1
|
Pleštilová L, Hrouzková E, Burda H, Meheretu Y, Šumbera R. Ear morphology in two root-rat species (genus Tachyoryctes) differing in the degree of fossoriality. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:469-478. [PMID: 33956210 DOI: 10.1007/s00359-021-01489-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/30/2022]
Abstract
It is supposed that the subterranean lifestyle in mammals is reflected in ear morphology and tuning of hearing to low frequencies. We studied two root-rat species to see if their ear morphology reflects the difference in the amount of their surface activity. Whereas the more subterranean Tachyoryctes splendens possesses shorter pinnae as expected, it has smaller bullae compared to the more epigeic Tachyoryctes macrocephalus. The ratio between the eardrum and the stapedial footplate area and the ratio between the mallear and the incudal lever were lower in T. splendens (19.3 ± 0.3 and 1.9 ± 0.0, respectively) than in T. macrocephalus (21.8 ± 0.6 and 2.1 ± 0.1), probably reflecting the latter's higher surface activity. The cochlea in both species has 3.5 coils, yet the basilar membrane is longer in the smaller T. splendens (13.0 ± 0.5 versus 11.4 ± 0.7 mm), which indicates its wider hearing range and/or higher sensitivity (to some frequencies). In both root-rat species, the highest density of outer hair cells (OHC) was in the apical part of the cochlea, while the highest density of inner hair cells (IHC) was in its middle part. This OHC density pattern corresponds with good low-frequency hearing, whereas the IHC pattern suggests sensitivity to higher frequencies.
Collapse
Affiliation(s)
- Lucie Pleštilová
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská, 1760, 37005, České Budějovice, Czech Republic.
| | - Ema Hrouzková
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská, 1760, 37005, České Budějovice, Czech Republic
| | - Hynek Burda
- Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, 16521, Praha, Czech Republic
| | - Yonas Meheretu
- Department of Biology, College of Natural and Computational Sciences, University of Mekelle, Mekelle, Ethiopia
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská, 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Lin J, Fan L, Han Y, Guo J, Hao Z, Cao L, Kang J, Wang X, He J, Li J. The mTORC1/eIF4E/HIF-1α Pathway Mediates Glycolysis to Support Brain Hypoxia Resistance in the Gansu Zokor, Eospalax cansus. Front Physiol 2021; 12:626240. [PMID: 33708138 PMCID: PMC7940537 DOI: 10.3389/fphys.2021.626240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus) is a subterranean rodent species that is unique to China. These creatures inhabit underground burrows with a hypoxia environment. Metabolic energy patterns in subterranean rodents have become a recent focus of research; however, little is known about brain energy metabolism under conditions of hypoxia in this species. The mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) coordinates eukaryotic cell growth and metabolism, and its downstream targets regulate hypoxia inducible factor-1α (HIF-1α) under conditions of hypoxia to induce glycolysis. In this study, we compared the metabolic characteristics of hypoxia-tolerant subterranean Gansu zokors under hypoxic conditions with those of hypoxia-intolerant Sprague-Dawley rats with a similar-sized surface area. We exposed Gansu zokors and rats to hypoxia I (44 h at 10.5% O2) or hypoxia II (6 h at 6.5% O2) and then measured the transcriptional levels of mTORC1 downstream targets, the transcriptional and translational levels of glycolysis-related genes, glucose and fructose levels in plasma and brain, and the activity of key glycolysis-associated enzymes. Under hypoxia, we found that hif-1α transcription was upregulated via the mTORC1/eIF4E pathway to drive glycolysis. Furthermore, Gansu zokor brain exhibited enhanced fructose-driven glycolysis under hypoxia through increased expression of the GLUT5 fructose transporter and ketohexokinase (KHK), in addition to increased KHK enzymatic activity, and utilization of fructose; these changes did not occur in rat. However, glucose-driven glycolysis was enhanced in both Gansu zokor and rat under hypoxia II of 6.5% O2 for 6 h. Overall, our results indicate that on the basis of glucose as the main metabolic substrate, fructose is used to accelerate the supply of energy in Gansu zokor, which mirrors the metabolic responses to hypoxia in this species.
Collapse
Affiliation(s)
- Jinyan Lin
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lele Fan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Yuming Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Juanjuan Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Zhiqiang Hao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Lingna Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jiamin Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Xiaoqin Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jianping He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Jingang Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|