However, few fumarylacetoacetate hydrolase domain (FAHD)-containing proteins have been studied in Metazoa and their role in plants remains elusive. Sequence alignments revealed high homology between two Arabidopsis thaliana FAHD-containing proteins and human FAHD1 (hFAHD1) implicated in mitochondrial dysfunction-associated senescence. Transcripts of the closest hFAHD1 orthologue in Arabidopsis (AtFAHD1a) peak during seed maturation drying, which influences seed longevity and dormancy. Here, a homology study was conducted to assess if AtFAHD1a contributes to seed longevity and vigour. We found that an A. thaliana T-DNA insertional line (Atfahd1a-1) had extended seed longevity and shallower thermo-dormancy. Compared to the wild type, metabolite profiling of dry Atfahd1a-1 seeds showed that the concentrations of several amino acids, some reducing monosaccharides, and δ-tocopherol dropped, whereas the concentrations of dehydroascorbate, its catabolic intermediate threonic acid, and ascorbate accumulated. Furthermore, the redox state of the glutathione disulphide/glutathione couple shifted towards a more reducing state in dry mature Atfahd1a-1 seeds, suggesting that AtFAHD1a affects antioxidant redox poise during seed development. In summary, AtFAHD1a appears to be involved in seed redox regulation and to affect seed quality traits such as seed thermo-dormancy and longevity.
Collapse
Affiliation(s)
- Davide Gerna
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Max Holzknecht
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| | - Pidder Jansen-Dürr
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Alexander K.H. Weiss
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
- Research Institute for Biomedical Aging Research, University of Innsbruck, Rennweg 10, 6020 Innsbruck, Austria
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria; (E.A.); (T.R.); (I.K.)
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; (M.H.); (P.J.-D.)
| |
Collapse
|
15
|
Weiss AKH, Albertini E, Holzknecht M, Cappuccio E, Dorigatti I, Krahbichler A, Damisch E, Gstach H, Jansen-Dürr P. Regulation of cellular senescence by eukaryotic members of the FAH superfamily - A role in calcium homeostasis? Mech Ageing Dev 2020; 190:111284. [PMID: 32574647 PMCID: PMC7116474 DOI: 10.1016/j.mad.2020.111284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/29/2020] [Accepted: 06/04/2020] [Indexed: 01/04/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) superfamily members are commonly expressed in the prokaryotic kingdom, where they take part in the committing steps of degradation pathways of complex carbon sources. Besides FAH itself, the only described FAH superfamily members in the eukaryotic kingdom are fumarylacetoacetate hydrolase domain containing proteins (FAHD) 1 and 2, that have been a focus of recent work in aging research. Here, we provide a review of current knowledge on FAHD proteins. Of those, FAHD1 has recently been described as a regulator of mitochondrial function and senescence, in the context of mitochondrial dysfunction associated senescence (MiDAS). This work further describes data based on bioinformatics analysis, 3D structure comparison and sequence alignment, that suggests a putative role of FAHD proteins as calcium binding proteins.
Collapse
Affiliation(s)
- Alexander K H Weiss
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria.
| | - Eva Albertini
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Max Holzknecht
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elia Cappuccio
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Ilaria Dorigatti
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Anna Krahbichler
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Elisabeth Damisch
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| | - Hubert Gstach
- University of Vienna, UZ2 E349, Department of Pharmaceutical Chemistry, Faculty of Life Sciences, Althanstrasse 14, 1090, Vienna, Austria
| | - Pidder Jansen-Dürr
- University of Innsbruck, Research Institute for Biomedical Aging Research, Rennweg 10, A-6020, Innsbruck, Austria; University of Innsbruck, Center for Molecular Biosciences Innsbruck (CMBI), Austria
| |
Collapse
|
16
|
Baraldo G, Etemad S, Weiss AKH, Jansen-Dürr P, Mack HID. Modulation of serotonin signaling by the putative oxaloacetate decarboxylase FAHD-1 in Caenorhabditis elegans. PLoS One 2019; 14:e0220434. [PMID: 31412049 PMCID: PMC6693844 DOI: 10.1371/journal.pone.0220434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
Human fumarylacetoacetate hydrolase (FAH) domain containing protein 1 (FAHD1) is a mitochondrial oxalocatate decarboxylase, the first of its kind identified in eukaryotes. The physiological role of FAHD1 in other eukaryotes is still poorly understood. In C. elegans loss of the FAHD1 ortholog FAHD-1 was reported to impair mitochondrial function, locomotion and egg-laying behavior, yet the underlying mechanisms remained unclear. Using tissue-specific rescue of fahd-1(-) worms, we find that these phenotypic abnormalities are at least in part due to fahd-1’s function in neurons. Moreover, we show that egg-laying defects in fahd-1(-) worms can be fully rescued by external dopamine administration and that depletion of fahd-1 expression induces expression of several enzymes involved in serotonin biosynthesis. Together, our results support a role for fahd-1 in modulating serotonin levels and suggest this protein as a novel link between metabolism and neurotransmitter signaling in the nervous system. Finally, we propose a model to explain how a metabolic defect could ultimately lead to marked changes in neuronal signaling.
