1
|
Elsherbini J, Corzett C, Ravaglioli C, Tamburello L, Polz M, Bulleri F. Epilithic Bacterial Assemblages on Subtidal Rocky Reefs: Variation Among Alternative Habitats at Ambient and Enhanced Nutrient Levels. MICROBIAL ECOLOGY 2023; 86:1552-1564. [PMID: 36790500 PMCID: PMC10497455 DOI: 10.1007/s00248-023-02174-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Temperate rocky reefs often support mosaics of alternative habitats such as macroalgal forests, algal turfs and sea urchin barrens. Although the composition of epilithic microbial biofilms (EMBs) is recognized as a major determinant of macroalgal recruitment, their role in regulating the stability of alternative habitats on temperate rocky reefs remains unexplored. On shallow rocky reefs of the Island of Capraia (NW Mediterranean), we compared EMB structure among canopy stands formed by the fucoid Ericaria brachycarpa, algal turfs, and urchin barrens under ambient versus experimentally enhanced nutrient levels. The three habitats shared a core microbial community consisting of 21.6 and 25.3% of total ASVs under ambient and enhanced nutrient conditions, respectively. Although Gammaproteobacteria, Alphaproteobacteria and Flavobacteriia were the most abundant classes across habitats, multivariate analyses at the ASV level showed marked differences in EMB composition among habitats. Enhancing nutrient level had no significant effect on EMBs, although it increased their similarity between macroalgal canopy and turf habitats. At both ambient and enriched nutrient levels, ASVs mostly belonging to Proteobacteria and Bacteroidetes were more abundant in EMBs from macroalgal canopies than barrens. In contrast, ASVs belonging to the phylum of Proteobacteria and, in particular, to the families of Rhodobacteraceae and Flavobacteriaceae at ambient nutrient levels and of Rhodobacteraceae and Bacteriovoracaceae at enhanced nutrient levels were more abundant in turf than canopy habitats. Our results show that primary surfaces from alternative habitats that form mosaics on shallow rocky reefs in oligotrophic areas host distinct microbial communities that are, to some extent, resistant to moderate nutrient enhancement. Understanding the role of EMBs in generating reinforcing feedback under different nutrient loading regimes appears crucial to advance our understanding of the mechanisms underpinning the stability of habitats alternative to macroalgal forests as well as their role in regulating reverse shifts.
Collapse
Affiliation(s)
- Joseph Elsherbini
- MIT Microbiology Graduate Program, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
| | - Christopher Corzett
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy
| | - Laura Tamburello
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077, Punta San Pietro, Ischia, (Naples), Italy
| | - Martin Polz
- MIT Microbiology Graduate Program, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02138, USA
- Centre for Microbiology and Environmental Systems Science, Djerassiplatz 1, 1130, Vienna, Austria
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| |
Collapse
|
2
|
Illa‐López L, Aubach‐Masip À, Alcoverro T, Ceccherelli G, Piazzi L, Kleitou P, Santamaría J, Verdura J, Sanmartí N, Mayol E, Buñuel X, Minguito‐Frutos M, Bulleri F, Boada J. Nutrient conditions determine the strength of herbivore-mediated stabilizing feedbacks in barrens. Ecol Evol 2023; 13:e9929. [PMID: 36969938 PMCID: PMC10030269 DOI: 10.1002/ece3.9929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/23/2023] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
Abiotic environmental conditions can significantly influence the way species interact. In particular, plant-herbivore interactions can be substantially dependent on temperature and nutrients. The overall product of these relationships is critical for the fate and stability of vegetated ecosystems like marine forests. The last few decades have seen a rapid spread of barrens on temperate rocky reefs mainly as a result of overgrazing. The ecological feedbacks that characterize the barren state involve a different set of interactions than those occurring in vegetated habitats. Reversing these trends requires a proper understanding of the novel feedbacks and the conditions under which they operate. Here, we explored the role of a secondary herbivore in reinforcing the stability of barrens formed by sea urchin overgrazing under different nutrient conditions. Combining comparative and experimental studies in two Mediterranean regions characterized by contrasting nutrient conditions, we assessed: (i) if the creation of barren areas enhances limpet abundance, (ii) the size-specific grazing impact by limpets, and (iii) the ability of limpets alone to maintain barrens. Our results show that urchin overgrazing enhanced limpet abundance. The effects of limpet grazing varied with nutrient conditions, being up to five times more intense under oligotrophic conditions. Limpets were able to maintain barrens in the absence of sea urchins only under low-nutrient conditions, enhancing the stability of the depauperate state. Overall, our study suggests a greater vulnerability of subtidal forests in oligotrophic regions of the Mediterranean and demonstrates the importance of environment conditions in regulating feedbacks mediated by plant-herbivore interactions.
