1
|
Al Balawi AN, Alblwi NAN, Soliman R, El-Far AH, Hassan MG, El-Sewedy T, Ameen F, Ismail NF, Elmetwalli A. Impact of Vitamin D deficiency on immunological and metabolic responses in women with recurrent pregnancy loss: focus on VDBP/HLA-G1/CTLA-4/ENTPD1/adenosine-fetal-maternal conflict crosstalk. BMC Pregnancy Childbirth 2024; 24:709. [PMID: 39472874 PMCID: PMC11523824 DOI: 10.1186/s12884-024-06914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND AND AIM Recurrent pregnancy loss (RPL), also known as recurrent implantation failure (RIF), is a distressing condition affecting women characterized by two or more consecutive miscarriages or the inability to carry a pregnancy beyond 20 weeks. Immunological factors and genetic variations, particularly in Vit D Binding Protein (VDBP), have gained attention as potential contributors to RPL. This study aimed to provide insight into the immunological, genetic, and metabolic networks underlying RPL, placing a particular emphasis on the interactions between VDBP, HLA-G1, CTLA-4, ENTPD1, and adenosine-fetal-maternal conflict crosstalk. METHODS A retrospective study included 198 women with three or more consecutive spontaneous abortions. Exclusion criteria comprised uterine abnormalities, endocrine disorders, parental chromosomal abnormalities, infectious factors, autoimmune diseases, or connective tissue diseases. Immunological interplay was investigated in 162 female participants, divided into two groups based on their Vit D levels: normal Vit D-RPL and low Vit D-RPL. Various laboratory techniques were employed, including LC/MS/MS for Vit D measurement, ELISA for protein detection, flow cytometry for immune function analysis, and molecular docking for protein-ligand interaction assessment. RESULTS General characteristics between groups were significant regarding Vit D and glucose levels. Low Vit D levels were associated with decreased NK cell activity and downregulation of HLA-G1 and HLA-G5 proteins, while CTLA-4 revealed upregulation. VDBP was significantly downregulated in the low Vit D group. Our findings highlight the intricate relationship between Vit D status and adenosine metabolism by the downregulation of SGLT1, and NT5E, key components of adenosine metabolism, suggests that Vit D deficiency may disrupt the regulation of adenosine levels, leading to an impaired reproductive outcome. HNF1β, a negative regulator of VDBP, was upregulated, while HNF1α, a positive regulator, was downregulated in low Vit D women after RPL. Molecular docking analysis revealed crucial residues involved in the interaction between Vit D and HNF1β. CONCLUSION Collectively, these findings underscore the importance of Vit D in modulating immune function and molecular pathways relevant to pregnancy maintenance, highlighting the need for further research to elucidate the mechanisms and potential therapeutic interventions for improving pregnancy outcomes in individuals with Vit D deficiency and RPL.
Collapse
Affiliation(s)
- Aisha Nawaf Al Balawi
- Biology Department, University College of Haql, University of Tabuk, Tabuk, Saudi Arabia.
| | | | - Riham Soliman
- Tropical Medicine Department, Faculty of Medicine, Port Said University, Port Said, Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, Mansoura, Egypt
| | - Ali H El-Far
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, China
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Nadia F Ismail
- Health Information Management Program, Biochemistry, Faculty of Health Science Technology, Borg El Arab Technological University, Alexandria, Egypt
| | - Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egypt Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| |
Collapse
|
2
|
Köse Y, Şirin C, Turgut AÇ, Tomruk C, Uyanıkgil Y, Turgut M. The neuroprotective effect of exogen melatonin upon fetal hippocampus damage caused by high-dose caffeine administration in pregnant rats. Int J Dev Neurosci 2024; 84:251-261. [PMID: 38469915 DOI: 10.1002/jdn.10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
OBJECTIVE The aim of this study is to evaluate whether exogenous melatonin (MEL) mitigates the deleterious effects of high-dose caffeine (CAF) administration in pregnant rats upon the fetal hippocampus. MATERIALS AND METHODS A total of 32 adult Wistar albino female rats were divided into four groups after conception (n = 8). At 9-20 days of pregnancy, intraperitoneal (i.p.) MEL was administered at a dose of 10 mg/kg/day in the MEL group, while i.p. CAF was administered at a dose of 60 mg/kg/day in the CAF group. In the CAF plus MEL group, i.p. CAF and MEL were administered at a dose of 60 and 10 mg/kg/day, respectively, at the same period. Following extraction of the brains of the fetuses sacrificed on the 21st day of pregnancy, their hippocampal regions were analyzed by hematoxylin and eosin and Cresyl Echt Violet, anti-GFAP, and antisynaptophysin staining methods. RESULTS While there was a decrease in fetal and brain weights in the CAF group, it was found that the CAF plus MEL group had a closer weight average to that of the control group. Histologically, it was observed that the pyramidal cell layer consisted of 8-10 layers of cells due to the delay in migration in hippocampal neurons in the CAF group, while the MEL group showed similar characteristics with the control group. It was found that these findings decreased in the CAF plus MEL group. CONCLUSION It is concluded that high-dose CAF administration causes a delay in neurogenesis of the fetal hippocampus, and exogenous MEL is able to mitigate its deleterious effects.
