1
|
Potts L, Douglas A, Perez Calderon LJ, Anderson JA, Witte U, Prosser JI, Gubry-Rangin C. Chronic Environmental Perturbation Influences Microbial Community Assembly Patterns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2300-2311. [PMID: 35103467 PMCID: PMC9007448 DOI: 10.1021/acs.est.1c05106] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 05/11/2023]
Abstract
Acute environmental perturbations are reported to induce deterministic microbial community assembly, while it is hypothesized that chronic perturbations promote development of alternative stable states. Such acute or chronic perturbations strongly impact on the pre-adaptation capacity to the perturbation. To determine the importance of the level of microbial pre-adaptation and the community assembly processes following acute or chronic perturbations in the context of hydrocarbon contamination, a model system of pristine and polluted (hydrocarbon-contaminated) sediments was incubated in the absence or presence (discrete or repeated) of hydrocarbon amendment. The community structure of the pristine sediments changed significantly following acute perturbation, with selection of different phylotypes not initially detectable. Conversely, historically polluted sediments maintained the initial community structure, and the historical legacy effect of chronic pollution likely facilitated community stability. An alternative stable state was also reached in the pristine sediments following chronic perturbation, further demonstrating the existence of a legacy effect. Finally, ecosystem functional resilience was demonstrated through occurrence of hydrocarbon degradation by different communities in the tested sites, but the legacy effect of perturbation also strongly influenced the biotic response. This study therefore demonstrates the importance of perturbation chronicity on microbial community assembly processes and reveals ecosystem functional resilience following environmental perturbation.
Collapse
Affiliation(s)
- Lloyd
D. Potts
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
- Materials
and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - Alex Douglas
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - Luis J. Perez Calderon
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
- Materials
and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - James A. Anderson
- Materials
and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - Ursula Witte
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - James I. Prosser
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - Cécile Gubry-Rangin
- School
of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, U.K.
| |
Collapse
|
2
|
He Y, Sen B, Zhou S, Xie N, Zhang Y, Zhang J, Wang G. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α- Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea. Front Microbiol 2017; 8:1579. [PMID: 28868051 PMCID: PMC5563310 DOI: 10.3389/fmicb.2017.01579] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in the Qinhuangdao coastal waters.
Collapse
Affiliation(s)
- Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Shuangyan Zhou
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
| |
Collapse
|
3
|
Duran R, Cravo-Laureau C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol Rev 2016; 40:814-830. [PMID: 28201512 PMCID: PMC5091036 DOI: 10.1093/femsre/fuw031] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/28/2015] [Accepted: 07/24/2016] [Indexed: 11/14/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in marine ecosystems and originate from natural sources and anthropogenic activities. PAHs enter the marine environment in two main ways, corresponding to chronic pollution or acute pollution by oil spills. The global PAH fluxes in marine environments are controlled by the microbial degradation and the biological pump, which plays a role in particle settling and in sequestration through bioaccumulation. Due to their low water solubility and hydrophobic nature, PAHs tightly adhere to sediments leading to accumulation in coastal and deep sediments. Microbial assemblages play an important role in determining the fate of PAHs in water and sediments, supporting the functioning of biogeochemical cycles and the microbial loop. This review summarises the knowledge recently acquired in terms of both chronic and acute PAH pollution. The importance of the microbial ecology in PAH-polluted marine ecosystems is highlighted as well as the importance of gaining further in-depth knowledge of the environmental services provided by microorganisms.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, Pau Cedex, France
| |
Collapse
|
4
|
Jeanbille M, Gury J, Duran R, Tronczynski J, Ghiglione JF, Agogué H, Saïd OB, Taïb N, Debroas D, Garnier C, Auguet JC. Chronic Polyaromatic Hydrocarbon (PAH) Contamination Is a Marginal Driver for Community Diversity and Prokaryotic Predicted Functioning in Coastal Sediments. Front Microbiol 2016; 7:1303. [PMID: 27594854 PMCID: PMC4990537 DOI: 10.3389/fmicb.2016.01303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/08/2016] [Indexed: 01/11/2023] Open
Abstract
Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs) in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.
