1
|
Lim JH, Lim JM, Lee HM, Lee HJ, Kwak DW, Han YJ, Kim MY, Jung SH, Kim YR, Ryu HM, Kim KP. Systematic Proteome Profiling of Maternal Plasma for Development of Preeclampsia Biomarkers. Mol Cell Proteomics 2024; 23:100826. [PMID: 39111712 PMCID: PMC11405801 DOI: 10.1016/j.mcpro.2024.100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy with various clinical symptoms. However, traditional markers for the disease including high blood pressure and proteinuria are poor indicators of the related adverse outcomes. Here, we performed systematic proteome profiling of plasma samples obtained from pregnant women with PE to identify clinically effective diagnostic biomarkers. Proteome profiling was performed using TMT-based liquid chromatography-mass spectrometry (LC-MS/MS) followed by subsequent verification by multiple reaction monitoring (MRM) analysis on normal and PE maternal plasma samples. Functional annotations of differentially expressed proteins (DEPs) in PE were predicted using bioinformatic tools. The diagnostic accuracies of the biomarkers for PE were estimated according to the area under the receiver-operating characteristics curve (AUC). A total of 1307 proteins were identified, and 870 proteins of them were quantified from plasma samples. Significant differences were evident in 138 DEPs, including 71 upregulated DEPs and 67 downregulated DEPs in the PE group, compared with those in the control group. Upregulated proteins were significantly associated with biological processes including platelet degranulation, proteolysis, lipoprotein metabolism, and cholesterol efflux. Biological processes including blood coagulation and acute-phase response were enriched for down-regulated proteins. Of these, 40 proteins were subsequently validated in an independent cohort of 26 PE patients and 29 healthy controls. APOM, LCN2, and QSOX1 showed high diagnostic accuracies for PE detection (AUC >0.9 and p < 0.001, for all) as validated by MRM and ELISA. Our data demonstrate that three plasma biomarkers, identified by systematic proteomic profiling, present a possibility for the assessment of PE, independent of the clinical characteristics of pregnant women.
Collapse
Affiliation(s)
- Ji Hyae Lim
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea
| | - Jae Min Lim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Hyeong Min Lee
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea
| | - Hyun Jung Lee
- Department of Obstetrics & Gynecology, CHA Ilsan Medical Center, CHA University, Gyeonggi-do, Republic of Korea
| | - Dong Wook Kwak
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Gyeonggi-do, Republic of Korea
| | - You Jung Han
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Moon Young Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Sang Hee Jung
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Young Ran Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea
| | - Hyun Mee Ryu
- Smart MEC Healthcare R&D Center, CHA Future Medicine Research Institute, CHA Bundang Medical Center, Seongnam, Republic of Korea; Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seoul, Republic of Korea.
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, Republic of Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Grismaldo R A, Luévano-Martínez LA, Reyes M, García-Márquez G, García-Rivas G, Sobrevia L. Placental mitochondrial impairment and its association with maternal metabolic dysfunction. J Physiol 2024. [PMID: 39116002 DOI: 10.1113/jp285935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
The placenta plays an essential role in pregnancy, leading to proper fetal development and growth. As an organ with multiple physiological functions for both mother and fetus, it is a highly energetic and metabolically demanding tissue. Mitochondrial physiology plays a crucial role in the metabolism of this organ and thus any alteration leading to mitochondrial dysfunction has a severe outcome in the development of the fetus. Pregnancy-related pathological states with a mitochondrial dysfunction outcome include preeclampsia and gestational diabetes mellitus. In this review, we address the role of mitochondrial morphology, metabolism and physiology of the placenta during pregnancy, highlighting the roles of the cytotrophoblast and syncytiotrophoblast. We also describe the relationship between preeclampsia, gestational diabetes, gestational diabesity and pre-pregnancy maternal obesity with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Adriana Grismaldo R
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis A Luévano-Martínez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Monserrat Reyes
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Grecia García-Márquez
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Luis Sobrevia
- Tecnologico de Monterrey, Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
3
|
Liu Y, Wang S, Zhang X, Jia X, Lu Y, Liu Y. Circ_0001861 facilitates trophoblast cell proliferation, migration, invasion and epithelial-mesenchymal transition via the miR-296-5p/forkhead box protein 1 pathway in preeclampsia. J Hypertens 2024; 42:546-556. [PMID: 38164984 DOI: 10.1097/hjh.0000000000003634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
BACKGROUND Preeclampsia (PE) is one of the leading causes of maternal mortality and placental trophoblastic disorders. Recent studies reported that circular RNAs (circRNAs) were involved in PE pathogenesis. However, the role of circ_0001861 in PE progression is largely unknown. METHODS The RNA expression of circ_0001861, forkhead box protein 1 (FOXP1) and microRNA-296-5p (miR-296-5p) was detected by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Western blot assay was performed to examine the protein levels of FOXP1 and epithelial-mesenchymal transition (EMT) markers. Cell viability, proliferation, migration and invasion were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine, and transwell assays. Luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay were conducted to explore the interaction between miR-296-5p and circ_0001861 or FOXP1. RESULTS Circ_0001861 and FOXP1 were downregulated but miR-296-5p was upregulated in PE placenta. Upregulation of circ_0001861 facilitated trophoblast cell proliferation, migration, invasion and EMT. Mechanistically, circ_0001861 sponged miR-296-5p to elevate FOXP1 expression, thus promoting trophoblast cell progression. CONCLUSION The circ_0001861/miR-296-5p/FOXP1 axis plays a critical role in trophoblast cell proliferation, migration, invasion and EMT, which may provide a novel insight into developing potential therapeutic targets for PE.
