1
|
Gangula A, Suresh D, Babu AS, Li Z, Upendran A, Kannan R. Gelatin and lipidoid integrate to create gelasomes to enhance siRNA delivery with low toxicity. Bioact Mater 2024; 40:557-570. [PMID: 39539730 PMCID: PMC11558258 DOI: 10.1016/j.bioactmat.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
RNAi therapeutics possess the potential to cure many uncurable human diseases. For instance, RNAi therapeutics using liposomes showed remarkable survival benefits in patients with liver diseases. However, the extension of liposomes to deliver RNA to cure other ailments has largely been unsuccessful. Therefore, researchers are focusing on designing and testing different combinations of materials for versatile RNA delivery applications. Yet, an efficient and safe RNA delivery platform has not been identified. In this work, we have developed a new class of RNA-delivery vehicle called "Gelasomes," using an incongruous combination of gelatin and lipidoid to exploit each material's unique properties while overcoming their inherent limitations. The low in vivo toxicity of Gelasomes is attributed to the exterior gelatin layers that shield the exposure of cationic lipidoid-siRNA clusters and yet present a biocompatible surface. Indeed, toxicity studies in mice indicate that repeated administration of Gelasomes (up to 48 mg/kg BW) is well-tolerated with no notable changes in body weight, hematology, or serum chemistry. Interestingly, the gelatin outer layer efficiently protects siRNA from serum degradation (48 h), preserving its functionality beyond two months of storage. Notably, Gelasomes possess dual siRNA conjugation modes, i.e., electrostatic binding with lipidoid core and covalent attachment to gelatin surface. The bivalency coupled with lipidoids' high transfection efficiency rendered Gelasomes with remarkably high gene silencing efficiency (>90 %) at very low treatment doses in vitro (40 μg/mL). In vivo studies further confirmed the high gene silencing ability of Gelasomes in non-small cell lung tumor mouse models. This new platform is tunable on all fronts: size, degree of surface coating, and biomolecule functionalization. Truncating the lipidoid C14-tail to a C8-tail yielded Gelasomes of reduced size. As lipidoids with different carbon lengths are synthesizable, we can develop a library of Gelasomes with different sizes. The surface coating with less gelatin resulted in high transfection efficiency at low doses of Gelasomes. The structure of Gelasomes offers chemical handles to couple target-specific molecules like antibodies to tune their properties for efficient biological application.
Collapse
Affiliation(s)
- Abilash Gangula
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | - Dhananjay Suresh
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
| | | | - Zhaohui Li
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA
| | - Anandhi Upendran
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Bioengineering, University of Missouri, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
| |
Collapse
|
2
|
Tarafder E, Nizamani MM, Karunarathna SC, Das D, Zeng X, Rind RA, Wang Y, Tian F. Advancements in genetic studies of mushrooms: a comprehensive review. World J Microbiol Biotechnol 2024; 40:275. [PMID: 39034336 DOI: 10.1007/s11274-024-04079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Genetic studies in mushrooms, driven by innovations such as CRISPR-Cas9 genome editing and RNA interference, transform our understanding of these enigmatic fungi and their multifaceted roles in agriculture, medicine, and conservation. This comprehensive review explores the rationale and significance of genetic research in mushrooms, delving into the ethical, regulatory, and ecological dimensions of this field. CRISPR-Cas9 emerges as a game-changing technology, enabling precise genome editing, targeted gene knockouts, and pathway manipulation. RNA interference complements these efforts by downregulating genes for improved crop yield and enhanced pest and disease resistance. Genetic studies also contribute to the conservation of rare species and developing more robust mushroom strains, fostering sustainable cultivation practices. Moreover, they unlock the potential for discovering novel medicinal compounds, offering new horizons in pharmaceuticals and nutraceuticals. As emerging technologies and ethical considerations shape the future of mushroom research, these studies promise to revolutionize our relationship with these fungi, paving the way for a more sustainable and innovative world.
Collapse
Affiliation(s)
- Entaj Tarafder
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Mir Muhammad Nizamani
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Samantha C Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, People's Republic of China
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Diptosh Das
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Xiangyu Zeng
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China
| | - Raza Ali Rind
- Department of Plant Breeding and Genetics, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| | - Fenghua Tian
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
| |
Collapse
|
3
|
Chhichholiya Y, Ruthuparna M, Velagaleti H, Munshi A. Brain metastasis in breast cancer: focus on genes and signaling pathways involved, blood-brain barrier and treatment strategies. Clin Transl Oncol 2023; 25:1218-1241. [PMID: 36897508 DOI: 10.1007/s12094-022-03050-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/12/2022] [Indexed: 03/11/2023]
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer in women. Despite advancement in early detection and efficient treatment, recurrence and metastasis continue to pose a significant risk to the life of BC patients. Brain metastasis (BM) reported in 17-20 percent of BC patients is considered as a major cause of mortality and morbidity in these patients. BM includes various steps from primary breast tumor to secondary tumor formation. Various steps involved are primary tumor formation, angiogenesis, invasion, extravasation, and brain colonization. Genes involved in different pathways have been reported to be associated with BC cells metastasizing to the brain. ADAM8 gene, EN1 transcription factor, WNT, and VEGF signaling pathway have been associated with primary breast tumor; MMP1, COX2, XCR4, PI3k/Akt, ERK and MAPK pathways in angiogenesis; Noth, CD44, Zo-1, CEMIP, S0X2 and OLIG2 are involved in invasion, extravasation and colonization, respectively. In addition, the blood-brain barrier is also a key factor in BM. Dysregulation of cell junctions, tumor microenvironment and loss of function of microglia leads to BBB disruption ultimately resulting in BM. Various therapeutic strategies are currently used to control the BM in BC. Oncolytic virus therapy, immune checkpoint inhibitors, mTOR-PI3k inhibitors and immunotherapy have been developed to target various genes involved in BM in BC. In addition, RNA interference (RNAi) and CRISPR/Cas9 are novel interventions in the field of BCBM where research to validate these and clinical trials are being carried out. Gaining a better knowledge of metastasis biology is critical for establishing better treatment methods and attaining long-term therapeutic efficacies against BC. The current review has been compiled with an aim to evaluate the role of various genes and signaling pathways involved in multiple steps of BM in BC. The therapeutic strategies being used currently and the novel ones being explored to control BM in BC have also been discussed at length.