Collapse
Affiliation(s)
- Yağmur Köse
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
| | - Cansın Şirin
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Ali Çağlar Turgut
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
- Department of Radiology, Faculty of Medicine, Ege University, İzmir, Turkey
| | - Canberk Tomruk
- Histology and Embryology, Samsun Education and Research Hospital, Samsun, Turkey
| | - Yiğit Uyanıkgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, İzmir, Turkey
- Department of Stem Cell, Health Science Institute, Ege University, İzmir, Turkey
- Application and Research Center of Cord Blood Cell-Tissue, Ege University, İzmir, Turkey
| | - Mehmet Turgut
- Department of Histology and Embryology, Health Sciences Institute, Aydın Adnan Menderes University, Aydın, Turkey
- Department of Neurosurgery, Faculty of Medicine, Aydın Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
3
|
Bahreyni A, Saeedi N, Al-Asady AM, Soleimani A, Ghorbani E, Khazaei M, Alaei M, Hanaei R, Ryzhikov M, Avan A, Hassanian SM. Therapeutic potency of A1 adenosine receptor antagonists in the treatment of cardiovascular diseases, current status and perspectives. Mol Biol Rep 2024; 51:358. [PMID: 38400849 DOI: 10.1007/s11033-024-09246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/11/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Cardiomyocytes form, transport, and metabolize the omnipresent metabolite adenosine. Depending upon the adenosine concentrations and the pharmacological properties of receptor subtypes, adenosine exerts (patho)physiological responses in the cardiovascular system. The objective of this review is to present different protective mechanisms of A1-adenosine receptor inhibitors in cardiovascular diseases. METHODS AND RESULTS Literature references were collected and sorted using relevant keywords and key phrases as search terms in scientific databases such as Web of Science, PubMed and Google Scholar. A1 adenosine receptor regulates free fatty acid metabolism, lipolysis, heart rate, blood pressure, and cardiovascular toxicity. The evidence clearly supporting the therapeutic potency of pharmacological A1 adenosine receptors agonists and antagonists in modulating cardiovascular risk factor parameters and treatment of cardiovascular diseases. CONCLUSION This review summarizes the protective role of pharmacological A1-adenosine receptor regulators in the pathogenesis of cardiovascular diseases for a better management of cardiovascular diseases.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nikoo Saeedi
- Student Research Committee, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Abdulridha Mohammed Al-Asady
- Department of Medical Sciences, Faculty of Nursing, University of Warith Al-Anbiyaa, Karbala, Iraq
- Department of pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Sciences, Faculty of Dentistry, University of Kerbala, Karbala, Iraq
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Medical Microbiology and virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alaei
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Hanaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Human Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Wu Z, Nie J, Wu D, Huang S, Chen J, Liang H, Hao X, Feng L, Luo H, Tan C. Dietary adenosine supplementation improves placental angiogenesis in IUGR piglets by up-regulating adenosine A2a receptor. ANIMAL NUTRITION 2023; 13:282-288. [PMID: 37168450 PMCID: PMC10165186 DOI: 10.1016/j.aninu.2023.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/09/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Abnormal placental angiogenesis is associated with the occurrence of intrauterine growth restriction (IUGR) in piglets, and effective treatment strategies against this occurrence remain to be explored. Adenosine has been reported to play an important role in angiogenesis, but its role in placental angiogenesis is still unknown. Here, we investigated the effect of dietary adenosine supplementation on IUGR occurrence in piglets by analyzing the role of adenosine in placental angiogenesis for Normal and IUGR piglets. Specifically, 88 sows were allotted to 2 treatments (n = 44) and fed a basal diet supplemented with 0% or 0.1% of adenosine from day 65 of gestation until farrowing, followed by collecting the placental samples of Normal and IUGR piglets, and recording their characteristics. The results showed that adenosine supplementation increased the mean birth weight of piglets (P < 0.05) and placental efficiency (P < 0.05), while decreasing the IUGR piglet rate (P < 0.05). Expectedly, the placenta for IUGR neonates showed a down-regulated vascular density (P < 0.05) and angiogenesis as evidenced by the expression level of vascular cell adhesion molecule-1 (VCAM1) (P < 0.05). Notably, dietary adenosine supplementation promoted angiogenesis (P < 0.05) both in the Normal and IUGR placenta. More importantly, the expression level of adenosine A2a receptor (ADORA2A) was lower (P < 0.05) in the IUGR placenta than in Normal placenta, whereas adenosine treatment could significantly increase ADORA2A expression, and also had an interaction effect between factors IUGR and Ado. Collectively, placentae for IUGR piglets showed impaired angiogenesis and down-regulated expression level of ADORA2A, while dietary adenosine supplementation could activate ADORA2A expression, improve the placental angiogenesis, and ultimately decrease the occurrence of IUGR in piglets.