Collapse
Affiliation(s)
| | | | | | - Xuewei Jia
- Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Yaping Liu
- Medical Insurance Office, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Cifkova E, Karahoda R, Stranik J, Abad C, Kacerovsky M, Lisa M, Staud F. Metabolomic analysis of the human placenta reveals perturbations in amino acids, purine metabolites, and small organic acids in spontaneous preterm birth. EXCLI JOURNAL 2024; 23:264-282. [PMID: 38487084 PMCID: PMC10938235 DOI: 10.17179/excli2023-6785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
Spontaneous preterm delivery presents one of the most complex challenges in obstetrics and is a leading cause of perinatal morbidity and mortality. Although it is a common endpoint for multiple pathological processes, the mechanisms governing the etiological complexity of spontaneous preterm birth and the placental responses are poorly understood. This study examined placental tissues collected between May 2019 and May 2022 from a well-defined cohort of women who experienced spontaneous preterm birth (n = 72) and healthy full-term deliveries (n = 30). Placental metabolomic profiling of polar metabolites was performed using Ultra-High Performance Liquid Chromatography/Mass Spectrometry (UHPLC/MS) analysis. The resulting data were analyzed using multi- and univariate statistical methods followed by unsupervised clustering. A comprehensive metabolomic evaluation of the placenta revealed that spontaneous preterm birth was associated with significant changes in the levels of 34 polar metabolites involved in intracellular energy metabolism and biochemical activity, including amino acids, purine metabolites, and small organic acids. We found that neither the preterm delivery phenotype nor the inflammatory response explain the reported differential placental metabolome. However, unsupervised clustering revealed two molecular subtypes of placentas from spontaneous preterm pregnancies exhibiting differential enrichment of clinical parameters. We also identified differences between early and late preterm samples, suggesting distinct placental functions in early spontaneous preterm delivery. Altogether, we present evidence that spontaneous preterm birth is associated with significant changes in the level of placental polar metabolites. Dysregulation of the placental metabolome may underpin important (patho)physiological mechanisms involved in preterm birth etiology and long-term neonatal outcomes.
Collapse
Affiliation(s)
- Eva Cifkova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, 50005, Hradec Kralove, Czech Republic
| | - Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Sokolska 581, 50005, Hradec Kralove, Czech Republic
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, 50005, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Sokolska 581, 50005, Hradec Kralove, Czech Republic
| | - Miroslav Lisa
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 50003, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203/8, 50005, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Varghese B, Babu S, Jala A, Das P, Raju R, Borkar RM, Adela R. Integrative Placental Multi-Omics Analysis Reveals Perturbed Pathways and Potential Prognostic Biomarkers in Gestational Hypertension. Arch Med Res 2024; 55:102909. [PMID: 37984232 DOI: 10.1016/j.arcmed.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Gestational hypertension (GH) is a severe complication that occurs after 20 weeks of pregnancy; however, its molecular mechanisms are not yet fully understood. OBJECTIVE Through this case-control discovery phase study, we aimed to find disease-specific candidate placental microRNAs (miRNAs) and metabolite markers for differentiating GH by integrating next-generation sequencing and metabolomics multi-omics analysis of placenta. Using small RNA sequencing and metabolomics of placental tissues of healthy pregnant (HP, n = 24) and GH subjects (n = 20), the transcriptome and metabolome were characterized in both groups. RESULTS The study identified a total of 44 downregulated placental miRNAs which includes three novel, three mature and 38 precursor miRNAs. Six miRNAs including three mature (hsa-miR-181a-5p, hsa-miR-498-5p, and hsa-miR-26b-5p) and three novel (NC_000016.10_1061, NC_000005.10_475, and NC_000001.11_53) were considered for final target prediction and functional annotation. Integrative analysis of differentially expressed miRNAs and metabolites yielded five pathways such as purine, glutathione, glycerophospholipid, inositol phosphate and β-alanine to be significantly perturbed in GH. We present fourteen genes (LPCAT1, LPCAT2, DGKH, PISD, GPAT2, PTEN, SACM1L, PGM2, AMPD3, AK7, AK3, CNDP1, IDH2, and ODC1) and eight metabolites (xanthosine, xanthine, spermine, glycine, CDP-Choline, glyceraldehyde 3-phosphate, β-alanine, and histidine) with potential to distinguish GH and HP. CONCLUSION The differential expression of miRNAs, their target genes, altered metabolites and metabolic pathways in GH patients were identified for the first time in our study. Further, the altered miRNAs and metabolites were integrated to build their inter-connectivity network. The findings obtained from our study may be used as a valuable source to further unravel the molecular pathways associated with GH and also for the evaluation of prognostic markers.
Collapse
Affiliation(s)
- Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Sreeranjini Babu
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India; Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Panchanan Das
- Department of Obstetrics and Gynecology, Gauhati Medical College, Guwahati, Assam, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India.
| |
Collapse
|
6
|
HAN ZY, HUANG SJ, WANG R, GUAN HQ. Screening of differential circRNAs in the placenta of patients with preeclampsia and their regulatory mechanism. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Wu Z, Nie J, Wu D, Huang S, Chen J, Liang H, Hao X, Feng L, Luo H, Tan C. Dietary adenosine supplementation improves placental angiogenesis in IUGR piglets by up-regulating adenosine A2a receptor. ANIMAL NUTRITION 2023; 13:282-288. [PMID: 37168450 PMCID: PMC10165186 DOI: 10.1016/j.aninu.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Abnormal placental angiogenesis is associated with the occurrence of intrauterine growth restriction (IUGR) in piglets, and effective treatment strategies against this occurrence remain to be explored. Adenosine has been reported to play an important role in angiogenesis, but its role in placental angiogenesis is still unknown. Here, we investigated the effect of dietary adenosine supplementation on IUGR occurrence in piglets by analyzing the role of adenosine in placental angiogenesis for Normal and IUGR piglets. Specifically, 88 sows were allotted to 2 treatments (n = 44) and fed a basal diet supplemented with 0% or 0.1% of adenosine from day 65 of gestation until farrowing, followed by collecting the placental samples of Normal and IUGR piglets, and recording their characteristics. The results showed that adenosine supplementation increased the mean birth weight of piglets (P < 0.05) and placental efficiency (P < 0.05), while decreasing the IUGR piglet rate (P < 0.05). Expectedly, the placenta for IUGR neonates showed a down-regulated vascular density (P < 0.05) and angiogenesis as evidenced by the expression level of vascular cell adhesion molecule-1 (VCAM1) (P < 0.05). Notably, dietary adenosine supplementation promoted angiogenesis (P < 0.05) both in the Normal and IUGR placenta. More importantly, the expression level of adenosine A2a receptor (ADORA2A) was lower (P < 0.05) in the IUGR placenta than in Normal placenta, whereas adenosine treatment could significantly increase ADORA2A expression, and also had an interaction effect between factors IUGR and Ado. Collectively, placentae for IUGR piglets showed impaired angiogenesis and down-regulated expression level of ADORA2A, while dietary adenosine supplementation could activate ADORA2A expression, improve the placental angiogenesis, and ultimately decrease the occurrence of IUGR in piglets.