Collapse
Affiliation(s)
- Yogita Chhichholiya
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Malayil Ruthuparna
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Harini Velagaleti
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
4
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Borgheti-Cardoso LN, Viegas JSR, Silvestrini AVP, Caron AL, Praça FG, Kravicz M, Bentley MVLB. Nanotechnology approaches in the current therapy of skin cancer. Adv Drug Deliv Rev 2020; 153:109-136. [PMID: 32113956 DOI: 10.1016/j.addr.2020.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Skin cancer is a high burden disease with a high impact on global health. Conventional therapies have several drawbacks; thus, the development of effective therapies is required. In this context, nanotechnology approaches are an attractive strategy for cancer therapy because they enable the efficient delivery of drugs and other bioactive molecules to target tissues with low toxic effects. In this review, nanotechnological tools for skin cancer will be summarized and discussed. First, pathology and conventional therapies will be presented, followed by the challenges of skin cancer therapy. Then, the main features of developing efficient nanosystems will be discussed, and next, the most commonly used nanoparticles (NPs) described in the literature for skin cancer therapy will be presented. Subsequently, the use of NPs to deliver chemotherapeutics, immune and vaccine molecules and nucleic acids will be reviewed and discussed as will the combination of physical methods and NPs. Finally, multifunctional delivery systems to codeliver anticancer therapeutic agents containing or not surface functionalization will be summarized.
Collapse
|
6
|
Rhana P, Trivelato RR, Beirão PSL, Cruz JS, Rodrigues ALP. Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? ACTA ACUST UNITED AC 2017; 50:e6011. [PMID: 28591378 PMCID: PMC5463531 DOI: 10.1590/1414-431x20176011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.
Collapse
Affiliation(s)
- P Rhana
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil.,Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R R Trivelato
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| | - P S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - J S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A L P Rodrigues
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| |
Collapse
|
7
|
Wu L, Leng D, Cun D, Foged C, Yang M. Advances in combination therapy of lung cancer: Rationales, delivery technologies and dosage regimens. J Control Release 2017; 260:78-91. [PMID: 28527735 DOI: 10.1016/j.jconrel.2017.05.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
Abstract
Lung cancer is a complex disease caused by a multitude of genetic and environmental factors. The progression of lung cancer involves dynamic changes in the genome and a complex network of interactions between cancer cells with multiple, distinct cell types that form tumors. Combination therapy using different pharmaceuticals has been proven highly effective due to the ability to affect multiple cellular pathways involved in the disease progression. However, the currently used drug combination designs are primarily based on empirical clinical studies, and little attention has been given to dosage regimens, i.e. how administration routes, onsets, and durations of the combinations influence the therapeutic outcome. This is partly because combination therapy is challenged by distinct physicochemical properties and in vivo pharmacokinetics/pharmacodynamics of the individual pharmaceuticals, including small molecule drugs and biopharmaceuticals, which make the optimization of dosing and administration schedule challenging. This article reviews the recent advances in the design and development of combinations of pharmaceuticals for the treatment of lung cancer. Focus is primarily on rationales for the selection of specific combination therapies for lung cancer treatment, and state of the art of delivery technologies and dosage regimens for the combinations, tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Donglei Leng
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
8
|
Patel MR, Kozuch SD, Cultrara CN, Yadav R, Huang S, Samuni U, Koren J, Chiosis G, Sabatino D. RNAi Screening of the Glucose-Regulated Chaperones in Cancer with Self-Assembled siRNA Nanostructures. NANO LETTERS 2016; 16:6099-6108. [PMID: 27669096 PMCID: PMC5378679 DOI: 10.1021/acs.nanolett.6b02274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The emerging field of RNA nanotechnology has been used to design well-programmed, self-assembled nanostructures for applications in chemistry, biology, and medicine. At the forefront of its utility in cancer is the unrestricted ability to self-assemble multiple siRNAs within a single nanostructure formulation for the RNAi screening of a wide range of oncogenes while potentiating the gene therapy of malignant tumors. In our RNAi nanotechnology approach, V- and Y-shape RNA templates were designed and constructed for the self-assembly of discrete, higher-ordered siRNA nanostructures targeting the oncogenic glucose regulated chaperones. The GRP78-targeting siRNAs self-assembled into genetically encoded spheres, triangles, squares, pentagons and hexagons of discrete sizes and shapes according to TEM imaging. Furthermore, gel electrophoresis, thermal denaturation, and CD spectroscopy validated the prerequisite siRNA hybrids for their RNAi application. In a 24 sample siRNA screen conducted within the AN3CA endometrial cancer cells known to overexpress oncogenic GRP78 activity, the self-assembled siRNAs targeting multiple sites of GRP78 expression demonstrated more potent and long-lasting anticancer activity relative to their linear controls. Extending the scope of our RNAi screening approach, the self-assembled siRNA hybrids (5 nM) targeting of GRP-75, 78, and 94 resulted in significant (50-95%) knockdown of the glucose regulated chaperones, which led to synergistic effects in tumor cell cycle arrest (50-80%) and death (50-60%) within endometrial (AN3CA), cervical (HeLa), and breast (MDA-MB-231) cancer cell lines. Interestingly, a nontumorigenic lung (MRC5) cell line displaying normal glucose regulated chaperone levels was found to tolerate siRNA treatment and demonstrated less toxicity (5-20%) relative to the cancer cells that were found to be addicted to glucose regulated chaperones. These remarkable self-assembled siRNA nanostructures may thus encompass a new class of potent siRNAs that may be useful in screening important oncogene targets while improving siRNA therapeutic efficacy and specificity in cancer.
Collapse
Affiliation(s)
- Mayurbhai R. Patel
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Stephen D. Kozuch
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Christopher N. Cultrara
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
| | - Reeta Yadav
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - Suiying Huang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - Uri Samuni
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, New York 11367, United States
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, New York City, New York 10016, United States
| | - John Koren
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Gabriela Chiosis
- Program in Chemical Biology and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - David Sabatino
- Department of Chemistry and Biochemistry, Seton Hall University, South Orange, New Jersey 07079, United States
- Corresponding Author.