Collapse
Affiliation(s)
- Zifang Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiawei Nie
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Deyuan Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shuangbo Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianzhao Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huajin Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangyu Hao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Li Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hefeng Luo
- Dekon Food and Agriculture Group, Chengdu, China
- Corresponding authors.
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- Corresponding authors.
| |
Collapse
|
5
|
Galletta L, Craven MJ, Meillère A, Crowley TM, Buchanan KL, Mariette MM. Acute exposure to high temperature affects expression of heat shock proteins in altricial avian embryos. J Therm Biol 2022; 110:103347. [PMID: 36462856 DOI: 10.1016/j.jtherbio.2022.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022]
Abstract
As the world warms, understanding the fundamental mechanisms available to organisms to protect themselves from thermal stress is becoming ever more important. Heat shock proteins are highly conserved molecular chaperones which serve to maintain cellular processes during stress, including thermal extremes. Developing animals may be particularly vulnerable to elevated temperatures, but the relevance of heat shock proteins for developing altricial birds exposed to a thermal stressor has never been investigated. Here, we sought to test whether three stress-induced genes - HSPD1, HSPA2, HSP90AA1 - and two constitutively expressed genes - HSPA8, HSP90B1 - are upregulated in response to acute thermal shock in zebra finch (Taeniopygia guttata) embryos half-way through incubation. Tested on a gradient from 37.5 °C (control) to 45 °C, we found that all genes, except HSPD1, were upregulated. However, not all genes initiated upregulation at the same temperature. For all genes, the best fitting model included a correlate of developmental stage that, although it was never significant after multiple-test correction, hints that heat shock protein upregulation might increase through embryonic development. Together, these results show that altricial avian embryos are capable of upregulating a known protective mechanism against thermal stress, and suggest that these highly conserved cellular mechanisms may be a vital component of early developmental protection under climate change.
Collapse
Affiliation(s)
- Lorenzo Galletta
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Meagan J Craven
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia.
| | - Alizée Meillère
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Tamsyn M Crowley
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia; Poultry Hub Australia, University of New England, Armidale, NSW, Australia.
| | - Katherine L Buchanan
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| | - Mylene M Mariette
- Centre for Integrative Ecology, School of Life & Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; Estación Biológica de Doñana (EBD-CSIC), Seville, Spain.
| |
Collapse
|
6
|
Bagheri M, He X, Al-Lami MK, Oustriere N, Liu W, Limmer MA, Shi H, Burken JG. Assessing plant uptake of organic contaminants by food crops tomato, wheat, and corn through sap concentration factor. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1215-1224. [PMID: 36356305 DOI: 10.1080/15226514.2022.2144797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study investigated uptake of two organic compounds including hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and exogenous caffeine by tomato (Solanum lycopersicum L.), corn (Zea mays L.), and wheat (Triticum aestivum L.). The plants were grown in a growth chamber under recommended conditions and then were exposed to these compounds for 19 days. The uptake of the compounds was measured by sap concentration factor. The plant samples (stem transpiration stream) and solution in the exposure media were taken and analyzed by high performance liquid chromatography-tandem mass spectrometry. The plant stem samples were analyzed after a freeze-thaw centrifugation process. The average sap concentration factor for the RDX by tomato, wheat, and corn was 0.71, 0.67, and 0.65. The average sap concentration factor for the exogenous caffeine by tomato, wheat, and corn was 0.72, 0.50, and 0.34. These relatively high sap concentration factor values were expected as available predictive models offer high sap concentration factor values for moderately hydrophobic and hydrophilic compounds. The generated sap concentration factor values for the RDX and exogenous caffeine are important for improving the accuracy of previously developed machine learning models predicting the uptake and translocation of emerging contaminants.