Collapse
Affiliation(s)
- Mathilde Jeanbille
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Jérôme Gury
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux, UMR 5254 CNRS - Université de Pau et des Pays de L'Adour Pau, France
| | - Jacek Tronczynski
- Laboratoire Biogéochimie des Contaminants Organiques, Unité Biogéochimie et Ecotoxicologie, Département Ressources Biologiques et Environnement, Ifremer Centre Atlantique Nantes, France
| | - Jean-François Ghiglione
- Laboratoire d'Océanographie Microbienne, Sorbonne Universités, CNRS, Université Pierre-et-Marie-Curie, UMR 7621, Observatoire Océanologique Banyuls-sur-mer, France
| | - Hélène Agogué
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - Université de La Rochelle La Rochelle, France
| | - Olfa Ben Saïd
- Laboratoire de Bio-surveillance de l'Environnement, Faculté des Sciences de Bizerte Zarzouna, Tunisia
| | - Najwa Taïb
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023 CNRS - Université Blaise Pascal Aubière, France
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, UMR 6023 CNRS - Université Blaise Pascal Aubière, France
| | - Cédric Garnier
- Processus de Transferts et d'Echanges dans l'Environnement, EA 3819, Université de Toulon La Garde, France
| | | |
Collapse
|
5
|
Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione JF. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4242-4256. [PMID: 26122564 DOI: 10.1007/s11356-015-4768-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Marc Tedetti
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Catherine Guigue
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Chloé Dumas
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Raphaël Lami
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Mireille Pujo-Pay
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Pascal Conan
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Madeleine Goutx
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Jean-François Ghiglione
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France.
| |
Collapse
|
6
|
Sauret C, Böttjer D, Talarmin A, Guigue C, Conan P, Pujo-Pay M, Ghiglione JF. Top-Down Control of Diesel-Degrading Prokaryotic Communities. MICROBIAL ECOLOGY 2015; 70:445-458. [PMID: 25805213 DOI: 10.1007/s00248-015-0596-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm experiment using pre-filtered (<50 μm) surface seawater from the Bay of Banyuls-sur-Mer (North-Western Mediterranean Sea) and examined the top-down effect exerted by heterotrophic nanoflagellates (HNF) and virus-like particles (VLP) on prokaryotic abundance, activity and diversity in the presence or absence of diesel fuel. Prokaryotes, HNF and VLP abundances showed a predator-prey succession, with a co-development of HNF and VLP. In the polluted system, we observed a stronger impact of viral lysis on prokaryotic abundances than in the control. Analysis of the diversity revealed that a bloom of Vibrio sp. occurred in the polluted mesocosm. That bloom was rapidly followed by a less abundant and more even community of predation-resistant bacteria, including known hydrocarbon degraders such as Oleispira spp. and Methylophaga spp. and opportunistic bacteria such as Percisivirga spp., Roseobacter spp. and Phaeobacter spp. The shift in prokaryotic dominance in response to viral lysis provided clear evidence of the 'killing the winner' model. Nevertheless, despite clear effects on prokaryotic abundance, activity and diversity, the diesel degradation was not impacted by top-down control. The present study investigates for the first time the functioning of a complex microbial network (including VLP) using a nutrient-based biostimulation strategy and highlights some key processes useful for tailoring bioremediation.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, 66650, Banyuls-sur-mer, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Zhuang X, Pi Y, Bao M, Li Y, Zheng X. The physical–biological processes of petroleum hydrocarbons in seawater/sediments after an oil spill. RSC Adv 2015. [DOI: 10.1039/c5ra20850e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Physical adsorption and biodegradation processes of crude oil in a seawater–sediment system.
Collapse
Affiliation(s)
- Xiaohong Zhuang
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yongrui Pi
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Mutai Bao
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| | - Xiujin Zheng
- Key Laboratory of Marine Chemistry Theory and Technology
- Ministry of Education
- Ocean University of China
- Qingdao 266100
- China
| |
Collapse
|
8
|
Sauret C, Séverin T, Vétion G, Guigue C, Goutx M, Pujo-Pay M, Conan P, Fagervold SK, Ghiglione JF. 'Rare biosphere' bacteria as key phenanthrene degraders in coastal seawaters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 194:246-253. [PMID: 25156140 DOI: 10.1016/j.envpol.2014.07.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 05/20/2023]
Abstract
By coupling DNA-SIP and pyrosequencing approaches, we identified Cycloclasticus sp. as a keystone degrader of polycyclic aromatic hydrocarbons (PAH) despite being a member of the 'rare biosphere' in NW Mediterranean seawaters. We discovered novel PAH-degrading bacteria (Oceanibaculum sp., Sneathiella sp.) and we identified other groups already known to possess this function (Alteromonas sp., Paracoccus sp.). Together with Cycloclasticus sp., these groups contributed to potential in situ phenanthrene degradation at a rate >0.5 mg l(-1) day(-1), sufficient to account for a considerable part of PAH degradation. Further, we characterized the PAH-tolerant bacterial communities, which were much more diverse in the polluted site by comparison to unpolluted marine references. PAH-tolerant bacteria were also members of the rare biosphere, such as Glaciecola sp. Collectively, these data show the complex interactions between PAH-degraders and PAH-tolerant bacteria and provide new insights for the understanding of the functional ecology of marine bacteria in polluted waters.