Collapse
Affiliation(s)
- Laia Illa‐López
- Institut de Ciències del Mar (ICM_CSIC)Passeig Marítim de la BarcelonetaBarcelonaSpain
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
| | - Àlex Aubach‐Masip
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Nature Conservation FoundationMysoreKarnatakaIndia
| | - Giulia Ceccherelli
- Dipartimento di Scienze Chimiche, FisicheMatematiche e NaturaliUniversità di SassariSassariItaly
| | - Luigi Piazzi
- Dipartimento di Scienze Chimiche, FisicheMatematiche e NaturaliUniversità di SassariSassariItaly
| | | | | | - Jana Verdura
- Université Côte d'Azur, CNRSUMR 7035 ECOSEASNiceFrance
- Federative Research Institute ‐ Marine ResourcesUniversité Côte d'AzurNiceFrance
| | - Neus Sanmartí
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Elvira Mayol
- Institut Mediterrani d'Estudis Avançats (IMEDEA‐CSIC)EsporlesSpain
| | - Xavi Buñuel
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | | | - Fabio Bulleri
- Dipartimento di BiologiaUniversità di PisaCoNISMaPisaItaly
| | - Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB‐CSIC)BlanesSpain
- Laboratorie d'Océanographie de Villefranche‐sur‐MerCNRSSorbonne UniversitéVillefranche sur merFrance
| |
Collapse
|
3
|
Metabolomics Unravels Grazing Interactions under Nutrient Enrichment from Aquaculture. DIVERSITY 2022. [DOI: 10.3390/d15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our goal was to understand the mechanisms behind the impact of nutrient enrichment at intermediate distances from aquaculture on the interactions of a subtidal macroalgae community with its main grazer, the sea urchin Paracentrotus lividus. We assessed the diversity and cover of the macroalgal community, the abundance and biometrics of the sea urchins, the carbon and nitrogen elemental and isotopic compositions, and their metabolome in two stations, at an intermediate distance (station A) and away (station B) from a fish cage facility in the Aegean Sea (Greece), during the warm and cold seasons. The nutrient input at station A favored a shift to a macroalgal assemblage dominated by turf-forming species, depleted of native-erected species and with a higher abundance of invasive algae. A stable isotope analysis showed fish-farm-associated nitrogen enrichment of the macroalgae and trophic transfer to P. lividus. A decrease in metabolites related to grazing, reproduction, and energy reserves was found in P. lividus at station A. Furthermore, the metabolomic analysis was able to pinpoint stress in P. lividus at an intermediate distance from aquaculture. The chosen combination of traditional ecology with omics technology could be used to uncover not only the sublethal effects of nutrient loading but also the pathways for species interactions.
Collapse
|
4
|
Ortega-Jiménez E, Sedano F, Espinosa F. Molluscs community as a keystone group for assessing the impact of urban sprawl at intertidal ecosystems. Urban Ecosyst 2022. [DOI: 10.1007/s11252-021-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMollusc communities are getting endangered in the aftermath of urban sprawl because artificial structures do not surrogate natural substrates. In this study, we compared the diversity, community and trophic arrangements of molluscs among different models of artificial substrate and their adjacent natural rock, to detect relationships between some abiotic variables and the mollusc communities. Complexity, chemical composition and age were tested as potential drivers of the community. Diversity, community and trophic structure differed between natural and artificial substrates. Complexity at the scale of cm was detected as the most important factor driving the community structure. In addition, a chemical composition based on silica and/or scarce calcium carbonates seems to be relevant for molluscs, as well as for the secondary substrate where they inhabit. However, age did not seem to be a driving factor. Among the different artificial structures, macroscale complexity was detected as the main factor diverging a drastically poor community at seawall from other artificial structures. In this context, macro and microscale complexity, chemical composition and mineral type are variables to consider in future designs of artificial substrates.