Collapse
Affiliation(s)
- Majid Bagheri
- Department of Engineering Technology, Savannah State University, Savannah, GA, USA
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Xiaolong He
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Mariam K Al-Lami
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| | - Nadege Oustriere
- Laboratoire Génie Civil Et Géoenvironnement (LGCgE), Yncréa Hauts-De-France, Institut Supérieur Agriculture, Lille Cedex, France
| | - Wenyan Liu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Matt A Limmer
- Department of Plant and Soil Science, University of Delaware, Newark, DE, USA
| | - Honglan Shi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, USA
| | - Joel G Burken
- Civil, Architectural and Environmental Engineering Department, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
7
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Lopes CR, Lourenço VS, Tomé ÂR, Cunha RA, Canas PM. Use of knockout mice to explore CNS effects of adenosine. Biochem Pharmacol 2020; 187:114367. [PMID: 33333075 DOI: 10.1016/j.bcp.2020.114367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022]
Abstract
The initial exploration using pharmacological tools of the role of adenosine receptors in the brain, concluded that adenosine released as such acted on A1R to inhibit excitability and glutamate release from principal neurons throughout the brain and that adenosine A2A receptors (A2AR) were striatal-'specific' receptors controlling dopamine D2R. This indicted A1R as potential controllers of neurodegeneration and A2AR of psychiatric conditions. Global knockout of these two receptors questioned the key role of A1R and instead identified extra-striatal A2AR as robust controllers of neurodegeneration. Furthermore, transgenic lines with altered metabolic sources of adenosine revealed a coupling of ATP-derived adenosine to activate A2AR and a role of A1R as a hurdle to initiate neurodegeneration. Additionally, cell-selective knockout of A2AR unveiled the different roles of A2AR in different cell types (neurons/astrocytes) in different portions of the striatal circuits (dorsal versus lateral) and in different brain areas (hippocampus/striatum). Finally, a new transgenic mouse line with deletion of all adenosine receptors seems to indicate a major allostatic rather than homeostatic role of adenosine and may allow isolating P2R-mediated responses to unravel their role in the brain, a goal close to heart of Geoffrey Burnstock, to whom we affectionately dedicate this review.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Vanessa S Lourenço
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ângelo R Tomé
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paula M Canas
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
10
|
Lutte AH, Majolo JH, Da Silva RS. Inhibition of ecto-5'-nucleotidase and adenosine deaminase is able to reverse long-term behavioural effects of early ethanol exposure in zebrafish (Danio rerio). Sci Rep 2020; 10:17809. [PMID: 33082435 PMCID: PMC7576130 DOI: 10.1038/s41598-020-74832-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The behavioural impacts of prenatal exposure to ethanol include a lower IQ, learning problems, anxiety and conduct disorders. Several components of the neurochemical network could contribute to the long-lasting effects of ethanol embryonic exposure. Adenosine is an important neuromodulator, that has been indicated to be affected by acute and chronic exposure to ethanol. Here, embryos of zebrafish exposed to 1% ethanol during the developmental stages of gastrula/segmentation or pharyngula exhibited anxiolytic effect, increased aggressiveness, and decreased social interaction. The exposure during pharyngula stage was able to affect all behavioural parameters analysed at 3 months-post fertilization (mpf), while the treatment during gastrula stage affected the anxiety and social interaction parameters. The aggressiveness was the only behavioural effect of early ethanol exposure that lasted to 12 mpf. The use of a specific inhibitor of adenosine production, the inhibitor of ecto-5′-nucleotidase (AMPCP/150 mg/kg), and the specific inhibitor of adenosine degradation, the inhibitor of adenosine deaminase, EHNA (100 mg/kg) did not affect the effects over anxiety. However, AMPCP at 3 mpf, but not EHNA, reversed aggressive parameters. AMPCP also recovered the social interaction parameter at 3 mpf in animals treated in both stages, while EHNA recovered this parameter just in those animals treated with ethanol during the gastrula stage. These results suggest that long-lasting behavioural effects of ethanol can be modulated by intervention on ecto-5′-nucleotidase and adenosine deaminase activities.
Collapse
Affiliation(s)
- Aline Haab Lutte
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Julia Huppes Majolo
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica E Psicofarmacologia, Escola de Ciências da Saúde E da Vida, Pontifícia Universidade Católica Do Rio Grande Do Sul, Avenida Ipiranga, 6681, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
11
|
Lin D, Liu Q, Wang W, Li Y, Li Y, Lin B, Ye Z, Huang J, Yu X, Chen Y, Mei Y, Huang M, Yang W, Zhou J, Liu X, Zeng J. Aberrant expression of miR-16, B12 and CD272 in peripheral blood mononuclear cells from patients with active tuberculosis. Am J Transl Res 2020; 12:6076-6091. [PMID: 33194015 PMCID: PMC7653578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Tuberculosis (TB) immunity is affected by complex immune regulation processes, which involve various immune cells, immune molecules, and cytokines. Here, we evaluated the expression of B12, CD272 and miR-16 in peripheral blood mononuclear cells (PBMC) of patients with active pulmonary tuberculosis. The results showed that monocytes expressing CD272 or B12 were down-regulated in patients with tuberculosis. The expression of B12 and CD272 in T cells and monocytes is related to tuberculosis. In TB patients, the up-regulation of miR-16 was negatively correlated with B12 mRNA expression, miR-16 was mainly expressed in CD14+ monocytes, and CD272 mRNA was mainly expressed in CD19+ B cells. It is worth noting that the overexpression of miR-16 inhibits the expression of CD272 and B12 in monocytes of TB patients. After BCG stimulation, miR-16 expression of CD14+ monocytes was up-regulated and B12 mRNA and CD272 mRNA expressions were down-regulated in TB patients. Finally, we found that miR-16 may participate in the TB immunization process through targeted regulation of B12 expression. These studies indicate that the expression of B12, CD272 and miR-16 in PBMC may be related to tuberculosis.