Collapse
Affiliation(s)
- Caroline Sauret
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Tatiana Séverin
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Gilles Vétion
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; CNRS, UMR 8222, Laboratoire d'Ecogéochimie des Environments Benthiques (LECOB), Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Catherine Guigue
- Aix-Marseille University, Mediterranean Institute of Oceanography (M I O), 13288 Marseille, Cedex 9, France; CNRS-INSU/IRD UM 110, Université du Sud Toulon-Var, 83957 La Garde Cedex, France
| | - Madeleine Goutx
- Aix-Marseille University, Mediterranean Institute of Oceanography (M I O), 13288 Marseille, Cedex 9, France; CNRS-INSU/IRD UM 110, Université du Sud Toulon-Var, 83957 La Garde Cedex, France
| | - Mireille Pujo-Pay
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Pascal Conan
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Sonja K Fagervold
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; CNRS, UMR 8222, Laboratoire d'Ecogéochimie des Environments Benthiques (LECOB), Observatoire Océanologique, F-66650 Banyuls/mer, France
| | - Jean-François Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, F-66650 Banyuls/mer, France.
| |
Collapse
|
9
|
Stauffert M, Cravo-Laureau C, Jézéquel R, Barantal S, Cuny P, Gilbert F, Cagnon C, Militon C, Amouroux D, Mahdaoui F, Bouyssiere B, Stora G, Merlin FX, Duran R. Impact of oil on bacterial community structure in bioturbated sediments. PLoS One 2013; 8:e65347. [PMID: 23762350 PMCID: PMC3677869 DOI: 10.1371/journal.pone.0065347] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/24/2013] [Indexed: 02/04/2023] Open
Abstract
Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions – with tidal cycles and natural seawater – was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g−1 wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria and Deltaproteobacteria. In the oiled-microcosms, the addition of H. diversicolor reduced the phylotype-richness, sequences associated to Actinobacteria, Firmicutes and Plantomycetes were not detected. These observations highlight the influence of the bioturbation on the bacterial community structure without affecting the biodegradation capacities.
Collapse
Affiliation(s)
- Magalie Stauffert
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Cristiana Cravo-Laureau
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Ronan Jézéquel
- Centre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des Eaux, Brest, France
| | - Sandra Barantal
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Philippe Cuny
- Equipe Microbiologie Environnement et Biotechnologie, Mediterranean Institute of Oceanography, Aix-Marseille Université, Marseille, France
| | - Franck Gilbert
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, Toulouse, France
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Cécile Militon
- Equipe Microbiologie Environnement et Biotechnologie, Mediterranean Institute of Oceanography, Aix-Marseille Université, Marseille, France
| | - David Amouroux
- Equipe Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Fatima Mahdaoui
- Equipe Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Brice Bouyssiere
- Equipe Chimie Analytique Bio-Inorganique et Environnement, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
| | - Georges Stora
- Equipe Microbiologie Environnement et Biotechnologie, Mediterranean Institute of Oceanography, Aix-Marseille Université, Marseille, France
| | - François-Xavier Merlin
- Centre de Documentation, de Recherche et d'Expérimentations sur les pollutions accidentelles des Eaux, Brest, France
| | - Robert Duran
- Equipe Environnement et Microbiologie, Institut Pluridisciplinaire de Recherche en Environnement et Matériaux, Université de Pau et des Pays de l’Adour, Pau, France
- * E-mail:
| |
Collapse
|
10
|
Domaizon I, Lepère C, Debroas D, Bouvy M, Ghiglione JF, Jacquet S, Bettarel Y, Bouvier C, Torréton JP, Vidussi F, Mostajir B, Kirkham A, Lefloc'h E, Fouilland E, Montanié H, Bouvier T. Short-term responses of unicellular planktonic eukaryotes to increases in temperature and UVB radiation. BMC Microbiol 2012; 12:202. [PMID: 22966751 PMCID: PMC3478981 DOI: 10.1186/1471-2180-12-202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/27/2012] [Indexed: 11/18/2022] Open
Abstract
Background Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. Results We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 μm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. Conclusions This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.
Collapse
|