Collapse
|
5
|
Pinna S, Piazzi L, Ceccherelli G, Castelli A, Costa G, Curini-Galletti M, Gianguzza P, Langeneck J, Manconi R, Montefalcone M, Pipitone C, Rosso A, Bonaviri C. Macroalgal forest vs sea urchin barren: Patterns of macro-zoobenthic diversity in a large-scale Mediterranean study. MARINE ENVIRONMENTAL RESEARCH 2020; 159:104955. [PMID: 32250878 DOI: 10.1016/j.marenvres.2020.104955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
The study aimed at contributing to the knowledge of alternative stable states by evaluating the differences of mobile and sessile macro-zoobenthic assemblages between sea urchin barrens and macroalgal forests in coastal Mediterranean systems considering a large spatial scale. Six sites (100 s km apart) were selected: Croatia, Montenegro, Sicily (Italy), Sardinia (Italy), Tuscany (Italy), and Balearic Islands (Spain). A total of 531 taxa, 404 mobile and 127 sessile macro-invertebrates were recorded. Overall, 496 and 201 taxa were found in macroalgal forests and in barrens, respectively. The results of this large-scale descriptive study have met the expectation of lower macrofauna complexity and diversity in barrens rather than in macroalgal forests, and have allowed estimating the differences in levels of diversity and the consistency of variability across Mediterranean sites. Some peculiar patterns in barrens, related to both abundance of specific taxa and to high values of beta diversity, have been evidenced.
Collapse
Affiliation(s)
- S Pinna
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100, Sassari, Italy; Fondazione IMC Onlus, Loc Sa Mardini 09170 Torregrande, Oristano, Italy
| | - L Piazzi
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100, Sassari, Italy.
| | - G Ceccherelli
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - A Castelli
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126, Pisa, Italy
| | - G Costa
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132, Genova, Italy
| | - M Curini-Galletti
- Dipartimento di Chimica e Farmacia, Università di Sassari, Via Piandanna 4, 07100, Sassari, Italy
| | - P Gianguzza
- Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Via Archirafi 2, 90123, Palermo, Italy
| | - J Langeneck
- Dipartimento di Biologia, Università di Pisa, Via Derna 1, 56126, Pisa, Italy
| | - R Manconi
- Dipartimento di Medicina Veterinaria, Università di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - M Montefalcone
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132, Genova, Italy
| | - C Pipitone
- CNR-IAS, Lungomare Cristoforo Colombo 4521, 90149, Palermo, Italy
| | - A Rosso
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Catania, Corso Italia 57, 95129, Catania, Italy
| | - C Bonaviri
- Dipartimento delle Scienze della Terra e del Mare, Università di Palermo, Via Archirafi 2, 90123, Palermo, Italy
| |
Collapse
|
6
|
Gianni F, Mačić V, Bartolini F, Pey A, Laurent M, Mangialajo L. Optimizing canopy‐forming algae conservation and restoration with a new herbivorous fish deterrent device. Restor Ecol 2020. [DOI: 10.1111/rec.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Fabrizio Gianni
- Université Côte d'Azur, CNRS, UMR7035 ECOSEAS Nice France
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS) Trieste Italy
| | - Vesna Mačić
- Institute of Marine Biology University of Montenegro Dobrota b.b., 85330 Kotor Montenegro
| | | | - Alexis Pey
- Université Côte d'Azur, CNRS, UMR7035 ECOSEAS Nice France
| | | | - Luisa Mangialajo
- Université Côte d'Azur, CNRS, UMR7035 ECOSEAS Nice France
- Sorbonne Université, CNRS, Laboratoire d'Océanographie de Villefranche, LOV F‐06230 Villefranche‐sur‐Mer France
| |
Collapse
|
7
|
Caronni S, Calabretti C, Citterio S, Delaria MA, Gentili R, Macri G, Montagnani C, Navone A, Panzalis P, Piazza G, Ceccherelli G. The interactive effect of herbivory, nutrient enrichment and mucilage on shallow rocky macroalgal communities. PeerJ 2019; 7:e6908. [PMID: 31139504 PMCID: PMC6521808 DOI: 10.7717/peerj.6908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/04/2019] [Indexed: 11/20/2022] Open
Abstract
This paper focuses on the interactive short and long-term effect of three different stressors on a macroalgal assemblage. Three stressors are considered: herbivory, nutrients and mucilage. The experiment was conducted in Tavolara Punta Coda Cavallo Marine Protected Area (Mediterranean Sea) during a bloom of the benthic mucilage-producing microalga Chrysophaeum taylorii (Pelagophyceae); this microalga is recently spreading in the Mediterranean Sea. On a rocky substratum, 36 plots 20 × 20 cm in size were prepared. Factorial combinations of three experimental treatments were applied in triplicate, including three grazing levels crossed with two nutrient enrichment and two mucilage removal treatments. Significant differences were observed among treatments 8 weeks later, at the end of summer. In particular, dark filamentous algae were more abundant in all enriched plots, especially where mucilage and macroalgae had been removed; a higher percent cover of crustose coralline algae was instead observed where nutrients had been increased and no grazing pressure acted. Furthermore, the abundance of Dictyota spp. and Laurencia spp. was significantly higher in enriched mucilage-free plots where the grazing pressure was null or low. However, the effects of the treatments on the overall assemblage of the macroalgal community were not long persistent (36 weeks later). These results illustrate the capacity of a shallow-water macroalgal community to quickly recover from the simultaneous impacts of herbivory, nutrient enrichment, and mucilage.