Collapse
Affiliation(s)
- Dongzi Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Qiankun Liu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Wei Wang
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Yanyun Li
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Yumei Li
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Bihua Lin
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Ziyu Ye
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Juan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Yinwen Chen
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Yuezhi Mei
- Department of Laboratory Medicine, Dongguan Sixth People’s HospitalDongguan 523008, Guangdong, China
| | - Minyuan Huang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Weiqin Yang
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Jie Zhou
- Department of Laboratory Medicine, Foshan Forth People’s HospitalFoshan 528041, Guangdong, China
| | - Xinguang Liu
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical UniversityDongguan 523808, Guangdong, China
| |
Collapse
|
12
|
Boison D, Rho JM. Epigenetics and epilepsy prevention: The therapeutic potential of adenosine and metabolic therapies. Neuropharmacology 2020; 167:107741. [PMID: 31419398 PMCID: PMC7220211 DOI: 10.1016/j.neuropharm.2019.107741] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Prevention of epilepsy and its progression remains the most urgent need for epilepsy research and therapy development. Novel conceptual advances are required to meaningfully address this fundamental challenge. Maladaptive epigenetic changes, which include methylation of DNA and acetylation of histones - among other mechanisms, are now well recognized to play a functional role in the development of epilepsy and its progression. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In this context, global DNA hypermethylation is particularly associated with chronic epilepsy. Likewise, acetylation changes of histones have been linked to epilepsy development. Clinical as well as experimental evidence demonstrate that epilepsy and its progression can be prevented by metabolic and biochemical manipulations that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This review will discuss epigenetic mechanisms implicated in epilepsy development as well as metabolic and biochemical interactions thought to drive epileptogenesis. Therefore, metabolic and biochemical mechanisms are identified as novel targets for epilepsy prevention. We will specifically discuss adenosine biochemistry as a novel therapeutic strategy to reconstruct the DNA methylome as antiepileptogenic strategy as well as metabolic mediators, such as beta-hydroxybutyrate, which affect histone acetylation. Finally, metabolic dietary interventions (such as the ketogenic diet) which have the unique potential to prevent epileptogenesis through recently identified epigenetic mechanisms will be reviewed. This article is part of the special issue entitled 'New Epilepsy Therapies for the 21st Century - From Antiseizure Drugs to Prevention, Modification and Cure of Epilepsy'.
Collapse
Affiliation(s)
- Detlev Boison
- Dept. of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - Jong M Rho
- Depts. of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, 92117, USA
| |
Collapse
|
13
|
Qian J, Chen Q, Ward SM, Duan E, Zhang Y. Impacts of Caffeine during Pregnancy. Trends Endocrinol Metab 2020; 31:218-227. [PMID: 31818639 PMCID: PMC7035149 DOI: 10.1016/j.tem.2019.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Epidemiological studies have revealed that caffeine consumption during pregnancy is associated with adverse gestational outcomes, yet the underlying mechanisms remain obscure. Recent animal studies with physiologically relevant dosages have begun to dissect adverse effects of caffeine during pregnancy with respect to oviduct contractility, embryo development, uterine receptivity, and placentation that jointly contribute to pregnancy complications. Interestingly, caffeine's effects are highly variable between individual animals under well-controlled experimental settings, suggesting the possibility of epigenetic regulation of these phenotypes, in addition to genetic variants. Moreover, caffeine exposure during sensitive windows of pregnancy may induce epigenetic changes in the developing fetus or even the germ cells to cause adult-onset diseases in subsequent generations. We discuss these research frontiers in light of emerging data.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
Qian J, Zhang Y, Qu Y, Zhang L, Shi J, Zhang X, Liu S, Kim BH, Hwang SJ, Zhou T, Chen Q, Ward SM, Duan E, Zhang Y. Caffeine consumption during early pregnancy impairs oviductal embryo transport, embryonic development and uterine receptivity in mice. Biol Reprod 2019; 99:1266-1275. [PMID: 29982366 DOI: 10.1093/biolre/ioy155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
Caffeine consumption has been widely used as a central nervous system stimulant. Epidemiological studies, however, have suggested that maternal caffeine exposure during pregnancy is associated with increased abnormalities, including decreased fertility, delayed conception, early spontaneous abortions, and low birth weight. The mechanisms underlying the negative outcomes of caffeine consumption, particularly during early pregnancy, remain unclear. In present study, we found that pregnant mice treated with moderate (5 mg/kg) or high (30 mg/kg) dosage of caffeine (intraperitoneally or orally) during preimplantation resulted in retention of early embryos in the oviduct, defective embryonic development, and impaired embryo implantation. Transferring normal blastocysts into the uteri of caffeine-treated pseudopregnant females also showed abnormal embryo implantation, thus indicating impaired uterine receptivity by caffeine administration. The remaining embryos that managed to implant after caffeine treatment also showed increased embryo resorption rate and abnormal development at mid-term stage, and decreased weight at birth. In addition to a dose-dependent effect, significant variations between individual mice under the same caffeine dosage were also observed, suggesting different sensitivities to caffeine, similar to that observed in human populations. Collectively, our data revealed that caffeine exposure during early pregnancy impaired oviductal embryo transport, embryonic development, and uterine receptivity, which are responsible for abnormal implantation and pregnancy loss. The study raises the concern of caffeine consumption during early stages of pregnancy.
