1
|
Trotter B, Wilde MV, Brehm J, Dafni E, Aliu A, Arnold GJ, Fröhlich T, Laforsch C. Long-term exposure of Daphnia magna to polystyrene microplastic (PS-MP) leads to alterations of the proteome, morphology and life-history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148822. [PMID: 34328913 DOI: 10.1016/j.scitotenv.2021.148822] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
In the past years, the research focus on the effects of MP on aquatic organisms extended from marine systems towards freshwater systems. An important freshwater model organism in the MP field is the cladoceran Daphnia, which plays a central role in lacustrine ecosystems and has been established as a test organism in ecotoxicology. To investigate the effects of MP on Daphnia magna, we performed a chronic exposure experiment with polystyrene MP under strictly standardized conditions. Chronic exposure of D. magna to PS microparticles led to a significant reduction in body length and number of offspring. To shed light on underlying molecular mechanisms induced by microplastic ingestion in D. magna, we assessed the effects of PS-MP at the proteomic level, as proteins, e.g., enzymes, are especially relevant for an organism's physiology. Using a state-of-the-art mass spectrometry based approach, we were able to identify 28,696 different peptides, which could be assigned to 3784 different proteins. Using a customized bioinformatic workflow, we identified 41 proteins significantly altered in abundance (q-value <0.05) in the PS exposed D. magna. Among the proteins increased in the PS treated group were several sulfotransferases, involved in basic biochemical pathways, as well as GABA transaminase catalyzing the degradation of the neurotransmitter GABA. In the abundance decreased group, we found essential proteins such as the DNA-directed RNA polymerase subunit and other proteins connected to biotic and inorganic stress and reproduction. Strikingly, we further identified several digestive enzymes that are significantly downregulated in the PS treated animals, which could have interfered with the affected animal's nutrient supply. This may explain the altered morphological and life history traits of the PS exposed daphnids. Our results indicate that long-term exposure to PS microplastics, which are frequently detected in environmental samples, may affect the fitness of daphnids.
Collapse
Affiliation(s)
- Benjamin Trotter
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany; Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Julian Brehm
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Evdokia Dafni
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Arlinda Aliu
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Georg J Arnold
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Feodor-Lynen Straße 25, 81377 Munich, Germany.
| | - Christian Laforsch
- University of Bayreuth, Animal Ecology 1, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
2
|
Farkas A, Ács A, Vehovszky Á, Falfusynska H, Stoliar O, Specziár A, Győri J. Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting pristine and moderately polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:760-770. [PMID: 28499224 DOI: 10.1016/j.scitotenv.2017.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Stress biomarkers, which can outline impacts of contaminants in aquatic biota at the biochemical level, are increasingly used as early warning tools in environmental monitoring. Reliable biomarker based assessment schemes, however, request appropriate knowledge of baseline levels of selected endpoints, and the potential influence of a range of natural influencing factors (both abiotic and biotic) as well. In this study, we examined the interspecies variability of various biomarkers (metallothioneins (MT), ethoxyresorufin-O-deethylase activity (EROD), lipid peroxidation (LPO), DNA strand breaks (DNA_sb), vitellogenin-like proteins (Vtg)) in Dreissena polymorpha and Dreissena bugensis inhabiting either pristine- or moderately impacted sites of Lake Balaton (Hungary). Levels of all biomarkers considered revealed low interspecies variability in the two dreissenid species at all sampling sites, with consistently higher (but statistically insignificant) values in Dreissena polymorpha. Levels of all biomarkers varied within the two investigated seasons, with significant influence of the reproduction cycle particularly on the levels of metallothioneins and vitellogenin-like proteins. Each biomarker considered was elevated by October, with significantly higher values in the mussels inhabiting harbours. Insignificant spatial and temporal variability in the general health indicators (condition index, total protein content) of dreissenids was observed, which, in parallel with evident rise in biomarker levels, apparently suggest that the anthropogenic impacts in harbours affect mussel fitness yet at sub organismal level. Our data might serve useful basis for future environmental monitoring surveys, especially in habitats where the progressive replacement of Dreissena polymorpha by Dreissena bugensis is taking place, as the interspecies variability in susceptibility to chemical stress of the two species is well comparable.
Collapse
Affiliation(s)
- A Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary.