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huajin Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
- Corresponding authors.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Corresponding authors.
| |
Collapse
|
8
|
Zou G, Ji Q, Geng Z, Du X, Jiang L, Liu T. miR-31-5p from placental and peripheral blood exosomes is a potential biomarker to diagnose preeclampsia. Hereditas 2022; 159:35. [PMID: 36123601 PMCID: PMC9484067 DOI: 10.1186/s41065-022-00250-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Preeclampsia, a multisystem disorder of unknown etiology, is one of the leading causes of maternal and perinatal morbidity and mortality. Identifying sensitive, noninvasive markers can aid its prevention and improve prognosis. microRNAs (miRs), which function as negative regulators of gene expression, are closely related to preeclampsia occurrence and development. Herein we investigated the relationship between the DLK1-Dio3 imprinted miR cluster derived from placental and peripheral blood exosomes of pregnant women with preeclampsia and routine clinical diagnostic indicators, and also determined its potential as a noninvasive diagnostic marker. Methods Exosomes were extracted from the placenta and peripheral blood of pregnant women with preeclampsia. Results qPCR data indicated that the expression level of miRs, such as miR-134, miR-31-5p, miR-655, miR-412, miR-539, miR-409, and miR-496, in pregnant women with preeclampsia was significantly lower than that in healthy controls; miR-31-5p expression was the most different. Gene ontology analysis predicted that genes negatively regulated by miR-31-5p were mainly enriched in cellular entity, cellular process, and binding; moreover, Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that genes were involved in gonadotropin-releasing hormone receptor pathway and other signaling pathways. Correlation analysis revealed that miR-31-5p was significantly negatively correlated with clinical indicators of preeclampsia, such as systolic and diastolic pressure, lactate dehydrogenase, and proteinuria. Conclusion We believe that exosome-derived miR-31-5p can serve as an effective and sensitive biomarker to determine the course of preeclampsia in pregnant women.
Collapse
Affiliation(s)
- Gang Zou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qingfang Ji
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zixiang Geng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Lingyan Jiang
- Department of Gynecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 1279, Sanmen Road, Shanghai, 200434, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
9
|
Li Y, Chen J, Song S. Circ‐OPHN1 suppresses the proliferation, migration, and invasion of trophoblast cells through mediating miR‐558/THBS2 axis. Drug Dev Res 2022; 83:1034-1046. [PMID: 35277867 DOI: 10.1002/ddr.21931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Yu Li
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| | - Jinzao Chen
- Department of Internal Medicine‐Cardiovascular The First Hospital of Putian Putian City Fujian Province China
| | - Shuqin Song
- Department of Obstetrics and Gynecology The Affiliated Hospital of Putian University Putian City Fujian Province China
| |
Collapse
|
10
|
Li X, Li C, Wang Y, Cai J, Zhao L, Su Z, Ye H. IGFBP1 inhibits the invasion, migration, and apoptosis of HTR-8/SVneo trophoblast cells in preeclampsia. Hypertens Pregnancy 2022; 41:53-63. [PMID: 35168459 DOI: 10.1080/10641955.2022.2033259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To investigate the effects and underlying mechanisms of IGFBP1 on the biological functions of trophoblasts in simulated preeclampsia. METHODS IGFBP1 expression in placenta was determined by immunohistochemistry. HTR-8/SVneo cells were stimulated with/without IGFBP1-overexpression and hypoxia-reoxygenation, and the proliferation, invasion, migration, and apoptosis were detected by CCK8, transwell, and flow cytometry, respectively. RESULTS IGFBP1 expression was increased in placenta of preeclampsia. IGFBP1 overexpression inhibited proliferation, invasion, migration, and apoptosis of HTR-8/SVneo cells and induced MMP-26 expression with/without hypoxia-reoxygenation challenge. CONCLUSION IGFBP1 affects biological functions of trophoblasts, and it may play a role in pathophysiology of preeclampsia by inducing MMP-26.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Chenxi Li
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Ye Wang
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Jianxing Cai
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| | - Li Zhao
- School of Public Health, Xiamen University, Xiamen, PR China
| | - Zhiying Su
- Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, PR China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children's Hospital, Xiamen University, School of Medicine, Xiamen, PR China
| |
Collapse
|
11
|
Bertini A, Salas R, Chabert S, Sobrevia L, Pardo F. Using Machine Learning to Predict Complications in Pregnancy: A Systematic Review. Front Bioeng Biotechnol 2022; 9:780389. [PMID: 35127665 PMCID: PMC8807522 DOI: 10.3389/fbioe.2021.780389] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction: Artificial intelligence is widely used in medical field, and machine learning has been increasingly used in health care, prediction, and diagnosis and as a method of determining priority. Machine learning methods have been features of several tools in the fields of obstetrics and childcare. This present review aims to summarize the machine learning techniques to predict perinatal complications.Objective: To identify the applicability and performance of machine learning methods used to identify pregnancy complications.Methods: A total of 98 articles were obtained with the keywords “machine learning,” “deep learning,” “artificial intelligence,” and accordingly as they related to perinatal complications (“complications in pregnancy,” “pregnancy complications”) from three scientific databases: PubMed, Scopus, and Web of Science. These were managed on the Mendeley platform and classified using the PRISMA method.Results: A total of 31 articles were selected after elimination according to inclusion and exclusion criteria. The features used to predict perinatal complications were primarily electronic medical records (48%), medical images (29%), and biological markers (19%), while 4% were based on other types of features, such as sensors and fetal heart rate. The main perinatal complications considered in the application of machine learning thus far are pre-eclampsia and prematurity. In the 31 studies, a total of sixteen complications were predicted. The main precision metric used is the AUC. The machine learning methods with the best results were the prediction of prematurity from medical images using the support vector machine technique, with an accuracy of 95.7%, and the prediction of neonatal mortality with the XGBoost technique, with 99.7% accuracy.Conclusion: It is important to continue promoting this area of research and promote solutions with multicenter clinical applicability through machine learning to reduce perinatal complications. This systematic review contributes significantly to the specialized literature on artificial intelligence and women’s health.