| |
Collapse
|
9
|
Belletti D, Tosi G, Forni F, Lagreca I, Barozzi P, Pederzoli F, Vandelli MA, Riva G, Luppi M, Ruozi B. PEGylated siRNA lipoplexes for silencing of BLIMP-1 in Primary Effusion Lymphoma: In vitro evidences of antitumoral activity. Eur J Pharm Biopharm 2016; 99:7-17. [DOI: 10.1016/j.ejpb.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 01/22/2023]
|
10
|
Teoh HK, Chong PP, Abdullah M, Sekawi Z, Tan GC, Leong CF, Cheong SK. Small interfering RNA silencing of interleukin-6 in mesenchymal stromal cells inhibits multiple myeloma cell growth. Leuk Res 2016; 40:44-53. [DOI: 10.1016/j.leukres.2015.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/09/2015] [Accepted: 10/11/2015] [Indexed: 12/21/2022]
|
11
|
Dinarvand M, Kiani M, Mirzazadeh F, Esmaeili A, Mirzaie Z, Soleimani M, Dinarvand R, Atyabi F. Oral delivery of nanoparticles containing anticancer SN38 and hSET1 antisense for dual therapy of colon cancer. Int J Biol Macromol 2015; 78:112-21. [PMID: 25858880 DOI: 10.1016/j.ijbiomac.2015.03.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/18/2015] [Accepted: 03/31/2015] [Indexed: 01/12/2023]
Abstract
An oral delivery system intended for treatment of colon cancer in HT29 cancerous cells was investigated by encapsulating hSET1 antisense and SN38 anticancer in nanoparticles based on cysteine trimethyl chitosan (cysTMC) and carboxymethyl dextran (CMD). Studies have shown hSET1 as the main type of histone methyltransferase (HMT) complex, is significantly overexpressed in malignant cells. In this study, hSET1 antisense was employed to inhibit gene expression. Additionally, SN38 was incorporated into nanoparticles to enhance the efficiency of the system by inhibition of topoisomerase 1. CysTMC was synthetized and characterized by (1)H NMR and FTIR. Nanoparticles were prepared through complexation of CMD and cysTMC. Particle size and surface charge was 100-150 nm and 17-21 mV respectively with drug content of around 2.6%. Gel electrophoresis assay proved the stability of antisense in simulated gastric and intestinal fluids. Nanoparticles showed high mucoadhesion and glutathione responsive release. Cellular uptake was observed by confocal microscopy and quantified by flow cytometry. Cytotoxicity of NPs was assessed using MTT assay. Results showed hSET1/SN38 nanoparticles had significantly higher cytotoxicity against HT29 cells compared with nanoparticles containing SN38, free SN38 or naked hSET1. Therefore, present system could be considered an effective combination therapy of highly hydrophobic SN38 and hSET1.
Collapse
Affiliation(s)
- M Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran
| | - M Kiani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran
| | - F Mirzazadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran
| | - A Esmaeili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran
| | - Z Mirzaie
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - R Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - F Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1714614411, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Downregulation of ABCE1 via siRNA affects the sensitivity of A549 cells against chemotherapeutic agents. Med Oncol 2015; 32:103. [PMID: 25744244 DOI: 10.1007/s12032-015-0557-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 01/28/2023]
Abstract
ATP-binding cassette E1 (ABCE1) is involved in several biological functions in cancer cells such as tumor proliferation, antiapoptotic pathway and chemoresistance mechanism. This work aimed to investigate the alterations in chemosensitivity of A549 lung cancer cells for 5-Fluorouracil (5-FU) and irinotecan by silencing ABCE1 using specific small interfering RNAs (siRNA). The cells were treated with low doses of drugs, alone and also their combinations with ABCE1 siRNA. Cytotoxicity, cell proliferation and apoptosis/necrosis evaluations were performed in order to examine the effects of the combined treatment. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to confirm the downregulation of ABCE1. We also investigated the levels of B cell lymphoma 2 (Bcl-2) and mammalian target of rapamycin (mTOR) after the treatments by RT-PCR. Downregulation of ABCE1 improved the anticancer effects of 5-FU in inducing cell viability/proliferation inhibition and apoptosis/necrosis, whereas interestingly, almost did not change or slightly reduced the anticancer effects of irinotecan. ABCE1 expression significantly decreased by transfecting the cells with ABCE1 siRNA. Moreover, Bcl-2 and mTOR levels changed after the single or combined therapy in parallel with the apoptotic and antiproliferation effect. In conclusion, the simultaneous treatment of lung cancer cells with ABCE1 siRNA and 5-FU exhibited synergistic or additive effects; however, ABCE1 siRNA and irinotecan had unexpected antagonistic effects. Our findings demonstrate that the strategy of downregulation of ABCE1 may be included in conventional 5-FU chemotherapy for lung cancer, minimizing the usage of 5-FU at high dosages.
Collapse
|
13
|
Epigenetic biomarkers: potential applications in gastrointestinal cancers. ISRN GASTROENTEROLOGY 2014; 2014:464015. [PMID: 24729878 PMCID: PMC3963109 DOI: 10.1155/2014/464015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/25/2014] [Indexed: 12/14/2022]
Abstract
Genetics and epigenetics coregulate the cancer initiation and progression. Epigenetic mechanisms include DNA methylation, histone modification, chromatin remodeling, and noncoding RNAs. Aberrant epigenetic modifications play a fundamental role in the formation of gastrointestinal cancers. Advances in epigenetics offer a better understanding of the carcinogenesis and provide new insights into the discovery of biomarkers for diagnosis, and prognosis prediction of human cancers. This review aims to overview the epigenetic aberrance and the clinical applications as biomarkers in gastrointestinal cancers mainly gastric cancer and colorectal cancer.
Collapse
|
14
|
Wan Y, Apostolou S, Dronov R, Kuss B, Voelcker NH. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine (Lond) 2014; 9:2309-21. [PMID: 24593001 DOI: 10.2217/nnm.14.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. METHODS 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. RESULTS Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). CONCLUSION siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.
Collapse
Affiliation(s)
- Yuan Wan
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | | | | | | | | |
Collapse
|
15
|
Abstract
In recent years, there has been an unprecedented expansion in the field of nanomedicine with the development of new nanoparticles for the diagnosis and treatment of cancer. Nanoparticles have unique biological properties given their small size and large surface area-to-volume ratio, which allows them to bind, absorb, and carry compounds such as small molecule drugs, DNA, RNA, proteins, and probes with high efficiency. Their tunable size, shape, and surface characteristics also enable them to have high stability, high carrier capacity, the ability to incorporate both hydrophilic and hydrophobic substances and compatibility with different administration routes, thereby making them highly attractive in many aspects of oncology. This review article will discuss how nanoparticles are able to function as carriers for chemotherapeutic drugs to increase their therapeutic index; how they can function as therapeutic agents in photodynamic, gene, and thermal therapy; and how nanoparticles can be used as molecular imaging agents to detect and monitor cancer progression.