Collapse
Affiliation(s)
- Jingjing Qian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfang Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongcun Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liwen Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junchao Shi
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Xudong Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Shichao Liu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Bo Hyun Kim
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sung Jin Hwang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Qi Chen
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Enkui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Abstract
Adenosine modulation is considered both a paracrine signal coordinating different cells in a tissue and a stress signal. Both functions are ensured by 4 types of adenosine receptors (ARs), which have been studied individually. Mice with knockout of all ARs (quad-AR-KO) now allow enquiring the overall function of the adenosine modulation system. The observed “normal” physiology of quad-AR-KO mice indicates that ARs do not regulate homeostasis and are likely recruited to selectively control allostasis. Does the adenosine modulation system control allostasis rather than regulate homeostasis? This Primer explores the implications of a new study of mice that lack all four adenosine receptors.
Collapse
Affiliation(s)
- Rodrigo A. Cunha
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
16
|
Xiao C, Liu N, Jacobson KA, Gavrilova O, Reitman ML. Physiology and effects of nucleosides in mice lacking all four adenosine receptors. PLoS Biol 2019; 17:e3000161. [PMID: 30822301 PMCID: PMC6415873 DOI: 10.1371/journal.pbio.3000161] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/13/2019] [Accepted: 02/07/2019] [Indexed: 11/29/2022] Open
Abstract
Adenosine is a constituent of many molecules of life; increased free extracellular adenosine indicates cell damage or metabolic stress. The importance of adenosine signaling in basal physiology, as opposed to adaptive responses to danger/damage situations, is unclear. We generated mice lacking all four adenosine receptors (ARs), Adora1−/−;Adora2a−/−;Adora2b−/−;Adora3−/− (quad knockout [QKO]), to enable investigation of the AR dependence of physiologic processes, focusing on body temperature. The QKO mice demonstrate that ARs are not required for growth, metabolism, breeding, and body temperature regulation (diurnal variation, response to stress, and torpor). However, the mice showed decreased survival starting at about 15 weeks of age. While adenosine agonists cause profound hypothermia via each AR, adenosine did not cause hypothermia (or bradycardia or hypotension) in QKO mice, indicating that AR-independent signals do not contribute to adenosine-induced hypothermia. The hypothermia elicited by adenosine kinase inhibition (with A134974), inosine, or uridine also required ARs, as each was abolished in the QKO mice. The proposed mechanism for uridine-induced hypothermia is inhibition of adenosine transport by uridine, increasing local extracellular adenosine levels. In contrast, adenosine 5′-monophosphate (AMP)–induced hypothermia was attenuated in QKO mice, demonstrating roles for both AR-dependent and AR-independent mechanisms in this process. The physiology of the QKO mice appears to be the sum of the individual knockout mice, without clear evidence for synergy, indicating that the actions of the four ARs are generally complementary. The phenotype of the QKO mice suggests that, while extracellular adenosine is a signal of stress, damage, and/or danger, it is less important for baseline regulation of body temperature. A study of mice lacking all four adenosine receptors shows that while they mediate effects of uridine, inosine and adenosine, these receptors are dispensable for growth, metabolism, breeding, and body temperature regulation. This suggests that extracellular adenosine is a damage or danger signal, rather than a major regulator of baseline physiology. Elevated extracellular adenosine generally indicates metabolic stress or cell damage and regulates many aspects of physiology. We studied “QKO” mice lacking all four adenosine receptors. Young QKO mice do not appear obviously ill, but do show decreased survival later in life. QKO mice demonstrate that adenosine receptors are not required for growth, metabolism, breeding, and body temperature regulation. QKO mice are missing the pharmacologic effects of adenosine on body temperature, heart rate, and blood pressure. Therefore, all of these effects are mediated by the four adenosine receptors. We also determined that the hypothermic effects of a pharmacologic adenosine kinase inhibitor (A134974), uridine, or inosine each requires adenosine receptors. The uridine-induced hypothermia is likely due to its inhibition of adenosine uptake into cells. QKO mouse physiology appears to be the sum of the individual knockout mice, without evidence for synergy, indicating that the actions of the four adenosine receptors are generally complementary.