Collapse
Affiliation(s)
- Ayleen Bertini
- Metabolic Diseases Research Laboratory (MDRL), Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), Center for Biomedical Research (CIB), Universidad de Valparaíso, Valparaiso, Chile
- PhD Program Doctorado en Ciencias e Ingeniería para La Salud, Faculty of Medicine, Universidad de Valparaíso, Valparaiso, Chile
| | - Rodrigo Salas
- School of Biomedical Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaiso, Chile
- Centro de Investigación y Desarrollo en INGeniería en Salud – CINGS, Universidad de Valparaíso, Valparaiso, Chile
- Instituto Milenio Intelligent Healthcare Engineering, Valparaíso, Chile
| | - Steren Chabert
- School of Biomedical Engineering, Faculty of Engineering, Universidad de Valparaíso, Valparaiso, Chile
- Centro de Investigación y Desarrollo en INGeniería en Salud – CINGS, Universidad de Valparaíso, Valparaiso, Chile
- Instituto Milenio Intelligent Healthcare Engineering, Valparaíso, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD, Australia
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Medical School (Faculty of Medicine), São Paulo State University (UNESP), São Paulo, Brazil
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research, School of Medicine and Health Sciences, Monterrey, Mexico
| | - Fabián Pardo
- Metabolic Diseases Research Laboratory (MDRL), Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), Center for Biomedical Research (CIB), Universidad de Valparaíso, Valparaiso, Chile
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Medicine, Campus San Felipe, Faculty of Medicine, Universidad de Valparaíso, San Felipe, Chile
- *Correspondence: Fabián Pardo,
| |
Collapse
|
12
|
Du J, Ji Q, Dong L, Meng Y, Xin G. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs)-Derived MicroRNA-378a-3p (miR-378a-3p) Inhibits the Migration of Gestational Trophoblast Cells and Epithelial Mesenchymal Transition via Regulating X-Linked Inhibitor of Apoptosis Protein (XIAP) Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The components of the in vivo microenvironment are BMSCs and miRNAs that have a critical role in the development of pregnancy. Our aim was to further investigate the effect of the miRNAs of BMSC origin on pregnancy injury. Exosomal miR-378a-3p secreted by BMSCs was identified
by electron microscopy and miR-378a-3p expression was measured during gestational injury. Target scan detects the correlation of XIAP and miR-378a-3p which was confirmed by luciferase activity along with analysis of cell growth by MTT assay and cell invasion by Transwell and EMT expression.
Exosomal miR-378a-3p derived from BMSCs promoted proliferation and migration and invasion of trophoblast. miR-378a-3p targeted XIAP and its overexpression could significantly increase EMT switching. The miR-378a-3p/XIAP axis is critical in trophoblastic cell migration and EMT and is involved
in pregnancy injury progression, indicating that it might be a novel potential target for the treatment of pregnancy injury.
Collapse
Affiliation(s)
- Juan Du
- Department of Obstetrics, Women and Children’s Hospital of Jinan, Jinan, Shandong, 250001, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Lihua Dong
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Yanping Meng
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| | - Gang Xin
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, 250031, China
| |
Collapse
|
13
|
Zhang K, Zhang H, Wang F, Gao S, Sun C. HSPA8 Is Identified as a Novel Regulator of Hypertensive Disorders in Pregnancy by Modulating the β-Arrestin1/A1AR Axis. Reprod Sci 2021; 29:564-577. [PMID: 34582004 DOI: 10.1007/s43032-021-00719-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein alpha 8 (HSPA8) was found to be downregulated in the placentas of patients with hypertensive disorders in pregnancy (HDP). We aim to explore the underlying role and mechanism of HSPA8 in HDP progression. Herein, HSPA8 mRNA expression in placentas and peripheral blood of patients with HDP and normal pregnant controls was measured with RT-qPCR. We found that HSPA8 expression was downregulated in placentas and peripheral blood of patients with HDP. HTR8/SVneo human trophoblast cells were transfected with pcDNA-HSPA8 or si-HSPA8. HSPA8 overexpression promoted cell proliferation, migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while HSPA8 silencing showed the opposite results. Co-immunoprecipitation assay validated the binding between HSPA8 and β-arrestin1, as well as β-arrestin1 and A1AR proteins. HSPA8 bound with β-arrestin1 protein and promoted β-arrestin1 expression. β-arrestin1 bound with A1AR protein and inhibited A1AR expression. Then, HTR8/SVneo cells were transfected with pcDNA-HSPA8 alone or together with si-β-arrestin1, as well as transfected with pcDNA-β-arrestin1 alone or together with pcDNA-A1AR. β-arrestin1 silencing reversed the effects of HSPA8 overexpression on HTR8/SVneo cell functions. β-arrestin1 overexpression promoted cell proliferation migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while these effects were reversed by A1AR overexpression. Lentivirus HSPA8 overexpression vector (Lv-HSPA8) was injected into a preeclampsia (PE) rat model, which attenuated blood pressure and fetal detrimental changes in PE rats. In conclusion, HSPA8 promoted proliferation and migration and inhibited apoptosis in trophoblast cells, and attenuated the symptoms of PE rats by modulating the β-arrestin1/A1AR axis. Our study provided a novel theoretical evidence and potential strategy for HDP treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China.
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Shanshan Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Caiping Sun
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| |
Collapse
|
14
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|
15
|
Chi Z, Gao Q, Sun Y, Zhou F, Wang H, Shu X, Zhang M. LINC00473 downregulation facilitates trophoblast cell migration and invasion via the miR-15a-5p/LITAF axis in pre-eclampsia. ENVIRONMENTAL TOXICOLOGY 2021; 36:1618-1627. [PMID: 33908139 DOI: 10.1002/tox.23157] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
More and more evidence has identified that long non-coding RNAs (lncRNAs) are involved in various biological process of numerous diseases. It has been reported that long intergenic non-protein coding RNA 473 (LINC00473) was associated with pre-eclampsia (PE) development. However, role and molecular mechanism of LINC00473 in PE remains elusive. Therefore, we designed this research to figure out the specific biological function of LINC00473 in trophoblasts. Firstly, we testified expressions of LINC00473 in trophoblasts of PE with RT-qPCR analysis. Then, to probe biological function of LINC00473 in trophoblasts of PE, CCK-8 assay, trans-well assays and western blot analysis were conducted in Wish and JAR cells. As for verifying interaction of microRNA-15a-5p (miR-15a-5p) and LINC00473 or lipopolysaccharide induced TNF factor (LITAF), RNA pull-down and luciferase reporter assays were carried out. Finally, rescue experiments were conducted to probe regulatory pattern of the LINC00473/miR-15a-5p/LITAF axis in trophoblasts of PE. As a result, LINC00473 presented a significant upregulation in trophoblasts of PE. Moreover, LINC00473 knockdown induced trophoblast viability, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in trophoblasts. Additionally, miR-15a-5p interacted with LINC00473 and miR-15a-5p was negatively regulated by LINC00473 in trophoblasts. Simultaneously, miR-15a-5p negatively modulated LITAF in trophoblasts. Moreover, LITAF overexpression or miR-15a-5p downregulation reversed the promotive impact of silenced LINC00473 on trophoblast viability, migration, invasion and EMT. In conclusion, LINC00473 regulated migration and invasion in trophoblasts via the miR-15a-5p/LITAF axis. Our study may provide a novel insight for clinical treatment of PE.