Collapse
Affiliation(s)
- Avnesh S Thakor
- Visiting Research Scholar, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA; Fellow in Interventional Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, British Columbia, Canada; Academic Fellow, Department of Interventional Radiology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
16
|
Gong M, Xu Y, Dong W, Guo G, Ni W, Wang Y, Wang Y, An R. Expression of Opa interacting protein 5 (OIP5) is associated with tumor stage and prognosis of clear cell renal cell carcinoma. Acta Histochem 2013; 115:810-5. [PMID: 23664661 DOI: 10.1016/j.acthis.2013.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/14/2023]
Abstract
Opa interacting protein 5 (OIP5), overexpressed in some types of human cancers, has been reported to be associated with the carcinogenesis of human cancer. However, the biological function and clinical significance of OIP5 in human Clear Cell Renal Cell Carcinoma (CCRCC) remains unknown. In the present study, we found the expression of OIP5 was markedly upregulated in surgical CCRCC specimens and CCRCC cell lines. Immunohistochemical analysis revealed that paraffin-embedded archival CCRCC specimens exhibited higher levels of OIP5 expression than normal renal tissues. Further statistical analysis suggested the upregulation of OIP5 was positively correlated with the Fuhrman grade (P = 0.02), T classification (P = 0.015), N classification (P = 0.018) and clinical stage (P = 0.035). Also, patients with high OIP5 expression dramatically exhibited shorter survival time (P = 0.001). In addition, the OIP5 expression was an independent prognostic marker of overall survival of CCRCC patients in a multivariate analysis (P = 0.008). Experimentally, we demonstrated that silencing OIP5 in CCRCC cell lines by specific siRNA clearly inhibited cell growth. In conclusion, our findings suggested that OIP5 could be a valuable marker of CCRCC progression and prognosis, and a promising therapeutic target for CCRCC.
Collapse
|
17
|
Guo J, Ogier JR, Desgranges S, Darcy R, O′Driscoll C. Anisamide-targeted cyclodextrin nanoparticles for siRNA delivery to prostate tumours in mice. Biomaterials 2012; 33:7775-84. [DOI: 10.1016/j.biomaterials.2012.07.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/05/2012] [Indexed: 12/14/2022]
|
18
|
ANDRÉ NAYARADELGADO, SILVA VIVIANEALINEOLIVEIRA, ARIZA CAROLINABATISTA, WATANABE MARIAANGELICAEHARA, DE LUCCA FERNANDOLUIZ. In vivo knockdown of CXCR4 using jetPEI/CXCR4 shRNA nanoparticles inhibits the pulmonary metastatic potential of B16-F10 melanoma cells. Mol Med Rep 2012; 12:8320-6. [DOI: 10.3892/mmr.2015.4487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/25/2015] [Indexed: 11/05/2022] Open
|
19
|
Ma J, Huang C, Yao X, Shi C, Sun L, Yuan L, Lei P, Zhu H, Liu H, Wu X, Ning Q, Zhou C, Shen G. Inhibition of hepatitis B virus and induction of hepatoma cell apoptosis by ASGPR-directed delivery of shRNAs. PLoS One 2012; 7:e46096. [PMID: 23094023 PMCID: PMC3477153 DOI: 10.1371/journal.pone.0046096] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/28/2012] [Indexed: 01/23/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Asialoglycoprotein Receptor/genetics
- Asialoglycoprotein Receptor/metabolism
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/therapy
- DNA, Viral/antagonists & inhibitors
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Neoplastic
- Genetic Vectors
- Hepatitis B Surface Antigens/genetics
- Hepatitis B e Antigens/genetics
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/therapy
- Humans
- Inhibitor of Apoptosis Proteins/antagonists & inhibitors
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/metabolism
- Injections, Intravenous
- Liver/pathology
- Liver/virology
- Male
- Mice
- Mice, Inbred BALB C
- Molecular Targeted Therapy
- Organ Specificity
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
- Repressor Proteins/antagonists & inhibitors
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Survivin
- Transfection
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chunmei Huang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinxin Yao
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chuan Shi
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lifang Sun
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Yuan
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huifen Zhu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongbo Liu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiongwen Wu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qin Ning
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chun Zhou
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (CZ); (GS)
| | - Guanxin Shen
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- * E-mail: (CZ); (GS)
| |
Collapse
|
20
|
Pangburn TO, Georgiou K, Bates FS, Kokkoli E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon Orai3 protein expression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:12816-30. [PMID: 22827285 DOI: 10.1021/la300874z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polymersomes, polymeric vesicles that self-assemble in aqueous solutions from block copolymers, have been avidly investigated in recent years as potential drug delivery agents. Past work has highlighted peptide-functionalized polymersomes as a highly promising targeted delivery system. However, few reports have investigated the ability of polymersomes to operate as gene delivery agents. In this study, we report on the encapsulation and delivery of siRNA inside of peptide-functionalized polymersomes composed of poly(1,2-butadiene)-b-poly(ethylene oxide). In particular, PR_b peptide-functionalized polymer vesicles are shown to be a promising system for siRNA delivery. PR_b is a fibronectin mimetic peptide targeting specifically the α(5)β(1) integrin. The Orai3 gene was targeted for siRNA knockdown, and PR_b-functionalized polymer vesicles encapsulating siRNA were found to specifically decrease cell viability of T47D breast cancer cells to a certain extent, while preserving viability of noncancerous MCF10A breast cells. siRNA delivery by PR_b-functionalized polymer vesicles was compared to that of a current commercial siRNA transfection agent, and produced less dramatic decreases in cancer cell viability, but compared favorably in regards to the relative toxicity of the delivery systems. Finally, delivery and vesicle release of a fluorescent encapsulate by PR_b-functionalized polymer vesicles was visualized by confocal microscopy, and colocalization with cellular endosomes and lysosomes was assessed by organelle staining. Polymersomes were observed to primarily release their encapsulate in the early endosomal intracellular compartments, and data may suggest some escape to the cytosol. These results represent a promising first generation model system for targeted delivery of siRNA.