| | - A Ács
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - Á Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - H Falfusynska
- General Chemistry Department, Ternopil Medical State University, Maidan Voli, 1, Ternopil 46001, Ukraine
| | - O Stoliar
- Research Laboratory of Molecular Biology and Comparative Biochemistry, Ternopil National Pedagogical University, Kryvonosa Str., 2, Ternopil 46027, Ukraine
| | - A Specziár
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - J Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| |
Collapse
|
3
|
Giraudo M, Dubé M, Lépine M, Gagnon P, Douville M, Houde M. Multigenerational effects evaluation of the flame retardant tris(2-butoxyethyl) phosphate (TBOEP) using Daphnia magna. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:142-149. [PMID: 28711770 DOI: 10.1016/j.aquatox.2017.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 06/07/2023]
Abstract
Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphate ester used as substitute following the phase-out of brominated flamed retardants. Because of its high production volume and its use in a broad range of applications, this chemical is now frequently detected in the environment and biota. However, limited information is available on the long-term effects of TBOEP in aquatic organisms. In this study, Daphnia magna were exposed over three 21d generations to an environmentally relevant concentration of TBOEP (10μg/L) and effects were evaluated at the gene transcription, protein, and life-history (i.e., survival, reproduction and growth) levels. Chronic exposure to TBEOP did not impact survival or reproduction of D. magna but affected the growth output. The mean number of molts was also found to be lower in daphnids exposed to the chemical compared to control for a given generation, however there were no significant differences over the three generations. Molecular responses indicated significant differences in the transcription of genes related to growth, molting, ecdysteroid and juvenile hormone signaling, proteolysis, oxidative stress, and oxygen transport within generations. Levels of mRNA were also found to be significantly different for genes known to be involved in endocrine-mediated mechanisms such as reproduction and growth between generations F0, F1, and F2, indicating effects of parental exposure on offspring. Transcription results were supported by protein analyses with the significant decreased in catalase (CAT) activity in F1 generation, following the decreased transcription of cat in the parental generation. Taken together, these multi-biological level results suggest long-term potential endocrine disruption effects of TBOEP in D. magna exposed to an environmentally relevant concentration. This study highlights the importance of using chronic and multigenerational biological evaluation to assess risks of emerging chemicals.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Maxime Dubé
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Mélanie Lépine
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Pierre Gagnon
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, Water Science and Technology Directorate,105 McGill Street, Montreal, QC, H2Y 2E7, Canada.
| |
Collapse
|
4
|
Lysenko LA, Kantserova NP, Kaivarainen EI, Krupnova MY, Nemova NN. Skeletal muscle protease activities in the early growth and development of wild Atlantic salmon ( Salmo salar L.). Comp Biochem Physiol B Biochem Mol Biol 2017; 211:22-28. [DOI: 10.1016/j.cbpb.2017.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
5
|
Giraudo M, Douville M, Houde M. Chronic toxicity evaluation of the flame retardant tris (2-butoxyethyl) phosphate (TBOEP) using Daphnia magna transcriptomic response. CHEMOSPHERE 2015; 132:159-65. [PMID: 25855008 DOI: 10.1016/j.chemosphere.2015.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 05/24/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) is an organophosphorous-containing flame retardant (OPFR) of high production volume used in a broad range of applications. The use of TBOEP containing products has resulted in its release and ubiquitous occurrence in the aquatic environment. In this study, Daphnia magna transcriptomic response was measured by microarray to evaluate sublethal effects of TBOEP as part of a multi-level biological approach including specific gene transcription measured by qRT-PCR, enzyme activity, and life-history endpoints (i.e., survival, growth and reproduction). Chronic exposure (21 d) to a range of sublethal concentrations of TBOEP (14.7-1470μgL(-1)) did not impact growth, survival or reproduction, although the number of offspring decreased between the lowest and the highest dose. Gene transcription profiling by microarray analysis revealed that 101 genes were differentially transcribed in response to TBOEP (fold change treated/control ±1, p<0.05). Most of the responding genes were involved in protein metabolism (9), biosynthesis (4) and energy metabolism (6) indicating that TBOEP could have chronic toxic effects on aquatic organisms at sublethal doses by disrupting essential biological pathways. Nine genes were found to be commonly affected by more than one dose, including a gene coding for cathepsin D and multiple isoforms of genes coding for hemoglobin, suggesting potential biomarkers of interest. Microarray results were confirmed by qRT-PCR and measurements at the protein level as cathepsin D enzymatic activity increased significantly in the highest dose treatment. Results highlight the relevance of using the transcriptomic response of D. magna as a first line of evidence to unravel the mode of action of chemicals.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Mélanie Douville
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada
| | - Magali Houde
- Environment Canada, Centre Saint-Laurent, 105 McGill Street, Montreal, QC H2Y 2E7, Canada.
| |
Collapse
|
6
|
Fokina NN, Bakhmet IN, Shklyarevich GA, Nemova NN. Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L. from the White Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 110:103-109. [PMID: 25212488 DOI: 10.1016/j.ecoenv.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
A study on the effect oil pollution under normal and reduced salinity had on blue mussels Mytilus edulis L. from the White Sea in an aquarium-based experiment and in the natural habitat revealed a change in gill total lipids as a compensatory response. The cholesterol concentration and the cholesterol/phospholipids ratio in gills were found to reflect the impact of the environmental factors (oil pollution and desalination), and evidence adaptive changes in the cell membrane structure. An elevated content of storage lipids (chiefly triacylglycerols) in the mussels in the aquarium experiment indicates, first of all, the uptake and accumulation of oil products in gill cells under both normal and reduced seawater salinity, while high triacylglycerols level in gill littoral mussels from 'control' biotope in the Gulf of Kandalaksha is primarily associated with the mussel׳s pre-spawning period.
Collapse
Affiliation(s)
- N N Fokina
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia.
| | - I N Bakhmet
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia
| | - G A Shklyarevich
- Petrozavodsk State University, Lenin Pr. 33, Petrozavodsk 185910, Russia
| | - N N Nemova
- Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Puskinskaja St. 11, Petrozavodsk 185910, Russia
| |
Collapse
|