1
|
Li C, Tian Z, Li X, Sun Y, Tian J, Wu Y, Cai J, He Y, Sanganyado E, Li P, Liang B, Liu W. Toxicogenomic assessment of hydroxylated metabolites of PBDEs on cetaceans: An in vitro study. CHEMOSPHERE 2024; 366:143350. [PMID: 39326706 DOI: 10.1016/j.chemosphere.2024.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Despite their ban, polybrominated diphenyl ethers (PBDEs) are frequently detected in various environmental compartments including marine and coastal ecosystems due to their persistence, bio-accumulative, high production volumes, and widespread use. One of the major concerns from PBDEs is the transformation products, such as hydroxylated polybrominated diphenyl ethers (OH-BDEs), which are more bioactive than the parent compounds. For example, 6-hydroxy-2,2',4',4-tetrabromodiphenyl ether (6-OH-BDE-47) is a typical metabolite of PBDEs and cause endocrine system disruption, developmental toxicity, and neurotoxicity in different species. Despite being widely detected in marine environments, investigations on the toxicological mechanisms of 6-OH-BDE-47 in cetaceans remain scarce. High concentrations of PBDEs accumulate in cetaceans due to the long lifespan and large fat reserve. The accumulated PBDEs have become the major source of OH-BDEs in cetaceans. We exposed immortalized fibroblast cell lines from the skin of pygmy killer whales (PKW-LWHT) and Indo-Pacific finless porpoises (FP-LWHT) to 6-OH-BDE-47 and analyzed changes in cellular function using transcriptomic data, along with enzymatic activity. Exposure to the body-relevant body burdens of 6-OH-BDE-47 (250 and 500 ng mL-1) significantly decreased cell viability. Differentially expressed genes in FP-LWHT exposed to 6-OH-BDE-47 were primarily enriched in the pathways associated with steroid metabolism. Total cholesterol was decreased by 6-OH-BDE-47, whereas low-density lipoprotein cholesterol and triglyceride levels were significantly increased in FP-LWHT cells. In contrast, glycolysis was the main enriched function of differentially expressed genes in PKW-LWHT cells exposed to 6-OH-BDE-47, and the enzyme activity of phosphofructokinase and hexokinase was upregulated. Thus, even though the cell viability of both cell lines from these two species was significantly suppressed by 6-OH-BDE-47, the cellular response or affected cellular function was different between the Pygmy killer whale and the Indo-Pacific Finless Porpoise, suggesting a diverse response towards OH-BDEs exposure.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinying Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yuqi Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE2 4PB, UK
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
2
|
Zhang Y, Li Y, Li S, Huang H, Chen Y, Wang X. A Review of Hydroxylated and Methoxylated Brominated Diphenyl Ethers in Marine Environments. TOXICS 2022; 10:toxics10120751. [PMID: 36548584 PMCID: PMC9781326 DOI: 10.3390/toxics10120751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 06/12/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are present in the marine environment worldwide. Both OH-PBDEs and MeO-PBDEs are known natural products, whereas OH-PBDEs may also be metabolites of PBDEs. There is growing concern regarding OH-PBDEs as these compounds seem to be biological active than PBDEs. In the present study, we reviewed the available data on the contamination of OH/MeO-PBDEs in the marine environment worldwide, including seawater, marine sediment, marine plants, invertebrates, fish, seabirds and mammals. Bioaccumulation and biomagnification of OH/MeO-PBDEs in the marine food web were summarized as well. This study also proposes the future research of OH/MeO-PBDEs, including the production and the synthesis pathway of OH/MeO-PBDEs, the toxicokinetics of OH/MeO-PBDEs and the toxicology and human exposure risk assessment.