Collapse
Affiliation(s)
- Todd O Pangburn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | |
Collapse
|
21
|
Intracellular Delivery of siRNA by Polycationic Superparamagnetic Nanoparticles. JOURNAL OF DRUG DELIVERY 2012; 2012:218940. [PMID: 22970377 PMCID: PMC3437298 DOI: 10.1155/2012/218940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 07/11/2012] [Accepted: 07/14/2012] [Indexed: 12/30/2022]
Abstract
The siRNA transfection efficiency of nanoparticles (NPs), composed of a superparamagnetic iron oxide core modified with polycationic polymers (poly(hexamethylene biguanide) or branched polyethyleneimine), were studied in CHO-K1 and HeLa cell lines. Both NPs demonstrated to be good siRNA transfection vehicles, but unmodified branched polyethyleneimine (25 kD) was superior on both cell lines. However, application of an external magnetic field during transfection (magnetofection) increased the efficiency of the superparamagnetic NPs. Furthermore, our results reveal that these NPs are less toxic towards CHO-K1 cell lines than the unmodified polycationic-branched polyethyleneimine (PEI). In general, the external magnetic field did not alter the cell's viability nor it disrupted the cell membranes, except for the poly(hexamethylene biguanide)-modified NP, where it was observed that in CHO-K1 cells application of the external magnetic field promoted membrane damage. This paper presents new polycationic superparamagnetic NPs as promising transfection vehicles for siRNA and demonstrates the advantages of magnetofection.
Collapse
|
22
|
Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine 2012; 7:3637-57. [PMID: 22915840 PMCID: PMC3418108 DOI: 10.2147/ijn.s23696] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Indexed: 12/18/2022] Open
Abstract
During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Yu T, Wu Y, Huang Y, Yan C, Liu Y, Wang Z, Wang X, Wen Y, Wang C, Li L. RNAi targeting CXCR4 inhibits tumor growth through inducing cell cycle arrest and apoptosis. Mol Ther 2011; 20:398-407. [PMID: 22108861 DOI: 10.1038/mt.2011.257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CXC chemokine receptor 4 (CXCR4) is involved in many human malignant tumors and plays an important role in tumor growth and metastasis. To explore the effects of CXCR4 expression on the malignant cells of oral squamous cell carcinoma (OSCC), Tca8113 and SCC-9 cell lines, as well as their xenograft models, of nude mice were used to detect cancer cell proliferation alteration. This study also examined the corresponding molecular mechanism after CXCR4 knockdown using a recombinant lentiviral vector expressing small interference RNA (siRNA) for CXCR4. RNA interference-mediated knockdown of CXCR4 in highly aggressive (Tca8113 and SCC-9) tumor cells significantly inhibited the proliferation of the two cell lines in vitro and in vivo. The expression levels of >1,500 genes involved in cell cycle, apoptosis, and multiple signaling pathways were also altered. These results provide new evidence of CXCR4 as a promising tumor gene therapeutic target.
Collapse
Affiliation(s)
- Tao Yu
- Department of Head and Neck Oncology Surgery, West China College of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guo J, Bourre L, Soden DM, O'Sullivan GC, O'Driscoll C. Can non-viral technologies knockdown the barriers to siRNA delivery and achieve the next generation of cancer therapeutics? Biotechnol Adv 2011; 29:402-17. [DOI: 10.1016/j.biotechadv.2011.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/08/2011] [Accepted: 03/13/2011] [Indexed: 12/22/2022]
|
25
|
Li X, Liu S, Wang D, Chen H, Xia H. Adenoviral delivered eGFP-intron splicing system for multiple gene RNAi. Biotechnol Lett 2011; 33:1723-8. [PMID: 21544612 DOI: 10.1007/s10529-011-0633-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/19/2011] [Indexed: 01/19/2023]
Abstract
An eGFP-intron splicing system that allows for co-ordinated expression of up to four siRNAs from a single adenoviral vector has been developed. In this splicing structure the intron, embedded by a multiple miR30-based shRNAs, is located between two incomplete eGFP domains which require successful splicing for functionality. To prove the principle of the method, an adenoviral vector delivering four transcripts targeting survivin, XIAP, Hec1, and VEGF was developed which enabled the knockdown of target genes by 70, 70, 54 and 44%, respectively, in HeLa cells. This is the first report of multi-siRNA engineering technology in the context of adenoviral vector which would enable concomitant knockdown of tumor-related target genes. The results provide a strategy for gene function analysis and cancer gene therapy.
Collapse
Affiliation(s)
- Xing Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an 710062, People's Republic of China
| | | | | | | | | |
Collapse
|
26
|
Wu Z, Li X, Zeng Y, Zhuang X, Shen H, Zhu H, Liu H, Xiao H. In Vitro and In Vivo Inhibition of MRP Gene Expression and Reversal of Multidrug Resistance by siRNA. Basic Clin Pharmacol Toxicol 2010; 108:177-84. [DOI: 10.1111/j.1742-7843.2010.00642.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
An Y, Cai Y, Guan Y, Cai L, Yang Y, Feng X, Zheng J. Inhibitory Effect of Small Interfering RNA Targeting Insulin-Like Growth Factor-I Receptor in Ovarian Cancer OVCAR3 Cells. Cancer Biother Radiopharm 2010; 25:545-52. [PMID: 20950153 DOI: 10.1089/cbr.2009.0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Yuan An
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Cai
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongmei Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liying Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Chun HK, Chung KS, Kim HC, Kang JE, Kang MA, Kim JT, Choi EH, Jung KE, Kim MH, Song EY, Kim SY, Won M, Lee HG. OIP5 is a highly expressed potential therapeutic target for colorectal and gastric cancers. BMB Rep 2010; 43:349-54. [PMID: 20510019 DOI: 10.5483/bmbrep.2010.43.5.349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we reported that overexpression of Opa (Neisseria gonorrhoeae opacity-associated)-interacting protein 5 (OIP5) caused multi-septa formation and growth defects, both of which are considered cancer-related phenotypes. To evaluate OIP5 as a possible cancer therapeutic target, we examined its expression level in 66 colorectal cancer patients. OIP5 was upregulated about 3.7-fold in tumors and over 2-fold in 58 out of 66 colorectal cancer patients. Knockdown of OIP5 expression by small interfering RNA specific to OIP5 (siOIP5) resulted in growth inhibition of colorectal and gastric cancer cell lines. Growth inhibition of SNU638 by siOIP5 caused an increase in sub-G1 DNA content, as measured by flow cytometry, as well as an apoptotic gene expression profile. These results indicate that knockdown of OIP5 may induce apoptosis in cancer cells. Therefore, we suggest that OIP5 might be a potential cancer therapeutic target, although the mechanisms of OIP5-induced carcinogenesis should be elucidated.