Collapse
Affiliation(s)
- Zhenjing Chi
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qiong Gao
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yanlan Sun
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Fenmei Zhou
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Hairong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xiaoming Shu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Muling Zhang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
16
|
Feng X, Liu Y, Zhang Y, Zhang Y, Li H, Zheng Q, Li N, Tang J, Xu Z. New views on endothelial dysfunction in gestational hypertension and potential therapy targets. Drug Discov Today 2021; 26:1420-1436. [PMID: 33677145 DOI: 10.1016/j.drudis.2021.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The placenta has vital roles in metabolite exchange, fetal growth, and pre-eclampsia (PE). In this review, we discuss the pathogenesis of hypertension in pregnancy, focusing on four major theories to explain PE, discussing endothelial roles in those theories. We focus in particular on the roles of nitric oxide (NO) and prostacyclin (PGI2) in placental endothelium, and propose new hypotheses for the influence and mechanisms of endothelial NO and PGI2 signaling pathways in PE.
Collapse
Affiliation(s)
- Xueqin Feng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China; Department of Obstetrics, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanping Liu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yingying Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Yumeng Zhang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Huan Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Qiutong Zheng
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Na Li
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China
| | - Jiaqi Tang
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| | - Zhice Xu
- First Hospital of Soochow University & Maternal and Child Health Care Hospital of Wuxi, Jiangsu, China.
| |
Collapse
|
17
|
Salsoso R, Mate A, Toledo F, Vázquez CM, Sobrevia L. Insulin requires A 2B adenosine receptors to modulate the L-arginine/nitric oxide signalling in the human fetoplacental vascular endothelium from late-onset preeclampsia. Biochim Biophys Acta Mol Basis Dis 2020; 1867:165993. [PMID: 33096224 DOI: 10.1016/j.bbadis.2020.165993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
Late-onset preeclampsia (LOPE) associates with reduced umbilical vein reactivity and endothelial nitric oxide synthase (eNOS) activity but increased human cationic amino acid (hCAT-1)-mediated L-arginine transport involving A2A adenosine receptor in the fetoplacental unit. This study addresses the A2B adenosine receptor (A2BAR)-mediated response to insulin in the fetoplacental vasculature from LOPE. Umbilical veins and HUVECs were obtained from women with normal (n = 37) or LOPE (n = 35) pregnancies. Umbilical vein rings reactivity to insulin was assayed in the absence or presence of adenosine and MRS-1754 (A2BAR antagonist) in a wire myograph. HUVECs were exposed to insulin, MRS-1754, BAY60-6583 (A2BAR agonist), NECA (general adenosine receptors agonist) or NG-nitro-L-arginine methyl ester (NOS inhibitor). A2BAR, hCAT-1, total and phosphorylated eNOS, Akt and p44/42mapk protein abundance were determined by Western blotting. Insulin receptors A (IR-A) and B (IR-B), eNOS and hCAT-1 mRNA were determined by qPCR. Firefly/Renilla luciferase assay was used to determine -1606 bp SLC7A1 (hCAT-1) promoter activity. L-Citrulline content was measured by HPLC, L-[3H]citrulline formation from L-[3H]arginine by the Citrulline assay, and intracellular cGMP by radioimmunoassay. LOPE-reduced dilation of vein rings to insulin was restored by MRS-1754. HUVECs from LOPE showed higher A2BAR, hCAT-1, and IR-A expression, Akt and p44/42mapk activation, and lower NOS activity. MRS-1754 reversed the LOPE effect on A2BAR, hCAT-1, Akt, and eNOS inhibitory phosphorylation. Insulin reversed the LOPE effect on A2BAR, IR-A and eNOS, but increased hCAT-1-mediated transport. Thus, LOPE alters endothelial function, causing an imbalance in the L-arginine/NO signalling pathway to reduce the umbilical vein dilation to insulin requiring A2BAR activation in HUVECs.
Collapse
Affiliation(s)
- Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain.
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, Herston, QLD, 4029, Australia.
| |
Collapse
|
18
|
Zhu H, Niu X, Li Q, Zhao Y, Chen X, Sun H. Circ_0085296 suppresses trophoblast cell proliferation, invasion, and migration via modulating miR-144/E-cadherin axis. Placenta 2020; 97:18-25. [PMID: 32792057 DOI: 10.1016/j.placenta.2020.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) have been revealed to be important regulators in the biological behavior of cells, and aberrant circRNAs may be associated with the etiology of pre-eclampsia (PE). However, the role and underlying molecular mechanisms of circ_0085296 in PE remain unclear. METHODS The expression of circ_0085296, microRNA (miR)-144, and E-cadherin was detected using quantitative real-time polymerase chain reaction and western blot, respectively. Cell proliferation, migration, and invasion were analyzed by cell counting kit-8, colony formation and transwell assay. The interaction between miR-144 and circ_0085296 or E-cadherin was analyzed by the dual-luciferase reporter assay and pull-down assay. RESULTS Circ_0085296 was elevated in PE placental tissues, knockdown of circ_0085296 promoted trophoblast cell proliferation, invasion, and migration, while circ_0085296 up-regulation showed opposite effects. MiR-144 was down-regulated in PE placental tissues, and restoration of miR-144 induced proliferation, invasion, and migration in trophoblast cells. Further mechanistic analysis found miR-144 directly bound to circ_0085296 and E-cadherin, and circ_0085296 functioned as a sponge of miR-144 to regulate E-cadherin expression. Furthermore, miR-144 inhibition or E-cadherin overexpression attenuated the effectsof circ_0085296 on cell processes in trophoblast cells. CONCLUSION Circ_0085296 inhibited trophoblast cell proliferation, invasion, and migration via regulating miR-144/E-cadherin axis, providing a novel insight into the pathogenesis of PE and a new prospective therapeutic target for PE patients.
Collapse
Affiliation(s)
- Hailing Zhu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xia Niu
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yuehua Zhao
- Department of Pediatric, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xue Chen
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China
| | - Hesheng Sun
- Department of Pediatric, The Sunshine Union Hospital, Weifang, Shandong, China.
| |
Collapse
|
19
|
Sáez T, Toledo F, Sobrevia L. Extracellular Vesicles and Insulin Resistance: A Potential Interaction in Vascular Dysfunction. Curr Vasc Pharmacol 2020; 17:491-497. [PMID: 30277159 DOI: 10.2174/1570161116666181002095745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022]
Abstract
Insulin resistance plays a key role in cardiovascular complications associated with diabetes mellitus and hypertensive disorders. In states of insulin resistance several circulating factors may contribute to a defective insulin sensitivity in different tissues, including the vasculature. One of these factors influencing the vascular insulin resistance are the extracellular vesicles. The extracellular vesicles include exosomes, microvesicles, and apoptotic bodies which are released to the circulation by different vascular cells. Since the cargo of extracellular vesicles seems to be altered in metabolic complications associated with insulin resistance, these vesicles may be candidates contributing to vascular insulin resistance. Despite the studies linking insulin resistance signalling pathways with the vascular effect of extracellular vesicles, the involvement of these structures in vascular insulin resistance is a phenomenon that remains unclear.