Collapse
Affiliation(s)
- Sarah Caronni
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Chiara Calabretti
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Sandra Citterio
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Maria Anna Delaria
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| | - Rodolfo Gentili
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | | | - Chiara Montagnani
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Augusto Navone
- Marine Protected Area of Tavolara Punta Coda Cavallo, Olbia, Italy
| | | | - Giulia Piazza
- Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy
| | - Giulia Ceccherelli
- Department of Science for Nature and Environmental Resources, University of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Macroalgal forests and sea urchin barrens: Structural complexity loss, fisheries exploitation and catastrophic regime shifts. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Piazzi L, Ceccherelli G. Concomitance of oligotrophy and low grazing pressure is essential for the resilience of Mediterranean subtidal forests. MARINE POLLUTION BULLETIN 2017; 123:197-204. [PMID: 28886921 DOI: 10.1016/j.marpolbul.2017.08.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/28/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
The study aimed at investigating factors influencing the recovery of the canopy seaweed Cystoseira brachycarpa. A manipulative experiment was done to test if in barren patches the recovery of Cystoseira I) is enhanced by the removal of the urchins, II) is prevented by eutrophication, III) depends on the time of patch clearance and IV) decreases with the distance from Cystoseira bed edge within the barren patch. The effects of the same factors on the structure of the macroalgal assemblage were also tested. Cystoseira recovered abundantly only in clearings where nutrients were not added and urchins were removed. Furthermore, Cystoseira recovered irrespectively of the time the patches were cleared and the distance from the canopy edge. This study showed that the lack of sea urchins at oligotrophic conditions was essential for Cystoseira brachycarpa recruitment, providing evidence that interacting constraints are involved in the recovery of Cystoseira beds.
Collapse
Affiliation(s)
- Luigi Piazzi
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Giulia Ceccherelli
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
10
|
Luigi P, Giulia C. Eutrophication affects the resistance of fucoids to an introduced alga spread. MARINE ENVIRONMENTAL RESEARCH 2017; 129:189-194. [PMID: 28619595 DOI: 10.1016/j.marenvres.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/31/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
This study investigates whether eutrophication can affect the capacity of the canopy alga Cystoseira brachycarpa to impede or limit the spread of the introduced species Caulerpa cylindracea. By means of a manipulative field study (16 months long), the effects of nutrient enrichment and C. cylindracea removal were tested on the canopy-alga and the associated macroalgal community. Results highlighted deep changes through time due to nutrient enrichment, as C. brachycarpa decreased and Halopteris scoparia increased in cover. Furthermore, C. brachycarpa was also affected by the presence of the introduced species Caulerpa cylindracea which, in turn, was found significantly advantaged by nutrient enrichment. Overall, our findings suggest that eutrophication can drive the substitution of Cystoseira with H. scoparia, leading to the shift from canopy to opportunistic species, which are unable to avoid the spread of C. cylindracea.
Collapse
Affiliation(s)
- Piazzi Luigi
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy.
| | - Ceccherelli Giulia
- Dipartimento di Scienze della Natura e del Territorio, Università di Sassari, Via Piandanna 4, 07100 Sassari, Italy
| |
Collapse
|
11
|
Caronni S, Calabretti C, Cavagna G, Ceccherelli G, Delaria MA, Macri G, Navone A, Panzalis P. The invasive microalga Chrysophaeum taylorii: Interactive stressors regulate cell density and mucilage production. MARINE ENVIRONMENTAL RESEARCH 2017; 129:156-165. [PMID: 28583693 DOI: 10.1016/j.marenvres.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 06/07/2023]
Abstract
The benthic mucilage producing microalga Chrysophaeum taylorii Lewis and Bryan (Pelagophyceae) has recently received attention for its rapid spread in the Mediterranean Sea, where its blooms have remarkable detrimental effects. So far no information on C. taylorii response to multiple stressors, especially in terms of mucilage hyperproduction, is available in the literature yet, and a manipulative field experiment in this topic was designed in Tavolara Punta Coda Cavallo Marine Protected Area. The aim of the study was to test the effects of nutrient enrichment (addition of nutrients), mechanical disturbance (partial and total benthic organisms removal) and hydrodynamics (increased water turbulence) on C. taylorii cell density and mucilage abundance. To the purpose, the three above mentioned stressors were simulated and the three treatments were assigned to 20 × 20 cm plots following a full-factorial design (n = 3). Interactive effects of the three stressors affected significantly both benthic C. taylorii cell density and mucilage cover although differently. Mechanical disturbance and high hydrodynamics produced consistent effects on cell density and mucilage production (i.e. the former factor enhancing and the latter decreasing). Nutrient enrichment on the contrary led to contrasting effects, promoting cell abundance and inhibiting mucilage production. Therefore, important mucilage blooms are expected in oligotrophic sheltered coastal locations where barren areas are present.