Collapse
Affiliation(s)
- Ho-Kyung Chun
- Medical Genomics Research Center, KRIBB, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fu WJ, Li JC, Wu XY, Yang ZB, Mo ZN, Huang JW, Xia GW, Ding Q, Liu KD, Zhu HG. Small interference RNA targeting Krüppel-like factor 8 inhibits the renal carcinoma 786-0 cells growth in vitro and in vivo. J Cancer Res Clin Oncol 2010; 136:1255-65. [PMID: 20182889 DOI: 10.1007/s00432-010-0776-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 01/14/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE Krüppel-like factor 8 (KLF8) plays an important role in oncogenic transformation and is highly overexpressed in several types of human cancer. We investigated the expression of KLF8 in renal cell carcinoma (RCC) tissues and the role of small interference RNA targeting KLF8 on growth, cell cycle, and apoptosis of human renal carcinoma cell line 786-0 in vitro and in vivo. METHODS The expression of KLF8 protein and mRNA in human renal carcinoma samples was detected by immunochemistry and reverse transcription polymerase chain reaction (RT-PCR). The effects of small interference RNA (siRNA) targeting KLF8 on growth, invasiveness, cell cycle, and apoptosis of 786-0 cells were evaluated by MTT assay, Matrigel Invasion Assay, and flow cytometry in vitro. We also investigated effect of siRNA targeting KLF8 on growth of 786-0 cells in nude mice in vivo. RESULTS Immunohistochemistry and RT-PCR results showed the expression of KLF8 protein and mRNA in RCC specimens was significantly higher than that in the adjacent non-tumorous renal tissues (P < 0.001). KLF8-siRNA depressed the cellular growth and invasion of 786-0 cells in vitro. The flow cytometry results revealed that KLF8-siRNA could induce an increase in G0/G1 phase cells and induce cell apoptosis. Intratumor injection of siRNA targeting KLF8 inhibited the growth of 786-0 cells in vivo in nude mice tumor model. CONCLUSIONS KLF8 possibly involved in regulating the cell growth, invasion, apoptosis, and proliferation of renal carcinoma cancer cells. Blocking the KLF8 channel might be a potential therapeutic strategy for RCC.
Collapse
Affiliation(s)
- Wei-Jin Fu
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yavari K, Taghikhani M, Ghannadi Maragheh M, Mesbah-Namin SA, Babaei MH. Downregulation of IGF-IR expression by RNAi inhibits proliferation and enhances chemosensitization of human colon cancer cells. Int J Colorectal Dis 2010; 25:9-16. [PMID: 19669768 DOI: 10.1007/s00384-009-0783-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2009] [Indexed: 02/04/2023]
Abstract
PURPOSE Colon cancer is the second leading cause of cancer death worldwide. Elevated expression of insulin-like growth factor-I receptor (IGF-IR) is a frequent genetic abnormality seen in this malignancy. For a better understanding of its role in maintaining the malignant phenotype, we used RNA interference (RNAi) directed against IGF-IR in our study. The aim of this study was to examine the anti-proliferation and chemosensitization effects elicited by a decrease in the transcription and protein levels of IGF-IR by RNAi in SW480 colon cancer cells. METHODS A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting IGF-IR to reduce its expression in SW480 cells. Western blot analysis was used to measure the protein level of IGF-IR. We assessed the effects of IGF-IR silencing on cancer cell growth by a cell growth curve. The effect of the 5-fluorouracil (5-FU)-induced cell death by knockdown of IGF-IR was also investigated by methyl thiazolyl tetrazolium assay. RESULTS Transfection of siRNA targeting IGF-IR was shown to reduce IGF-IR messenger RNA levels by 95%. Western blotting detected a similar inhibition of IGF-IR protein levels in those cells. The cells transfected with PKD-short hairpin RNA-IGF-IR-V2 significantly decreased cell growth and rendered cells more sensitive to chemotherapy. The highest proliferation inhibitory and chemosensitization ratios were 53 +/- 2% and 1.78, respectively. CONCLUSION This study indicates that downregulation of IGF-IR results in significant inhibition of tumor growth in vitro. It also provides a promising strategy to chemotherapy efficacy in human tumors and forming a basis for future in vivo trials.
Collapse
Affiliation(s)
- Kamal Yavari
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
31
|
Onkal R, Djamgoz MB. Molecular pharmacology of voltage-gated sodium channel expression in metastatic disease: Clinical potential of neonatal Nav1.5 in breast cancer. Eur J Pharmacol 2009; 625:206-19. [DOI: 10.1016/j.ejphar.2009.08.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/04/2009] [Accepted: 08/19/2009] [Indexed: 10/20/2022]
|
32
|
Yavari K, Taghikhani M, Maragheh MG, Mesbah-Namin SA, Babaei MH. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth in vitro. Arch Med Res 2009; 40:235-40. [PMID: 19608011 DOI: 10.1016/j.arcmed.2009.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 02/03/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Colon cancer is the second leading cause of death due to cancer worldwide. Elevated expression of IGF-IR is a frequent genetic abnormality seen in this malignancy. The aim of the study was to examine the anti-growth effects elicited by a decrease in the protein level of IGF-IR by RNA interference (RNAi) in SW480 cells. METHODS A plasmid-based polymerase III promoter system was used to deliver and express short interfering RNA (siRNA) targeting IGF-IR to reduce its expression in SW480 cells. The expression of IGF-1R protein was detected by Western blot. We assessed the effects of IGF-IR silencing on cancer cell growth by a growth curve. RESULTS We prepared a type of IGF-IR short hairpin RNA (shRNA) expression vector that could efficiently inhibit the expression of IGF-IR in SW480 cells. At 48 h after transfection, the expression inhibition rate was 92 +/- 2% at mRNA level detected by RT-PCR analysis. Western blotting detected a similar inhibition of IGF-IR protein levels in cells transfected with pkD-shRNA-IGF-IR-V2. Downregulation of IGF-IR resulted in significant inhibition of cancer cell growth in vitro. The cell growth inhibition rates at 24, 48, and 72 h after pkD-shRNA-IGF-IR-V2 transfection were 32.06, 47.61, and 35.36%, respectively. CONCLUSIONS Our data show that decreasing the IGF-IR protein level in SW480 cells by RNAi could significantly inhibit tumor growth in vitro, implying the therapeutic potential of RNAi on the treatment of colon cancer by targeting overexpression oncogenes such as IGF-IR. IGF-IR may be a potential therapeutic target for human colon cancer.