Collapse
Affiliation(s)
- Ying Zhang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Yi Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Sijia Li
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - He Huang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Yezi Chen
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
| | - Xutao Wang
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou 510611, China
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
3
|
Li T, Sun Y, Zeng Y, Sanganyado E, Liang B, Liu W. 6-OH-BDE-47 inhibited proliferation of skin fibroblasts from pygmy killer whale by inducing cell cycle arrest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150561. [PMID: 34624692 DOI: 10.1016/j.scitotenv.2021.150561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are major transformation products of PBDEs that readily bioaccumulate in the marine food web. Although 6-OH-BDE-47 is frequently and abundantly detected in cetaceans, its potential toxic effects are largely unknown. We explored the toxicological pathways and mechanisms of OH-BDEs by exposing pygmy killer whale skin fibroblast cell lines (PKW-LWHT) to 6-OH-BDE-47 at concentrations ranging from 0.02, 0.2, 2 to 4 μM. The result showed that 6-OH-BDE-47 inhibited cell proliferation in a concentration- and time-dependent manner. The cell cycle data revealed that the cell cycle was arrest at the G0/G1 phase by 6-OH-BDE-47. Using qPCR and Western blot assay, we found that 6-OH-BDE-47 up-regulated the transcription and expression level of p21 and RB1 and down-regulated the expression level of Proliferating Cell Nuclear Antigen (PCNA), CDK2, CDK4, cyclin D1, cyclin E2, E2F1, and E2F3 and the cellular phosphorylated RB1. The results showed that 6-OH-BDE-47 was able to arrest the cell cycle of PKW-LWHT cells at G1 phase by changing the expression level of related regulatory genes in G1 stage, and finally inhibit cell proliferation.
Collapse
Affiliation(s)
- Tong Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ying Zeng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Science, Shantou University, Shantou, Guangdong 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
4
|
JIN J, SONG SJ, PENG ZJ, GUO F, LI PH. Determination of Polybrominated Diphenyl Ethers and Hydroxylated Analogues in Serum Using High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry with Online Solid Phase Extraction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60091-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ochiai M, Kurihara N, Hirano M, Nakata A, Iwata H. In Vitro Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise ( Neophocaena asiaeorientalis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6832-6841. [PMID: 32337981 DOI: 10.1021/acs.est.9b07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cetaceans accumulate high levels of environmental pollutants, yet their toxicological studies have been difficult due to technical and ethical issues. It is essential to identify and fill the current knowledge gaps in the in vitro assays available for cetaceans. The present study establishes a novel in vitro assay that uses the fibroblasts of a finless porpoise (Neophocaena asiaeorientalis) (FF) stranded in the Seto Inland Sea (SIS) to answer questions about the cytotoxicity and risks of environmental pollutants. FF were treated with 17 compounds including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane and their metabolites (DDTs) and evaluated for cytotoxicity, viability, and apoptosis. The results of FF were compared with those of human fibroblasts (HF). The relative potencies of the test compounds were comparable between the two species, as EC50 of these compounds significantly correlated for FF and HF. Exposure-activity ratios (EARs) revealed that accumulation of PCBs and DDTs are likely to pose adverse effects at the cellular level in the SIS finless porpoises, as their tissue concentrations exceeded EC50 values obtained in this study. This study successfully evaluated the risks of environmental pollutants using cetacean fibroblasts isolated by a non-invasive method that may be applied to various cetacean species and compounds.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Nozomi Kurihara
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Akifumi Nakata
- Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| |
Collapse
|
6
|
Mello FV, Kasper D, Alonso MB, Torres JPM. Halogenated natural products in birds associated with the marine environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137000. [PMID: 32062248 DOI: 10.1016/j.scitotenv.2020.137000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Halogenated natural products (HNPs) are widespread compounds found at high concentrations in top predators such as seabirds. This paper reviews available data on methoxylated polybrominated diphenyl ethers (MeO-BDEs), heptachloro-1'-methyl-1,2'-bipyrrole (Q1) and 1,1'-dimethyl-2,2'-bipyrroles (HDBPs) in these animals. In all, 25 papers reported such HNPs in seabirds. White tailed sea eagle from Sweden was the seabird species with higher MeO-BDEs levels in eggs and blood, while in liver the European shag from Norway was the one. Regarding HDBPs, glaucous gull livers from North Water Polynya and Leach's storm petrel eggs from South Canada (NE Atlantic) showed the highest levels, while brown skua eggs presented the highest concentration of Q1. DBP-Br4Cl2 and DBP-Br6 were the most abundant HDBPs in seabirds, although only one study investigated DBP-Br6. Furthermore, 2'-MeO-BDE-68/6'-MeO-BDE-47 ratios were lower than one in mostly of the studies (91%). The main sources of methoxylated congeners found in seabirds might to be from sponges and/or associated organisms (bacteria). The scarcity of data in seabirds showed the gap in knowledge. Few studies were done especially in tropical areas and Southern Hemisphere and the most were conducted in the northwest part of the globe. This review arouses the need of knowledge about the distribution of these compounds in seabirds worldwide as well as it encourages toxicological studies to better understand the possible effects of HNPs on seabirds.