Collapse
Affiliation(s)
- Tamara Sáez
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton T6G 2S2, AB, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton T6G 2S2, AB, Canada
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Bio-Bio University, Chillan 3780000, Chile.,Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago 8330024, Chile.,Department of Physiology, Faculty of Pharmacy, University of Sevilla, Seville E-41012, Spain.,University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia
| |
Collapse
|
20
|
Shen XY, Zheng LL, Huang J, Kong HF, Chang YJ, Wang F, Xin H. CircTRNC18 inhibits trophoblast cell migration and epithelial-mesenchymal transition by regulating miR-762/Grhl2 pathway in pre-eclampsia. RNA Biol 2019; 16:1565-1573. [PMID: 31354028 PMCID: PMC6779405 DOI: 10.1080/15476286.2019.1644591] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dysfunctions of epithelial-mesenchymal transition (EMT)-regulated cell migration and invasion have been involved in the pathogenesis of pre-eclampsia (PE). However, the role of circRNAs in EMT of PE has not been widely investigated. In this study, we identified that circTNRC18 was upregulated in PE placentas compared with normal pregnancy placentas. Moreover, circTNRC18 negatively regulated trophoblast cell migration and EMT. Overexpression of circTNRC18 reduced while depletion of circTNRC18 enhanced trophoblast cell migration and EMT. Mechanistically, circTNRC18 sponged miR-762 contributed to inhibit miR-762 activity and elevated EMT-related transcriptional factor Grhl2 protein level. miR-762 expression was lower in PE placentas and played a promoting role in trophoblast cell migration and EMT. In contrast, Grhl2 was highly expressed in PE placentas. Furthermore, we confirmed that upregulation of Grhl2 by circ-TNRC18-induced inhibition of miR-762 led to trophoblast cell migration and EMT. In conclusions, circTNRC18/miR-762/Grhl2 axis plays a key role in trophoblast cell migration and EMT. circTNRC18/miR-762/Grhl2 axis may be a potential therapeutic target in PE.
Collapse
Affiliation(s)
- Xue-Yan Shen
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China.,Department of Obstetrics, The Fourth Hospital of Shijiazhuang , Shijiazhuang , P.R. China
| | - Li-Li Zheng
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Jing Huang
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Hong-Fang Kong
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Ya-Jing Chang
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Fang Wang
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| | - Hong Xin
- Department of Obstetrics, The Second Hospital of Hebei Medical University , Shijiazhuang , P.R. China
| |
Collapse
|
21
|
Gutiérrez JA, Gómez I, Chiarello DI, Salsoso R, Klein AD, Guzmán-Gutiérrez E, Toledo F, Sobrevia L. Role of proteases in dysfunctional placental vascular remodelling in preeclampsia. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165448. [PMID: 30954558 DOI: 10.1016/j.bbadis.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a syndrome characterised by vascular dysfunction, impaired angiogenesis, and hypertension during pregnancy. Even when the precise pathophysiology of preeclampsia remains elusive, impaired vascular remodelling and placental angiogenesis in the placental villi and defective trophoblast invasion of the uterus are proposed as crucial mechanisms in this syndrome. Reduced trophoblast invasion leads to reduced uteroplacental blood flow and oxygen availability and increased oxidative stress. These phenomena trigger the release of soluble factors into the maternal and foetoplacental circulation that are responsible of the clinical features of preeclampsia. New blood vessels generation as well as vascular remodelling are mechanisms that require expression and activity of different proteases, including matrix metalloproteases, a-disintegrin and metalloproteases, and a-disintegrin and metalloprotease with thrombospondin motifs. These proteases exert proteolysis of the extracellular matrix. Additionally, cathepsins, a family of proteolytic enzymes, are primarily located in lysosomes but are also released by cells to the extracellular space. This review focuses on the role that these proteases play in the regulation of the uterine trophoblast invasion and the placental vascular remodelling associated with preeclampsia.
Collapse
Affiliation(s)
- Jaime A Gutiérrez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Isabel Gómez
- Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile
| | - Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Rocío Salsoso
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Andrés D Klein
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7590943, Chile
| | - Enrique Guzmán-Gutiérrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Fernando Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Sobrevia
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| |
Collapse
|
22
|
Alarcón S, Niechi I, Toledo F, Sobrevia L, Quezada C. Glioma progression in diabesity. Mol Aspects Med 2019; 66:62-70. [DOI: 10.1016/j.mam.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022]
|
23
|
Involvement of A2B adenosine receptors as anti-inflammatory in gestational diabesity. Mol Aspects Med 2019; 66:31-39. [DOI: 10.1016/j.mam.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
24
|
Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165370. [PMID: 30660686 DOI: 10.1016/j.bbadis.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen 9700 RB, the Netherlands
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cell Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío Bío, Chillán 3780000, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia.
| |
Collapse
|
25
|
Li M, Mulkey F, Jiang C, O'Neil BH, Schneider BP, Shen F, Friedman PN, Momozawa Y, Kubo M, Niedzwiecki D, Hochster HS, Lenz HJ, Atkins JN, Rugo HS, Halabi S, Kelly WK, McLeod HL, Innocenti F, Ratain MJ, Venook AP, Owzar K, Kroetz DL. Identification of a Genomic Region between SLC29A1 and HSP90AB1 Associated with Risk of Bevacizumab-Induced Hypertension: CALGB 80405 (Alliance). Clin Cancer Res 2018; 24:4734-4744. [PMID: 29871907 PMCID: PMC6168379 DOI: 10.1158/1078-0432.ccr-17-1523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 09/07/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
Abstract
Purpose: Bevacizumab is a VEGF-specific angiogenesis inhibitor indicated as an adjunct to chemotherapy for the treatment of multiple cancers. Hypertension is commonly observed during bevacizumab treatment, and high-grade toxicity can limit therapy or lead to cardiovascular complications. The factors that contribute to interindividual variability in blood pressure rise during bevacizumab treatment are not well understood.Experimental Design: To identify genomic regions associated with bevacizumab-induced hypertension risk, sequencing of candidate genes and flanking regulatory regions was performed on 61 patients treated with bevacizumab (19 cases developed early-onset grade 3 hypertension and 42 controls had no reported hypertension in the first six cycles of treatment). SNP-based tests for common variant associations and gene-based tests for rare variant associations were performed in 174 candidate genes.Results: Four common variants in independent linkage disequilibrium blocks between SLC29A1 and HSP90AB1 were among the top associations. Validation in larger bevacizumab-treated cohorts supported association between rs9381299 with early grade 3+ hypertension (P = 0.01; OR, 2.4) and systolic blood pressure >180 mm Hg (P = 0.02; OR, 2.1). rs834576 was associated with early grade 3+ hypertension in CALGB 40502 (P = 0.03; OR, 2.9). These SNP regions are enriched for regulatory elements that may potentially increase gene expression. In vitro overexpression of SLC29A1 in human endothelial cells disrupted adenosine signaling and reduced nitric oxide levels that were further lowered upon bevacizumab exposure.Conclusions: The genomic region between SLC29A1 and HSP90AB1 and its role in regulating adenosine signaling are key targets for further investigation into the pathogenesis of bevacizumab-induced hypertension. Clin Cancer Res; 24(19); 4734-44. ©2018 AACR.