Collapse
Affiliation(s)
- Sarah Caronni
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy; Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy.
| | - Chiara Calabretti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, I-20126 Milan, Italy
| | - Gianluca Cavagna
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, I-27100 Pavia, Italy
| | - Giulia Ceccherelli
- Department of Science for Nature and Environmental Resources, Via Piandanna 4, I-07100 Sassari, Italy
| | - Maria Anna Delaria
- Department of Science for Nature and Environmental Resources, Via Piandanna 4, I-07100 Sassari, Italy
| | | | - Augusto Navone
- Marine Protected Area Tavolara Punta Coda Cavallo, Via Dante 1, I-07026 Olbia, OT, Italy
| | - Pieraugusto Panzalis
- Marine Protected Area Tavolara Punta Coda Cavallo, Via Dante 1, I-07026 Olbia, OT, Italy
| |
Collapse
|
12
|
Boada J, Arthur R, Alonso D, Pagès JF, Pessarrodona A, Oliva S, Ceccherelli G, Piazzi L, Romero J, Alcoverro T. Immanent conditions determine imminent collapses: nutrient regimes define the resilience of macroalgal communities. Proc Biol Sci 2017; 284:20162814. [PMID: 28330920 PMCID: PMC5378086 DOI: 10.1098/rspb.2016.2814] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/21/2017] [Indexed: 11/12/2022] Open
Abstract
Predicting where state-changing thresholds lie can be inherently complex in ecosystems characterized by nonlinear dynamics. Unpacking the mechanisms underlying these transitions can help considerably reduce this unpredictability. We used empirical observations, field and laboratory experiments, and mathematical models to examine how differences in nutrient regimes mediate the capacity of macrophyte communities to sustain sea urchin grazing. In relatively nutrient-rich conditions, macrophyte systems were more resilient to grazing, shifting to barrens beyond 1 800 g m-2 (urchin biomass), more than twice the threshold of nutrient-poor conditions. The mechanisms driving these differences are linked to how nutrients mediate urchin foraging and algal growth: controlled experiments showed that low-nutrient regimes trigger compensatory feeding and reduce plant growth, mechanisms supported by our consumer-resource model. These mechanisms act together to halve macrophyte community resilience. Our study demonstrates that by mediating the underlying drivers, inherent conditions can strongly influence the buffer capacity of nonlinear systems.
Collapse
Affiliation(s)
- Jordi Boada
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| | - Rohan Arthur
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570002 Mysore, Karnataka, India
| | - David Alonso
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| | - Jordi F Pagès
- School of Ocean Sciences, Bangor University, Menai Bridge, Wales LL59 5AB, UK
| | - Albert Pessarrodona
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
| | - Silvia Oliva
- Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Piandanna 4, Sassari, Italy
| | - Giulia Ceccherelli
- Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Piandanna 4, Sassari, Italy
| | - Luigi Piazzi
- Dipartimento di Scienze della Natura e del Territorio (DIPNET), Università di Sassari, Via Piandanna 4, Sassari, Italy
| | - Javier Romero
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Avenue Diagonal 643, 08028 Barcelona, Spain
| | - Teresa Alcoverro
- Centre d'Estudis Avançats de Blanes (CEAB-CSIC), Carrer d'Accés a la cala Sant Francesc 14, 17300 Blanes, Spain
- Nature Conservation Foundation, 3076/5, 4th Cross, Gokulam Park, 570002 Mysore, Karnataka, India
| |
Collapse
|
13
|
Rustici M, Ceccherelli G, Piazzi L. Predator exploitation and sea urchin bistability: Consequence on benthic alternative states. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|