Collapse
Affiliation(s)
- Flávia V Mello
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - Daniele Kasper
- Laboratório de Traçadores em Ciências Ambientais, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-49, CCS, RJ 21941-902, Brazil.
| | - Mariana B Alonso
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| | - João Paulo M Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, G0-61, CCS, RJ 21941-902, Brazil.
| |
Collapse
|
7
|
Wang S, Wang S, Shah S, Li L, Fang H, Hao C. A density functional theory/time-dependent density functional theory study of the structure-related photochemical properties of hydroxylated polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers and metal ion effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9297-9306. [PMID: 31916157 DOI: 10.1007/s11356-019-07538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
As the derivatives and structural analogs of polybrominated diphenyl ethers (PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have attracted increasing concern. However, knowledge of the photochemical behaviors of OH-PBDEs and MeO-PBDEs in water is limited. Here, we used density functional theory and time-dependent density functional theory to examine the structure-related photochemical properties of OH-PBDEs and MeO-PBDEs in water and the effects of metal ions as environmental factors. Eight 6-OH-PBDEs with 1-8 bromine substituents and eight 6-MeO-PBDEs with 1-8 bromine substituents were selected for this study. The optimized geometries of the selected congeners and their complexes with metals in the lowest excited triplet state (T1) showed that one C-Br bond moderately or significantly elongated. The elongated C-Br bond in the T1 state was shown in the ortho-position for the 6-OH-PBDE congeners and the ortho-position or the meta-position for the 6-MeO-PBDE congeners. For the selected congeners, there were significant positive linear correlations between the number of bromine atoms (NBr) and the calculated average atomic charge of bromine and maximum electronic absorbance wavelength (λmax), and a negative linear correlation between the NBr and average bond dissociation energy of C-O bonds (BDEC-O). The photoreactivities of the 6-OH-PBDEs and 6-MeO-PBDEs increased with an increase in the bromination degree with or without metal ions. The calculated average atomic charge of bromine and BDEC-O of the complexes with Mg2+/Zn2+ was higher and lower than those of the corresponding monomers, respectively, indicating that the presence of Mg2+/Zn2+ increased the photoreactivity (debromination and dissociation of C-O bond) of the selected 6-OH-PBDEs and 6-MeO-PBDEs. The effects of the coordination of Mg2+/Zn2+ may be overestimated due to their missing explicit solvation shell. These results provide vital insight into the photochemical properties of OH-PBDEs and MeO-PBDEs in water.
