1
|
Salminen A. The role of inhibitory immune checkpoint receptors in the pathogenesis of Alzheimer's disease. J Mol Med (Berl) 2024:10.1007/s00109-024-02504-x. [PMID: 39601807 DOI: 10.1007/s00109-024-02504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/16/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
There is mounting evidence that microglial cells have a key role in the pathogenesis of Alzheimer's disease (AD). In AD pathology, microglial cells not only are unable to remove β-amyloid (Aβ) plaques and invading pathogens but also are involved in synaptic pruning, chronic neuroinflammation, and neuronal degeneration. Microglial cells possess many different inhibitory immune checkpoint receptors, such as PD-1, LILRB2-4, Siglecs, and SIRPα receptors, which can be targeted by diverse cell membrane-bound and soluble ligand proteins to suppress the functions of microglia. Interestingly, in the brains of AD patients there are elevated levels of many of the inhibitory ligands acting via these inhibitory checkpoint receptors. For instance, Aβ oligomers, ApoE4, and fibronectin are able to stimulate the LILRB2-4 receptors. Increased deposition of sialoglycans, e.g., gangliosides, inhibits microglial function via Siglec receptors. AD pathology augments the accumulation of senescent cells, which are known to possess a high level of PD-L1 proteins, and thus, they can evade immune surveillance. A decrease in the expression of SIRPα receptor in microglia and its ligand CD47 in neurons enhances the phagocytic pruning of synapses in AD brains. Moreover, cerebral neurons contain inhibitory checkpoint receptors which can inhibit axonal growth, reduce synaptic plasticity, and impair learning and memory. It seems that inappropriate inhibitory immune checkpoint signaling impairs the functions of microglia and neurons thus promoting AD pathogenesis. KEY MESSAGES: Microglial cells have a major role in the pathogenesis of AD. A decline in immune activity of microglia promotes AD pathology. Microglial cells and neurons contain diverse inhibitory immune checkpoint receptors. The level of ligands for inhibitory checkpoint receptors is increased in AD pathology. Impaired signaling of inhibitory immune checkpoint receptors promotes AD pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
2
|
Sojitra M, Schmidt EN, Lima GM, Carpenter EJ, McCord KA, Atrazhev A, Macauley MS, Derda R. Measuring carbohydrate recognition profile of lectins on live cells using liquid glycan array (LiGA). Nat Protoc 2024:10.1038/s41596-024-01070-3. [PMID: 39415074 DOI: 10.1038/s41596-024-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
Glycans constitute a significant fraction of biomolecular diversity on cellular surfaces across all kingdoms of life. As the structure of glycans is not directly encoded by the organism's DNA, it is impossible to use high-throughput DNA technologies to study the role of cellular glycosylation or to understand how glycocalyx is recognized by glycan-binding proteins (GBPs). To address this gap, we recently described a liquid glycan array (LiGA) platform that allows profiling of glycan-GBP interactions on the surface of live cells in vitro and in vivo using next-generation sequencing. LiGA is a library of DNA-barcoded bacteriophages, where each clonal bacteriophage displays 5-1,500 copies of a glycan and the distinct DNA barcode inside each bacteriophage clone encodes the structure and density of the displayed glycans. Deep sequencing of the glycophages associated with live cells yields a glycan-binding profile of GBPs expressed on the surface of cells. This protocol provides detailed instructions for how to use LiGA to probe cell surface receptors and includes information on the preparation of glycophages, analysis by MALDI-TOF mass spectrometry, the assembly of a LiGA library and its deep sequencing. Using this protocol, we measure glycan-binding profiles of the immunomodulatory sialic acid-binding immunoglobulin-like lectins‑1, -2, -6, -7 and -9 expressed on the surface of different cell types. Compared with existing methods that require complex specialist equipment, this method allows users with basic molecular biology expertise to measure the precise glycan-binding profile of GBPs on the surface of any cell type expressing exogenous GBP within 2-3 d.
Collapse
Affiliation(s)
- Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kelli A McCord
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Hu ZX, Li SR, Xia QJ, Wang T, Voglmeir J, Widmalm G, Liu L. Enzymatic synthesis of N-formylated sialosides via a five-enzyme cascade. Org Biomol Chem 2024; 22:7485-7491. [PMID: 39189395 DOI: 10.1039/d4ob00874j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Here we report an enzymatic approach to synthesize N-formylneuraminic acid (Neu5Fo) containing sialosides, through a five-enzyme cascade. This method stands as an alternative to traditional chemical syntheses, aiming for precision and efficiency in generating sialosides with a tailored N-formyl group generated directly from formic acid. The newly synthesized Neu5Fo was characterized using various NMR techniques revealing a conformational equilibrium at the amide bond of the formyl group in slow exchange on the NMR time scale with a trans : cis ratio of ∼2 : 1. This work not only suggests potential for exploring the biological roles of sialosides but also points to the possibility of developing novel therapeutic agents.