Collapse
Affiliation(s)
- Giorgia Baraldo
- Department of Molecular and Cell Biology, Research Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Solmaz Etemad
- Department of Molecular and Cell Biology, Research Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Alexander K. H. Weiss
- Department of Molecular and Cell Biology, Research Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Department of Molecular and Cell Biology, Research Institute for Biomedical Ageing Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
- * E-mail: (PJD); (HIDM)
| | - Hildegard I. D. Mack
- Department of Biochemistry and Genetics of Aging, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- * E-mail: (PJD); (HIDM)
| |
Collapse
|
17
|
Weiss AKH, Holzknecht M, Cappuccio E, Dorigatti I, Kreidl K, Naschberger A, Rupp B, Gstach H, Jansen-Dürr P. Expression, Purification, Crystallization, and Enzyme Assays of Fumarylacetoacetate Hydrolase Domain-Containing Proteins. J Vis Exp 2019:10.3791/59729. [PMID: 31282888 PMCID: PMC7115867 DOI: 10.3791/59729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fumarylacetoacetate hydrolase (FAH) domain-containing proteins (FAHD) are identified members of the FAH superfamily in eukaryotes. Enzymes of this superfamily generally display multi-functionality, involving mainly hydrolase and decarboxylase mechanisms. This article presents a series of consecutive methods for the expression and purification of FAHD proteins, mainly FAHD protein 1 (FAHD1) orthologues among species (human, mouse, nematodes, plants, etc.). Covered methods are protein expression in E. coli, affinity chromatography, ion exchange chromatography, preparative and analytical gel filtration, crystallization, X-ray diffraction, and photometric assays. Concentrated protein of high levels of purity (>98%) may be employed for crystallization or antibody production. Proteins of similar or lower quality may be employed in enzyme assays or used as antigens in detection systems (Western-Blot, ELISA). In the discussion of this work, the identified enzymatic mechanisms of FAHD1 are outlined to describe its hydrolase and decarboxylase bi-functionality in more detail.
Collapse
Affiliation(s)
- Alexander K H Weiss
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria;
| | - Max Holzknecht
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| | - Elia Cappuccio
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| | - Ilaria Dorigatti
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria
| | - Karin Kreidl
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria
| | | | - Bernhard Rupp
- Division of Genetic Epidemiology, Medical University of Innsbruck Austria
| | - Hubert Gstach
- Faculty of Chemistry, Department of Organic Chemistry, University of Vienna Austria
| | - Pidder Jansen-Dürr
- Research Institute for Biomedical Aging Research, University of Innsbruck Austria; Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck Austria
| |
Collapse
|
18
|
Structural basis for the bi-functionality of human oxaloacetate decarboxylase FAHD1. Biochem J 2018; 475:3561-3576. [PMID: 30348641 DOI: 10.1042/bcj20180750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
Whereas enzymes in the fumarylacetoacetate hydrolase (FAH) superfamily catalyze several distinct chemical reactions, the structural basis for their multi-functionality remains elusive. As a well-studied example, human FAH domain-containing protein 1 (FAHD1) is a mitochondrial protein displaying both acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. As mitochondrial ODx, FAHD1 acts antagonistically to pyruvate carboxylase, a key metabolic enzyme. Despite its importance for mitochondrial function, very little is known about the catalytic mechanisms underlying FAHD1 enzymatic activities, and the architecture of its ligated active site is currently ill defined. We present crystallographic data of human FAHD1 that provide new insights into the structure of the catalytic center at high resolution, featuring a flexible 'lid'-like helical region which folds into a helical structure upon binding of the ODx inhibitor oxalate. The oxalate-driven structural transition results in the generation of a potential catalytic triad consisting of E33, H30 and an associated water molecule. In silico docking studies indicate that the substrate is further stabilized by a complex hydrogen-bond network, involving amino acids Q109 and K123, identified herein as potential key residues for FAHD1 catalytic activity. Mutation of amino acids H30, E33 and K123 each had discernible influence on the ApH and/or ODx activity of FAHD1, suggesting distinct catalytic mechanisms for both activities. The structural analysis presented here provides a defined structural map of the active site of FAHD1 and contributes to a better understanding of the FAH superfamily of enzymes.
Collapse
|