Collapse
Affiliation(s)
- Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Naili Liu
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
| | - Marc L. Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lubinsky M. An epigenetic association of malformations, adverse reproductive outcomes, and fetal origins hypothesis related effects. J Assist Reprod Genet 2018; 35:953-964. [PMID: 29855751 PMCID: PMC6030006 DOI: 10.1007/s10815-018-1197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 04/25/2018] [Indexed: 12/17/2022] Open
Abstract
VACTERL, the prototype for associated congenital anomalies, also has connections with functional issues such as pregnancy losses, prematurity, growth delays, perinatal difficulties, and parental subfertility. This segues into a broader association with similar connections even in the absence of malformations. DNA methylation disturbances in the ovum are a likely cause, with epigenetic links to individual components and to folate effects before conception, explaining diverse fetal and placental findings and providing a link to fetal origin hypothesis-related effects. The association encompasses the following: (1) Pre- and periconceptual effects, with frequent fertility issues and occasional imprinting disorders. (2) Early malformations. (3) Adverse pregnancy outcomes (APOs), as above. (4) Developmental destabilization that resolves soon after birth. This potentiates other causes of association findings, introducing multiple confounders. (5) Long-term fetal origins hypothesis-related risks. The other findings are exceptional when the same malformations have Mendelian origins, supporting a distinct pathogenesis. Expressions are facilitated by one-carbon metabolic issues, maternal and fetal stress, and decreased embryo size. This may be one of the commonest causes of adverse reproductive outcomes, but multifactorial findings, variable onsets and phenotypes, and interactions with multiple confounders make recognition difficult. This association supports VACTERL as a continuum that includes isolated malformations, extends the fetal origins hypothesis, explains adverse effects linked to maternal obesity, and suggests possible interventions.
Collapse
Affiliation(s)
- Mark Lubinsky
- , 6003 W. Washington Blvd., Wauwatosa, WI, 53213, USA.
| |
Collapse
|
18
|
Davis L, Musso J, Soman D, Louey S, Nelson JW, Jonker SS. Role of adenosine signaling in coordinating cardiomyocyte function and coronary vascular growth in chronic fetal anemia. Am J Physiol Regul Integr Comp Physiol 2018; 315:R500-R508. [PMID: 29791204 DOI: 10.1152/ajpregu.00319.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal anemia causes rapid and profound changes in cardiac structure and function, stimulating proliferation of the cardiac myocytes, expansion of the coronary vascular tree, and impairing early contraction and relaxation. Although hypoxia-inducible factor-1α is sure to play a role, adenosine, a metabolic byproduct that increases coronary flow and growth, is implicated as a major stimulus for these adaptations. We hypothesized that genes involved in myocardial adenosine signaling would be upregulated in chronically anemic fetuses and that calcium-handling genes would be downregulated. After sterile surgical instrumentation under anesthesia, gestationally timed fetal sheep were made anemic by isovolumetric hemorrhage for 1 wk (16% vs. 35% hematocrit). At 87% of gestation, necropsy was performed to collect heart tissue for PCR and immunohistochemical analysis. Anemia increased mRNA expression levels of adenosine receptors ADORA 1, ADORA2A, and ADORA2B in the left and right ventricles (adenosine receptor ADORA3 was unchanged). In both ventricles, anemia also increased expression of ectonucleoside triphosphate diphosphohydrolase 1 and ecto-5'-nucleotidase. The genes for both equilibrative nucleoside transporters 1 and 2 were expressed more abundantly in the anemic right ventricle but were not different in the left ventricle. Neither adenosine deaminase nor adenosine kinase cardiac levels were significantly changed by chronic fetal anemia. Chronic fetal anemia did not significantly change cardiac mRNA expression levels of the voltage-dependent L-type calcium channel, ryanodine receptor 1, sodium-calcium exchanger, sarcoplasmic/endoplasmic reticulum calcium transporting ATPase 2, phospholamban, or cardiac calsequestrin. These data support local metabolic integration of vascular and myocyte function through adenosine signaling in the anemic fetal heart.