Collapse
Affiliation(s)
- Kamal Yavari
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | |
Collapse
|
33
|
Zhou H, Tang Y, Liang X, Yang X, Yang J, Zhu G, Zheng M, Zhang C. RNAi targeting urokinase-type plasminogen activator receptor inhibits metastasis and progression of oral squamous cell carcinoma in vivo. Int J Cancer 2009; 125:453-62. [PMID: 19391133 DOI: 10.1002/ijc.24360] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been admitted that urokinase-type plasminogen activator receptor (u-PAR) is overexpressed in many human malignant tumors including oral squamous cell carcinoma (OSCC) and plays an important role in a variety of cancer key cellular events as a versatile signaling orchestrator. In our study, a retroviral vector expressing u-PAR-specific siRNA was injected into OSCC xenografts of nude mice to observe its inhibitory effects on OSCC. Our data demonstrate that siRNA targeting u-PAR markedly suppressed tumor growth, reduced the expression of proliferation-related gene, Ki-67 and increased cell apoptosis, accompanying with the efficient and specific inhibition of endogenous u-PAR expression in OSCC. More importantly, the mRNA and protein expression of MMP-2, MMP-9, VEGF-C, VEGF-D and VEGFR-3 that are intimately involved in oral cancer invasion and metastasis, was simultaneously downregulated significantly as determined by quantitative real-time RT-PCR, Western blot and immunohistochemistry; and Gelatin and fibrin zymography showed that MMP-9, MMP-2 and u-PA enzymatic activities were significantly reduced in u-PAR-specific siRNA group, compared to those in control groups. In addition, the expression of MDR-1 gene related to drug resistance was obviously inhibited by silencing of u-PAR. These findings suggest that RNAi targeting u-PAR could effectively inhibit the metastasis and progression of OSCC in vivo. Thus, it may be used as a potent and specific therapy for oral cancer, especially in inhibiting and preventing cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu Y, Tao J, Li Y, Yang J, Yu Y, Wang M, Xu X, Huang C, Huang W, Dong J, Li L, Liu J, Shen G, Tu Y. Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol Ther 2008; 17:269-77. [PMID: 19066596 DOI: 10.1038/mt.2008.266] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Malignant melanoma (MM) is a major public health problem. The development of effective, systemic therapies for MM is highly desired. We showed here that the transferrin receptor (TfR) was a suitable surface marker for targeting of gene therapy in MM and that the hypoxia-inducible factor-1alpha (HIF-1alpha) was an attractive therapeutic molecular target in MM. We observed that inhibition of HIF-1alpha blocked cell proliferation and induced cell apoptosis in vitro. We then showed that a transferrin-polyethylenimine-HIF-1alpha-short-hairpin RNA (Tf-PEI-HIF-1alpha-shRNA) complex could target MM specifically and efficiently both in vivo and in vitro, exploiting the high expression of the TfR in MM. The systemic delivery of sequence-specific small-interfering RNA (siRNA) against HIF-1alpha by the Tf- PEI-HIF-1alpha-shRNA complex dramatically inhibited tumor growth in the A375 MM xenograft model. The underlying concept of transfecting a HIF-1alpha shRNA expression vector complexed with Tf-PEI to block HIF-1alpha holds promise as a clinical approach to gene therapy for MM.
Collapse
Affiliation(s)
- Yeqiang Liu
- Department of Dermatology, Hospital Affiliated to Medical College of JiuJiang University, JiuJiang, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ye X, Liu T, Gong Y, Zheng B, Meng W, Leng Y. Lentivirus-mediated RNA interference reversing the drug-resistance in MDR1 single-factor resistant cell line K562/MDR1. Leuk Res 2008; 33:1114-9. [PMID: 19036441 DOI: 10.1016/j.leukres.2008.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 02/05/2023]
Abstract
Multidrug-resistance (MDR) is a major hindrance to successful chemotherapy. The emergence of MDR is multi-factorial. Among them, the MDR1 gene/P-glycoprotein (P-gp) is a popular and important reason. In our study, an MDR1 single-factorial drug-resistant leukemia cell line K562/MDR1 was constructed via transferring full-length human MDR1 cDNA into drug-sensitive K562 cells. The short-hairpin RNA (shRNA) targeting MDR1 gene was transfected into K562/MDR1 cell lines by the replication-defective lentiviral vector derived from HIV-1. The efficiency of RNA interference (RNAi) to silence the MDR1 gene and reverse multidrug-resistance in the MDR1 single-factor drug-resistance cell line K562/MDR1 was evaluated. The multi-factor resistant cell line K562/A02, induced by doxorubicin exposure, was used as a control. After RNA interference, the expression of the MDR1 gene and P-gp in K562/MDR1 was markedly down-regulated and the drug sensitivity was restored as IC(50) values became similar to the K562 sensitive cell line. The expression of the MDR1 gene and P-gp in K562/A02 was markedly down-regulated too, and drug-resistance to anticancer drug is reduced to some extent but the IC(50) was significantly higher than that of the sensitive cell line. These results demonstrated that lentivirus-mediated RNAi could efficiently down-regulate the expression of MDR1 and Pgp, and successfully reverse a cell's resistance to chemotherapeutic. Due to only MDR1 resistance, the K562/MDR1 cell showed much high specificity and thus is a better cell model for MDR1/P-gp research.
Collapse
Affiliation(s)
- Xueshi Ye
- Department of Hematology, Hematology Research Laboratory, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan Province, China
| | | | | | | | | | | |
Collapse
|
36
|
Inhibitory effect of siRNA targeting survivin in gastric cancer MGC-803 cells. Int Immunopharmacol 2008; 8:1006-11. [DOI: 10.1016/j.intimp.2008.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/05/2008] [Accepted: 03/04/2008] [Indexed: 01/15/2023]
|
37
|
Huang C, Li M, Chen C, Yao Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008; 12:637-45. [PMID: 18410245 DOI: 10.1517/14728222.12.5.637] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Small interfering RNA (siRNA) has become a powerful tool in knocking down or silencing gene expression in most cells. siRNA-based therapy has shown great promise for many diseases such as cancer. Major targets for siRNA therapy include oncogenes and genes that are involved in angiogenesis, metastasis, survival, antiapoptosis and resistance to chemotherapy. OBJECTIVES This review briefly summarizes current advances in siRNA therapy and clinical applications in cancers, especially in pancreatic cancer. METHODS This review article covers several aspects of siRNA therapy in cancer, which include the types of siRNA, the delivery systems for siRNA, and the major targets for siRNA therapy. Specific attention is given to siRNA in pancreatic cancer, which is our main research focus. RESULTS/CONCLUSION siRNA can be introduced into the cells by using either chemically synthesized siRNA oligonucleotides (oligos), or vector-based siRNA (shRNA), which allows long lasting and more stable gene silencing. Nanoparticles and liposomes are commonly used carriers, delivering the siRNA with better transfection efficiency and protecting it from degradation. In combination with standard chemotherapy, siRNA therapy can also reduce the chemoresistance of certain cancers, demonstrating the potential of siRNA therapy for treating many malignant diseases. This review will provide valuable information for clinicians and researchers who want to recognize the newest endeavors within this field and identify possible lines of investigation in cancer.