Collapse
Affiliation(s)
- Megan Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Flora Mulkey
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Chen Jiang
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Bert H O'Neil
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Bryan P Schneider
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fei Shen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Paula N Friedman
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Donna Niedzwiecki
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - Howard S Hochster
- Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - James N Atkins
- Southeast Clinical Oncology Research Consortium, Winston-Salem, North Carolina
| | - Hope S Rugo
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Susan Halabi
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
| | - William Kevin Kelly
- Department of Medical Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Howard L McLeod
- DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, Florida
| | - Federico Innocenti
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Ratain
- Department of Medicine, University of Chicago Comprehensive Cancer, Chicago, Illinois
| | - Alan P Venook
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Kouros Owzar
- Alliance Statistics and Data Center, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California.
| |
Collapse
|
26
|
Wallingford MC, Benson C, Chavkin NW, Chin MT, Frasch MG. Placental Vascular Calcification and Cardiovascular Health: It Is Time to Determine How Much of Maternal and Offspring Health Is Written in Stone. Front Physiol 2018; 9:1044. [PMID: 30131710 PMCID: PMC6090024 DOI: 10.3389/fphys.2018.01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/13/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is the deposition of calcium phosphate minerals in vascular tissue. Vascular calcification occurs by both active and passive processes. Extent and tissue-specific patterns of vascular calcification are predictors of cardiovascular morbidity and mortality. The placenta is a highly vascularized organ with specialized vasculature that mediates communication between two circulatory systems. At delivery the placenta often contains calcified tissue and calcification can be considered a marker of viral infection, but the mechanisms, histoanatomical specificity, and pathophysiological significance of placental calcification are poorly understood. In this review, we outline the current understanding of vascular calcification mechanisms, biomedical consequences, and therapeutic interventions in the context of histoanatomical types. We summarize available placental calcification data and clinical grading systems for placental calcification. We report on studies that have examined the association between placental calcification and acute adverse maternal and fetal outcomes. We then review the intersection between placental dysfunction and long-term cardiovascular health, including subsequent occurrence of maternal vascular calcification. Possible maternal phenotypes and trigger mechanisms that may predispose for calcification and cardiovascular disease are discussed. We go on to highlight the potential diagnostic value of placental calcification. Finally, we suggest avenues of research to evaluate placental calcification as a research model for investigating the relationship between placental dysfunction and cardiovascular health, as well as a biomarker for placental dysfunction, adverse clinical outcomes, and increased risk of subsequent maternal and offspring cardiovascular events.
Collapse
Affiliation(s)
- Mary C Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States.,Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Ciara Benson
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nicholas W Chavkin
- Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, United States.,School of Medicine, Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States
| | - Michael T Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Raza R, Bai Y, Liu H. Development of a fast CE method for high throughput screening of ecto-5′-nucleotidase inhibitors. Electrophoresis 2018; 39:2612-2618. [DOI: 10.1002/elps.201800105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Rabia Raza
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering; Peking University; Beijing P. R. China
| |
Collapse
|
28
|
Pastor-Anglada M, Pérez-Torras S. Emerging Roles of Nucleoside Transporters. Front Pharmacol 2018; 9:606. [PMID: 29928232 PMCID: PMC5997781 DOI: 10.3389/fphar.2018.00606] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Since human Nucleoside Transporters (hNTs) were identified by their activity as transport systems, extensive work has been done to fully characterize them at the molecular and physiological level. Many efforts have been addressed to the identification of their selectivity for natural substrates and nucleoside analogs used to treat several diseases. hNTs belong to two different gene families, SLC28 and SLC29, encoding human Concentrative Nucleoside Transporters (hCNTs) and human Equilibrative Nucleoside Transporters (hENTs), respectively. hCNTs and hENTs are integral membrane proteins, albeit structurally unrelated. Both families share common features as substrate selectivity and often tissue localization. This apparent biological redundancy may anticipate some different roles for hCNTs and hENTs in cell physiology. Thus, hENTs may have a major role in maintaining nucleoside homeostasis, whereas hCNTs could contribute to nucleoside sensing and signal transduction. In this sense, the ascription of hCNT1 to a transceptor reinforces this hypothesis. Moreover, some evidences could suggest a putative role of hCNT2 and hCNT3 as transceptors. The interacting proteins identified for hCNT2 suggest a link to energy metabolism. Moreover, the ability of hCNT2 and hCNT3 to transport adenosine links both proteins to purinergic signaling. On the other hand, the broad selectivity transporters hENTs have a crucial role in salvage pathways and purinergic signaling by means of nucleoside pools regulation. In particular, the two new hENT2 isoforms recently described together with hENT2 seem to be key elements controlling nucleoside and nucleotide pools for DNA synthesis. This review focuses on all these NTs functions beyond their mere translocation ability.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Chiarello DI, Marín R, Proverbio F, Coronado P, Toledo F, Salsoso R, Gutiérrez J, Sobrevia L. Mechanisms of the effect of magnesium salts in preeclampsia. Placenta 2018; 69:134-139. [PMID: 29716747 DOI: 10.1016/j.placenta.2018.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/18/2018] [Accepted: 04/23/2018] [Indexed: 11/16/2022]
Abstract
Preeclampsia is a heterogeneous pregnancy-specific syndrome associated with abnormal trophoblast invasion and endothelial dysfunction. Magnesium (Mg2+) level may be normal or decreased in women with preeclampsia. However, the use of Mg2+ salts, such as Mg2+ sulphate, are useful in reducing the pathophysiological consequences of preeclampsia with severe features and eclampsia. Although the mechanism of action of this Mg2+ salt is not well understood, the available evidence suggests a beneficial effect of Mg2+ for the mother and foetus. The mechanisms include a lower level of soluble fms-like tyrosine kinase 1 and endoglin, blockage of brain N-methyl-D-aspartate receptors, decreased inflammation mediators, activation of nitric oxide synthases, blockage of arginases, and reduced free radicals level. The maintenance of Mg2+ homeostasis in pregnancy is crucial for an appropriate pregnancy progression. Oral Mg2+ salts can be used for this purpose which could result in mitigating the deleterious consequences of this syndrome to the mother, foetus, and newborn.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Reinaldo Marín
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), AP 21827, Caracas 1020A, Venezuela
| | - Fulgencio Proverbio
- Center for Biophysics and Biochemistry (CBB), Venezuelan Institute for Scientific Research (IVIC), AP 21827, Caracas 1020A, Venezuela
| | - Paula Coronado
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Rocio Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Jaime Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cellular Signaling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastián, Santiago 7510157, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Australia.