Collapse
Affiliation(s)
- Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Shuwen Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shaheen Shah
- Department of Chemistry, Karakorum International University, Gilgit, Gilgit-Balitstan, 15100, Pakistan
| | - Longyan Li
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
8
|
Muñoz CC, Vermeiren P. Maternal Transfer of Persistent Organic Pollutants to Sea Turtle Eggs: A Meta-Analysis Addressing Knowledge and Data Gaps Toward an Improved Synthesis of Research Outputs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:9-29. [PMID: 31560792 DOI: 10.1002/etc.4585] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 08/29/2019] [Indexed: 05/14/2023]
Abstract
Maternal transfer of persistent organic pollutants (POPs) confronts developing embryos with a pollution legacy and poses conservation concerns due to its potential impacts unto subsequent generations. We conducted a systematic review focusing on: 1) processes of POP maternal transfer, 2) challenges and opportunities to synthesizing current knowledge on POP concentrations in eggs, and 3) a meta-analysis of patterns in current egg pollution data. Results suggest selective maternal transfer of individual compounds. These relate to biological factors such as the foraging and remigration behavior, and to the selective mobilization of POPs during vitellogenesis, such as increased diffusion limitation for lipophilic POPs and slower release and higher reabsorption of apolar POPs. A key gap relates to knowledge of further selective toxicokinetics during embryonic development, as research to date has mainly focused on initial uptake into eggs. Challenges in the synthesis of current data on egg contamination profiles relate to methodological differences, varying analytical approaches, restricted data access, and reporting transparency among studies. To increase opportunities in the use of current data, we propose best practice guidelines, and synthesize a database on POP concentrations within sea turtle eggs. The meta-analysis revealed a geographical and taxonomic bias on the West Atlantic Ocean, including the Gulf of Mexico and Caribbean Sea, with most studies conducted on green turtles. Concentrations of POPs show temporal patterns related to trends in usage, production, release, and persistence in the environment, often with regional patterns. The trophic level has the potential to influence POP patterns with higher concentrations in loggerheads compared to other species, but this is confounded by temporal and geographic trends. We argue for more mechanistically process-focused and methodologically comparable research. Environ Toxicol Chem 2019;39:9-29. © 2019 SETAC.
Collapse
Affiliation(s)
- Cynthia C Muñoz
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Peter Vermeiren
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
9
|
Lin W, Li X, Yang M, Lee K, Chen B, Zhang BH. Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. ADVANCES IN MARINE BIOLOGY 2018; 81:167-211. [PMID: 30471656 DOI: 10.1016/bs.amb.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Emerging contaminants (ECs) may pose adverse effects on the marine ecosystem and human health. Based on the analysis of publications filed in recent years, this paper provides a comprehensive overview on three prominent groups of ECs, i.e., brominated flame retardants, microplastics, and biocides. It includes detailed discussions on: (1) the occurrence of ECs in seawater, sediment, and biota; (2) analytical detection and monitoring approaches for these target ECs; and (3) the biological impacts of the ECs on humans and other trophic levels. This review provides a summary of recent advances in the field and remaining knowledge gaps to address, to enable the assessment of risk and support the development of regulations and mitigation technologies for the control of ECs in the marine environment.
Collapse
Affiliation(s)
- Weiyun Lin
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Min Yang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Helen Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| |
Collapse
|
10
|
Zaccaroni A, Andreini R, Franzellitti S, Barceló D, Eljarrat E. Halogenated flame retardants in stranded sperm whales (Physeter macrocephalus) from the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:892-900. [PMID: 29710611 DOI: 10.1016/j.scitotenv.2018.04.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/26/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
In recent years, decline of marine mammals' populations and increased frequency of strandings have arised the interest on the role that pollution may have in these events. The present work aimed at quantifying levels of brominated flame retardants (BFRs) and dechloranes (DECs) in tissues of 3 adult females and one foetus of sperm whales stranded in the Southern Adriatic Sea coasts (Italy). Results proved the presence of different flame retardants (FRs) in tissues of sperm whales, including various polybrominated diphenyl ethers (PBDE) congeners (47, 99, 100, 154, entering the composition of PentaBDE mixture), hexabromocyclodecanes (HBCDs), Dec 602 and methoxylated polibrominated diphenyl ethers (MeO-BDEs). In blubber, a target tissue for contaminant accumulation, ΣPBDEs reached values of 160, 158 and 183 ng/g lw, α-HBCD of 5.75 ng/g lw, Dec 602 of 1632 ng/g lw and MeO-BDEs of 563 ng/g lw. The availability of foetal tissues allowed evaluating the potential maternal transfer on many of these compounds, and to discuss the potential adverse effects on foetal health. To the best of our knowledge, obtained data are the first reporting placental transfer of FRs in sperm whales. PBDE levels detected in foetus suggested a potentially long-term exposure to BFRs, which could cause severe damages to the developing organism, likely at the cerebral, endocrine and immunologic levels. Dec 602, which was detected at the highest concentrations among all FRs considered, could potentially cause dysfunctional effects on the immune system of adult females.