Collapse
Affiliation(s)
- Zi-Xuan Hu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Shu-Rui Li
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Qing-Jun Xia
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, China.
| |
Collapse
|
5
|
Li TA, Gonzalez-Gil A, Awol AK, Ackerman SJ, Orsburn BC, Schnaar RL. Sialylated keratan sulfates on MUC5B are Siglec-8 ligands in the human esophagus. Glycobiology 2024; 34:cwae065. [PMID: 39173029 PMCID: PMC11364441 DOI: 10.1093/glycob/cwae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024] Open
Abstract
Human sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed on subsets of immune cells. Siglec-8 is an immune inhibitory Siglec on eosinophils and mast cells, which are effectors in allergic disorders including eosinophilic esophagitis. Inhibition occurs when Siglec-8 is crosslinked by multivalent Siglec ligands in target tissues. Previously we discovered a high-affinity Siglec-8 sialoglycan ligand on human airways composed of terminally sialylated keratan sulfate chains carried on a single protein, DMBT1. Here we extend that approach to another allergic inflammatory target tissue, human esophagus. Lectin overlay histochemistry revealed that Siglec-8 ligands are expressed predominantly by esophageal submucosal glands, and are densely packed in submucosal ducts leading to the lumen. Expression is tissue-specific; esophageal glands express Siglec-8 ligand whereas nearby gastric glands do not. Extraction and resolution by gel electrophoresis revealed a single predominant human esophageal Siglec-8 ligand migrating at >2 MDa. Purification by size exclusion and affinity chromatography, followed by proteomic mass spectrometry, revealed the protein carrier to be MUC5B. Whereas all human esophageal submucosal cells express MUC5B, only a portion convert it to Siglec-8 ligand by adding terminally sialylated keratan sulfate chains. We refer to this as MUC5B S8L. Material from the esophageal lumen of live subjects revealed MUC5B S8L species ranging from ~1-4 MDa. We conclude that MUC5B in the human esophagus is a protein canvas on which Siglec-8 binding sialylated keratan sulfate chains are post-translationally added. These data expand understanding of Siglec-8 ligands and may help us understand their roles in allergic immune regulation.
Collapse
Affiliation(s)
- T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Abduselam K Awol
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Steven J Ackerman
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, United States
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, United States
| |
Collapse
|
6
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
7
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Conti G, Bärenwaldt A, Rabbani S, Mühlethaler T, Sarcevic M, Jiang X, Schwardt O, Ricklin D, Pieters RJ, Läubli H, Ernst B. Tetra- and Hexavalent Siglec-8 Ligands Modulate Immune Cell Activation. Angew Chem Int Ed Engl 2023; 62:e202314280. [PMID: 37947772 DOI: 10.1002/anie.202314280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Carbohydrate-binding proteins are generally characterized by poor affinities for their natural glycan ligands, predominantly due to the shallow and solvent-exposed binding sites. To overcome this drawback, nature has exploited multivalency to strengthen the binding by establishing multiple interactions simultaneously. The development of oligovalent structures frequently proved to be successful, not only for proteins with multiple binding sites, but also for proteins that possess a single recognition domain. Herein we present the syntheses of a number of oligovalent ligands for Siglec-8, a monomeric I-type lectin found on eosinophils and mast cells, alongside the thermodynamic characterization of their binding. While the enthalpic contribution of each binding epitope was within a narrow range to that of the monomeric ligand, the entropy penalty increased steadily with growing valency. Additionally, we observed a successful agonistic binding of the tetra- and hexavalent and, to an even larger extent, multivalent ligands to Siglec-8 on immune cells and modulation of immune cell activation. Thus, triggering a biological effect is not restricted to multivalent ligands but could be induced by low oligovalent ligands as well, whereas a monovalent ligand, despite binding with similar affinity, showed an antagonistic effect.
Collapse
Affiliation(s)
- Gabriele Conti
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Anne Bärenwaldt
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Said Rabbani
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Tobias Mühlethaler
- Biophysics Facility, Department Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Mirza Sarcevic
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Xiaohua Jiang
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Oliver Schwardt
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roland J Pieters
- Chemical Biology and Drug Discovery Group, Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine, University of Basel, Hebelstrasse 20, 4051, Basel, Switzerland
- Division of Medical Oncology, University Hospital Basel, Petersgraben 4, 4051, Basel, Switzerland
| | - Beat Ernst
- Molecular Pharmacy Group, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
9
|
Siddiqui SS. Siglecs in health and disease. Mol Aspects Med 2023; 90:101147. [PMID: 36243585 DOI: 10.1016/j.mam.2022.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shoib Sarwar Siddiqui
- School of Life and Medical Sciences, University of Hertfordshire, College Lane Campus, Hatfield, AL10 9AB, United Kingdom.
| |
Collapse
|
10
|
Abstract
The structure of a sialoglycan can be translated into to a biological response when it binds to a specific endogenous lectin. Among endogenous sialic acid-binding lectins in humans are those comprising the 15-member Siglec family, most of which are expressed on overlapping sets of immune cells. Endogenous Siglec ligands are sialoglycolipids (gangliosides) and/or sialoglycoproteins, on cell surfaces or in the extracellular milieu, that bind to and initiate signaling by cell surface Siglecs. In the nervous system, where gangliosides are the predominant sialoglycans, Siglec-4 (myelin-associated glycoprotein) on myelinating cells binds to gangliosides GD1a and GT1b on nerve cell axons to ensure stable and productive axon-myelin interactions. In the immune system, Siglec-7 on natural killer cells binds to gangliosides GD3 and GD2 to inhibit immune signaling. Expression of GD3 and GD2 on cancer cells can lead to tumor immune evasion. Siglec-1 (sialoadhesin, CD169) on macrophages binds to gangliosides on tumors and enveloped viruses. This may enhance antigen presentation in some cases, or increase viral distribution in others. Several other Siglecs bind to gangliosides in vitro, the biological significance of which has yet to be fully established. Gangliosides, which are found on all human cells and tissues in cell-specific distributions, are functional Siglec ligands with varied roles driving Siglec-mediated signaling.
Collapse
Affiliation(s)
- Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N Wolfe St, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|