| |
Collapse
|
30
|
Intracellular acidification reduces l-arginine transport via system y+L but not via system y+/CATs and nitric oxide synthase activity in human umbilical vein endothelial cells. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1192-1202. [DOI: 10.1016/j.bbadis.2018.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
|
31
|
|
32
|
Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 2017; 60:69-80. [PMID: 29222068 DOI: 10.1016/j.mam.2017.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Intercellular communication is a critical process in biological mechanisms. During pregnancy foetoplacental tissues release a heterogeneous group of extracellular vesicles (EVs) that include exosomes, microvesicles, apoptotic bodies, and syncytial nuclear aggregates. These vesicles contain a complex cargo (proteins, DNA, mRNA transcripts, microRNAs, noncoding RNA, lipids, and other molecules) that actively participate in the maternal-foetal communication by modulating different processes during gestation for a successful foetal development. Each stage of human gestation is marked by events such as immunomodulation, proliferation, invasion, migration, and differentiation, among others, requiring EVs-mediated signalling to be nearby or distant target cells. Furthermore, EVs also associate with pregnancy pathologies such as preeclampsia and intrauterine growth restriction. This review addresses the role of EVs in human foetomaternal communication in normal pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029 Queensland, Australia.
| |
Collapse
|
33
|
Gutiérrez J, Aedo A, Mora J, Maldonado J, Salsoso R, Toledo F, Farías M, Pardo F, Leiva A, Sobrevia L. Preeclampsia associates with RECK-dependent decrease in human trophoblasts migration and invasion. Placenta 2017; 59:19-29. [DOI: 10.1016/j.placenta.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022]
|
34
|
Bahreyni A, Khazaei M, Rajabian M, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potency of pharmacological adenosine receptor agonist/antagonist in angiogenesis, current status and perspectives. ACTA ACUST UNITED AC 2017; 70:191-196. [PMID: 29057476 DOI: 10.1111/jphp.12844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/30/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Adenosine concentration significantly increases in tumour microenvironment contributing to tumorigenic processes including cell proliferation, survival, invasion and of special interest in this review angiogenesis. KEY FINDINGS This review summarizes the role of pharmacological adenosine receptor agonist and antagonist in regulating angiogenesis for a better understanding and hence a better management of angiogenesis-associated disorders. SUMMARY Depending upon the pharmacological characteristics of adenosine receptor subtypes, adenosine elicits anti- or pro-angiogenic responses in stimulated cells. Inhibition of the stimulatory effect of adenosine signalling on angiogenesis using specific pharmacological adenosine receptor agonist, and antagonist is a potentially novel strategy to suppress angiogenesis in tumours.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Faculty of Medicine, Department of Clinical Biochemistry and Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rajabian
- Department of Biochemistry, Payam-e-Noor University, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed M Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
|
36
|
Celis N, Araos J, Sanhueza C, Toledo F, Beltrán AR, Pardo F, Leiva A, Ramírez MA, Sobrevia L. Intracellular acidification increases adenosine transport in human umbilical vein endothelial cells. Placenta 2017; 51:10-17. [DOI: 10.1016/j.placenta.2017.01.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/01/2017] [Accepted: 01/14/2017] [Indexed: 12/16/2022]
|
37
|
Villalobos-Labra R, Silva L, Subiabre M, Araos J, Salsoso R, Fuenzalida B, Sáez T, Toledo F, González M, Quezada C, Pardo F, Chiarello DI, Leiva A, Sobrevia L. Akt/mTOR Role in Human Foetoplacental Vascular Insulin Resistance in Diseases of Pregnancy. J Diabetes Res 2017; 2017:5947859. [PMID: 29104874 PMCID: PMC5618766 DOI: 10.1155/2017/5947859] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance is characteristic of pregnancies where the mother shows metabolic alterations, such as preeclampsia (PE) and gestational diabetes mellitus (GDM), or abnormal maternal conditions such as pregestational maternal obesity (PGMO). Insulin signalling includes activation of insulin receptor substrates 1 and 2 (IRS1/2) as well as Src homology 2 domain-containing transforming protein 1, leading to activation of 44 and 42 kDa mitogen-activated protein kinases and protein kinase B/Akt (Akt) signalling cascades in the human foetoplacental vasculature. PE, GDM, and PGMO are abnormal conditions coursing with reduced insulin signalling, but the possibility of the involvement of similar cell signalling mechanisms is not addressed. This review aimed to determine whether reduced insulin signalling in PE, GDM, and PGMO shares a common mechanism in the human foetoplacental vasculature. Insulin resistance in these pathological conditions results from reduced Akt activation mainly due to inhibition of IRS1/2, likely due to the increased activity of the mammalian target of rapamycin (mTOR) resulting from lower activity of adenosine monophosphate kinase. Thus, a defective signalling via Akt/mTOR in response to insulin is a central and common mechanism of insulin resistance in these diseases of pregnancy. In this review, we summarise the cell signalling mechanisms behind the insulin resistance state in PE, GDM, and PGMO focused in the Akt/mTOR signalling pathway in the human foetoplacental endothelium.
Collapse
Affiliation(s)
- Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9700 RB Groningen, Netherlands
| | - Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Joaquín Araos
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Bárbara Fuenzalida
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Tamara Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), 9700 RB Groningen, Netherlands
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, 3780000 Chillán, Chile
| | - Marcelo González
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, 4070386 Concepción, Chile
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, 5110566 Valdivia, Chile
| | - Fabián Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Metabolic Diseases Research Laboratory, Center of Research, Development and Innovation in Health-Aconcagua Valley, School of Medicine, Faculty of Medicine, Universidad de Valparaíso, San Felipe Campus, 2172972 San Felipe, Chile
| | - Delia I. Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Andrea Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Brisbane, QLD 4029, Australia
| |
Collapse
|