Collapse
Affiliation(s)
- Lowell Davis
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Department of Obstetrics and Gynecology, Oregon Health & Science University , Portland, Oregon
| | - James Musso
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon
| | - Divya Soman
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Samantha Louey
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Jonathan W Nelson
- Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health & Science University , Portland, Oregon.,Knight Cardiovascular Institute, Oregon Health & Science University , Portland, Oregon
| |
Collapse
|
19
|
Barouki R, Melén E, Herceg Z, Beckers J, Chen J, Karagas M, Puga A, Xia Y, Chadwick L, Yan W, Audouze K, Slama R, Heindel J, Grandjean P, Kawamoto T, Nohara K. Epigenetics as a mechanism linking developmental exposures to long-term toxicity. ENVIRONMENT INTERNATIONAL 2018; 114:77-86. [PMID: 29499450 PMCID: PMC5899930 DOI: 10.1016/j.envint.2018.02.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/13/2018] [Accepted: 02/08/2018] [Indexed: 05/17/2023]
Abstract
A variety of experimental and epidemiological studies lend support to the Developmental Origin of Health and Disease (DOHaD) concept. Yet, the actual mechanisms accounting for mid- and long-term effects of early-life exposures remain unclear. Epigenetic alterations such as changes in DNA methylation, histone modifications and the expression of certain RNAs have been suggested as possible mediators of long-term health effects of environmental stressors. This report captures discussions and conclusions debated during the last Prenatal Programming and Toxicity meeting held in Japan. Its first aim is to propose a number of criteria that are critical to support the primary contribution of epigenetics in DOHaD and intergenerational transmission of environmental stressors effects. The main criteria are the full characterization of the stressors, the actual window of exposure, the target tissue and function, the specificity of the epigenetic changes and the biological plausibility of the linkage between those changes and health outcomes. The second aim is to discuss long-term effects of a number of stressors such as smoking, air pollution and endocrine disruptors in order to identify the arguments supporting the involvement of an epigenetic mechanism. Based on the developed criteria, missing evidence and suggestions for future research will be identified. The third aim is to critically analyze the evidence supporting the involvement of epigenetic mechanisms in intergenerational and transgenerational effects of environmental exposure and to particularly discuss the role of placenta and sperm. While the article is not a systematic review and is not meant to be exhaustive, it critically assesses the contribution of epigenetics in the long-term effects of environmental exposures as well as provides insight for future research.
Collapse
Affiliation(s)
- R Barouki
- INSERM UMR-S 1124, Université Paris Descartes, Paris, France; Service de Biochimie Métabolomique et Protéomique, Hôpital Necker Enfants Malades, AP-HP, Paris, France.
| | - E Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Sachs' Children and Youth Hospital, and Centre for Occupational and Environmental Medicine, Stockholm County Council, Sweden
| | - Z Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, F-69008 Lyon, France
| | - J Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Technische Universität München, Experimental Genetics, 85354 Freising, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - J Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Karagas
- Department of Epidemiology, Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - A Puga
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Y Xia
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | | | - W Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA MS575; Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA
| | - K Audouze
- INSERM UMR-S973, Molécules Thérapeutiques in silico, University of Paris Diderot, Paris, France
| | - R Slama
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - J Heindel
- Program in Endocrine Disruption Strategies, Commonweal, Bolinas, CA, USA
| | - P Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - T Kawamoto
- Department of Environmental Health, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - K Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
20
|
Transient Disruption of Adenosine Signaling During Embryogenesis Triggers a Pro-epileptic Phenotype in Adult Zebrafish. Mol Neurobiol 2018; 55:6547-6557. [PMID: 29327202 DOI: 10.1007/s12035-017-0850-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
Abstract
Adenosinergic signaling has important effects on brain function, anatomy, and physiology in both late and early stages of development. Exposure to caffeine, a non-specific blocker of adenosine receptor, has been indicated as a developmental risk factor. Disruption of adenosinergic signaling during early stages of development can change the normal neural network formation and possibly lead to an increase in susceptibility to seizures. In this work, morpholinos (MO) temporarily blocked the translation of adenosine receptor transcripts, adora1, adora2aa, and adora2ab, during the embryonic phase of zebrafish. It was observed that the block of adora2aa and adora2aa + adora2ab transcripts increased the mortality rate and caused high rate of malformations. To test the susceptibility of MO adora1, MO adora2aa, MO adora2ab, and MO adora2aa + adora2ab animals to seizure, pentylenetetrazole (10 mM) was used as a convulsant agent in larval and adult stages of zebrafish development. Although no MO promoted significant differences in latency time to reach the seizures stages in 7-day-old larvae, during the adult stage, all MO animals showed a decrease in the latency time to reach stages III, IV, and V of seizure. These results indicated that transient interventions in the adenosinergic signaling through high affinity adenosine receptors during embryonic development promote strong outcomes on survival and morphology. Additionally, long-term effects on neural development can lead to permanent impairment on neural signaling resulting in increased susceptibility to seizure.
Collapse
|
21
|
|