Collapse
Affiliation(s)
- A Zaccaroni
- Large Pelagic Vertebrates Research Group, Department of Veterinary Medical Sciences, University of Bologna, Italy; MarLab, Place du Chateau 7, 06250 Mougins, France
| | - R Andreini
- Large Pelagic Vertebrates Research Group, Department of Veterinary Medical Sciences, University of Bologna, Italy; MarLab, Place du Chateau 7, 06250 Mougins, France
| | - S Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - D Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Eljarrat
- Water and Soil Quality Research Group, Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Saquib Q, Siddiqui MA, Ahmad J, Ansari SM, Al-Wathnani HA, Rensing C. 6-OHBDE-47 induces transcriptomic alterations of CYP1A1, XRCC2, HSPA1A, EGR1 genes and trigger apoptosis in HepG2 cells. Toxicology 2018; 400-401:40-47. [DOI: 10.1016/j.tox.2018.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
|
12
|
Li X, Dong S, Zhang W, Fan X, Li Y, Wang R, Su X. Global occurrence of polybrominated diphenyl ethers and their hydroxylated and methoxylated structural analogues in an important animal feed (fishmeal). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:620-629. [PMID: 29223819 DOI: 10.1016/j.envpol.2017.11.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 06/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their hydroxylated (OH) and methoxylated (MeO) structural analogues have been found widely distributed in aquatic ecosystems, and may exhibit potential adverse effects to humans due to their bioaccumulative behavior through food chain. Fishmeal is an important animal feed applied around the world and is generally of marine origin. However, the levels and sources of PBDEs in fishmeal have not been thoroughly evaluated and their structural analogues have not been reported to date. The present study collected ninety-two fishmeal samples from world main fishmeal producing area to determine 27 PBDEs, 10 MeO-PBDEs and 11 OH-PBDEs. The concentrations of Σ27PBDEs, Σ10MeO-PBDEs and Σ11OH-PBDEs were in the ranges of 0.1-1498 (mean: 75.8), 1.14-881 (37.4) and 1.00-47.5 (8.17) ng/g lipid, respectively. PBDEs were found primarily correlated with the historically commercial production, meaning higher production of certain commercial product in a country, higher corresponding PBDE congeners in local fishmeal. A market shift from penta- and octa-formulations toward deca-formulation was observed. BDE209 was identified as a major congener in fishmeal. Both the MeO-PBDEs and the OH-PBDEs were influenced by fishmeal producing areas (p < 0.001). High MeO-PBDEs were identified in the Southeast Asian fishmeal, which might be due to the suitable environmental conditions for the generation of bromoperoxidase-contained algae in local area. The ratio of two major MeO-PBDE congeners, 6-MeO-BDE47/2'-MeO-BDE68, were generally >1 in the northern hemisphere and <1 in the southern hemisphere in the present study, which was consistent with the results obtained from previous published papers. Both MeO-PBDEs and OH-PBDEs were in accordance with the specialties of naturally produced halogenated compounds.
Collapse
Affiliation(s)
- Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shujun Dong
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yang Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ruiguo Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| |
Collapse
|