Collapse
Affiliation(s)
- Chuan Huang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
38
|
Paessler S, Rijnbrand R, Stein DA, Ni H, Yun NE, Dziuba N, Borisevich V, Seregin A, Ma Y, Blouch R, Iversen PL, Zacks MA. Inhibition of alphavirus infection in cell culture and in mice with antisense morpholino oligomers. Virology 2008; 376:357-70. [PMID: 18468653 PMCID: PMC2447162 DOI: 10.1016/j.virol.2008.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 01/24/2008] [Accepted: 03/27/2008] [Indexed: 11/23/2022]
Abstract
The genus Alphavirus contains members that threaten human health, both as natural pathogens and as potential biological weapons. Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMO) enter cells readily and can inhibit viral replication through sequence-specific steric blockade of viral RNA. Sindbis virus (SINV) has low pathogenicity in humans and is regularly utilized as a model alphavirus. PPMO targeting the 5′-terminal and AUG translation start site regions of the SINV genome blocked the production of infectious SINV in tissue culture. PPMO designed against corresponding regions in Venezuelan equine encephalitis virus (VEEV) were likewise found to be effective in vitro against several strains of VEEV. Mice treated with PPMO before and after VEEV infection were completely protected from lethal outcome while mice receiving only post-infection PPMO treatment were partially protected. Levels of virus in tissue samples correlated with animal survival. Uninfected mice suffered no apparent ill-effects from PPMO treatment. Thus, PPMO appear promising as candidates for therapeutic development against alphaviruses.
Collapse
Affiliation(s)
- Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1019, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Establishment of CXCR4-small interfering RNA retrovirus vector driven by human prostate-specific antigen promoter and its biological effects on prostate cancer in vitro and in vivo. J Cancer Res Clin Oncol 2008; 134:1255-64. [PMID: 18431597 DOI: 10.1007/s00432-008-0394-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 04/10/2008] [Indexed: 12/17/2022]
Abstract
PURPOSE CXC chemokine receptor-4 (CXCR4) is closely involved in bone metastasis of prostate cancer, and CXCR4 levels are frequently increased in prostate cancer cells and tissues. In the present study, its biological effects on prostate cancer in vitro and in vivo and feasibility to be a therapy target were investigated using a RNA interfering retrovirus vector targeting CXCR4 gene driven by human prostate-specific antigen promoter (pPSA). METHODS We established a pPSA-siCXCR4 retrovirus vector and transfected prostate cancer cell PC-3m, LNCaP and breast cancer cell MCF-7, respectively. The expression of CXCR4 mRNA and protein was detected by RT-PCR and western blot, and the ability of adhesion, migration, invasion of prostate cancer cells was assessed using Transwell chamber. A metastasizing model using BALB/cA mice with human bone tissue implantation was established too, and transfected prostate cancer cells were via caudal vein. Survival time of mice suffering bone metastatic tumor as well as the weight and volume of these tumors were recorded and analyzed. RESULTS The expression of CXCR4 mRNA and protein in androgen-responsive LNCaP cells was blocked by the pPSA-siCXCR4 vector, but it could not work in non androgen-responsive PC-3m cell and breast cancer cell MCF-7. The results of experiments in vitro also showed that the adhesion, transendothelial migration and invasive ability of transfected LNCaP cells were impaired, while there was no change in PC-3m and MCF-7 cells after transfection. pPSA-siCXCR4 represented a similar inhibitory effect in fluorescent bone metastasis model of LNCaP cells compared with PC-3m cells. CONCLUSION These results suggest that the downstream siRNA controlled by PSA promoter in retrovirus system can express selectively in androgen-responsive prostate cancer in vitro and in vivo, and CXCR4 plays an important role in prostate cancer metastasis. We believe that the pPSA-siCXCR4 retrovirus vector is a potential choice in gene therapy for androgen-responsive prostate cancer.
Collapse
|
40
|
Abstract
The F box protein Skp2 is frequently overexpressed in human tumors and is capable of transforming cultured cells in vitro. It has been assumed, quite reasonably, that this oncogenic property of Skp2 is directly related to its role, as part of an SCF ubiquitin ligase complex, in the ubiquitin-mediated proteolysis of negative cell cycle regulatory proteins, notably p27Kip1. However, building on earlier results indicating that silencing of Skp2 promotes apoptosis in some tumor-derived cell lines, Kitagawa and coworkers in the February 1 issue of Molecular Cell have elucidated an alternative mechanism for promotion of tumorigenesis by Skp2, specifically the suppression of p53-mediated apoptosis.
Collapse
|
41
|
Dass CR, Choong PF, Khachigian LM. DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 2008; 7:243-51. [DOI: 10.1158/1535-7163.mct-07-0510] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Abstract
Liposomal nanoparticles (LNs) encapsulating therapeutic agents, or liposomal nanomedicines (LNMs), represent one of the most advanced classes of drug delivery systems, with several currently on the market and many more in clinical trials. During the past 20 years, a variety of techniques have been developed for encapsulating both conventional drugs and the new genetic drugs (plasmid DNA–containing therapeutic genes, anti-sense oligonucleotides, and small, interfering RNA [siRNA]) within LNs encompassing a very specific set of properties: a diameter centered on 100 nm, a high drug-to-lipid ratio, excellent retention of the encapsulated drug, and a long (> 6 hours) circulation lifetime. Particles with these properties tend to accumulate at sites of disease, such as tumors, where the endothelial layer is “leaky” and allows extravasation of particles with small diameters. Thus, LNs protect the drug during circulation, prevent it from reaching healthy tissues, and permit its accumulation at sites of disease. We will discuss recent advances in this field involving conventional anticancer drugs as well as gene-delivery, immunostimulatory, and gene-silencing applications involving the new genetic drugs. LNMs have the potential to offer new treatments in such areas as cancer therapy, vaccine development, and cholesterol management.
Collapse
|
43
|
Chung IJ. Gene Therapy for Oral Cancer. Biomol Ther (Seoul) 2007. [DOI: 10.4062/biomolther.2007.15.4.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
44
|
|