1
|
Zuccarotto A, Sollitto M, Leclère L, Panzella L, Gerdol M, Leone S, Castellano I. Molecular evolution of ovothiol biosynthesis in animal life reveals diversity of the natural antioxidant ovothiols in Cnidaria. Free Radic Biol Med 2025; 227:117-128. [PMID: 39617215 DOI: 10.1016/j.freeradbiomed.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 12/08/2024]
Abstract
Sulfoxide synthase OvoA is the key enzyme involved in the biosynthesis of ovothiols (OSHs), secondary metabolites endowed with unique antioxidant properties. Understanding the evolution of such enzymes and the diversity of their metabolites should reveal fundamental mechanisms governing redox signaling and environmental adaptation. "Early-branching" animals such as Cnidaria display unique molecular diversity and symbiotic relationships responsible for the biosynthesis of natural products, however, they have been neglected in previous research on antioxidants and OSHs. In this work, we have integrated genome and transcriptome mining with biochemical analyses to study the evolution and diversification of OSHs biosynthesis in cnidarians. By tracing the history of the ovoA gene, we inferred its loss in the latest common ancestor of Medusozoa, followed by the acquisition of a unique ovoB/ovoA chimaeric gene in Hydrozoa, likely through a horizontal gene transfer from dinoflagellate donors. While Anthozoa (corals and anemones), bearing canonical ovoA genes, produced a striking variety of OSHs (A, B, and C), the multifunctional enzyme in Hydrozoa was related to OSH B biosynthesis, as shown in Clytia hemisphaerica. Surprisingly, the ovoA-lacking jellyfish Aurelia aurita and Pelagia noctiluca also displayed OSHs, and we provided evidence of their incorporation from external sources. Finally, transcriptome mining revealed ovoA conserved expression pattern during larval development from Cnidaria to more evolved organisms and its regulation by external stimuli, such as UV exposure. The results of our study shed light on the origin and diversification of OSH biosynthesis in basal animals and highlight the importance of redox-active molecules from ancient metazoans as cnidarians to vertebrates.
Collapse
Affiliation(s)
- Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, 34128, Trieste, Italy; Department of Biology, University of Florence, 50019, Sesto Fiorentino, FI, Italy
| | - Lucas Leclère
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Banyuls-sur-Mer, France
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples "Federico II", I-80126 Naples, Italy
| | - Marco Gerdol
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Department of Life Sciences, University of Trieste, 34128, Trieste, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131, Naples, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
2
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
3
|
Luccarini A, Zuccarotto A, Galeazzi R, Morresi C, Masullo M, Castellano I, Damiani E. Insights on the UV-Screening Potential of Marine-Inspired Thiol Compounds. Mar Drugs 2023; 22:2. [PMID: 38276640 PMCID: PMC10817281 DOI: 10.3390/md22010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
One of the major threats to skin aging and the risk of developing skin cancer is excessive exposure to the sun's ultraviolet radiation (UVR). The use of sunscreens containing different synthetic, organic, and inorganic UVR filters is one of the most widespread defensive measures. However, increasing evidence suggests that some of these compounds are potentially eco-toxic, causing subtle damage to the environment and to marine ecosystems. Resorting to natural products produced in a wide range of marine species to counteract UVR-mediated damage could be an alternative strategy. The present work investigates marine-inspired thiol compounds, derivatives of ovothiol A, isolated from marine invertebrates and known to exhibit unique antioxidant properties. However, their potential use as photoprotective molecules for biocompatible sunscreens and anti-photo aging formulations has not yet been investigated. Here, we report on the UVR absorption properties, photostability, and in vitro UVA shielding activities of two synthetic ovothiol derivatives, 5-thiohistidine and iso-ovothiol A, by spectrophotometric and fluorimetric analysis. We found that the UVA properties of these compounds increase upon exposure to UVA and that their absorption activity is able to screen UVA rays, thus reducing the oxidative damage induced to proteins and lipids. The results of this work demonstrate that these novel marine-inspired compounds could represent an alternative eco-friendly approach for UVR skin protection.
Collapse
Affiliation(s)
- Alessia Luccarini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Annalisa Zuccarotto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Camilla Morresi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| | - Mariorosario Masullo
- Department of Medical, Movement and Wellbeing, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy;
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80121 Naples, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.); (C.M.)
| |
Collapse
|
4
|
Machanlou M, Ziaei-Nejad S, Johari SA, Banaee M. Study on the hematological toxicity of Cyprinus carpio exposed to water-soluble fraction of crude oil and TiO 2 nanoparticles in the dark and ultraviolet. CHEMOSPHERE 2023; 343:140272. [PMID: 37758071 DOI: 10.1016/j.chemosphere.2023.140272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 09/30/2023]
Abstract
This study is addressing the potential toxicity concerns of crude oil in common carp (Cyprinus carpio) with the novel use of TiO2-NP for enhancing photocatalytic degradation of WSF of crude oil prepared under UV light or darkness. Blood samples were taken, and the biochemical parameters were analyzed. The levels of ALT, AST and ALP were significantly higher in fish exposed to UV-treated WSF. However, they were significantly lower in the groups exposed to UV-treated TiO2-NPs and the combination of WSF and TiO2-NPs. The levels of total protein, triglycerides, albumin and cholesterol were significantly lower in treatments exposed to UV-treated and dark-conditioned WSF compared to the control group, but they were significantly higher in fish exposed to UV-treated TiO2-NPs and the combination of WSF and TiO2-NPs compared to fish exposed under dark conditions and were not significantly different from the control group. The toxicity of UV-treated WSF was significantly higher than that of dark-conditioned WSF. The toxicity of TiO2-NPs was lower in the presence of UV and was similar to the control treatment. The results of the study suggests that photocatalytic TiO2-NPs and UV radiation reduce toxicity of the water-soluble fraction of crude oil on common carp.
Collapse
Affiliation(s)
- Masoumeh Machanlou
- Department of Fisheries, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Saeed Ziaei-Nejad
- Department of Fisheries, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, University of Kurdistan, Sanandaj, Iran
| | - Mahdi Banaee
- Department of Fisheries, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
5
|
Berger CA, Ward CP, Karchner SI, Nelson RK, Reddy CM, Hahn ME, Tarrant AM. Nematostella vectensis exhibits an enhanced molecular stress response upon co-exposure to highly weathered oil and surface UV radiation. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105569. [PMID: 35248985 DOI: 10.1016/j.marenvres.2022.105569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Crude oil released into the environment undergoes weathering processes that gradually change its composition and toxicity. Co-exposure to petroleum mixtures and other stressors, including ultraviolet (UV) radiation, may lead to synergistic effects and increased toxicity. Laboratory studies should consider these factors when testing the effects of oil exposure on aquatic organisms. Here, we study transcriptomic responses of the estuarine sea anemone Nematostella vectensis to naturally weathered oil, with or without co-exposure to environmental levels of UV radiation. We find that co-exposure greatly enhances the response. We use bioinformatic analyses to identify molecular pathways implicated in this response, which suggest phototoxicity and oxidative damage as mechanisms for the enhanced stress response. Nematostella's stress response shares similarities with the vertebrate oxidative stress response, implying deep conservation of certain stress pathways in animals. We show that exposure to weathered oil along with surface-level UV exposure has substantial physiological consequences in a model cnidarian.
Collapse
Affiliation(s)
- Cory A Berger
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States; MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA.
| | - Collin P Ward
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Robert K Nelson
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Christopher M Reddy
- Department of Marine Chemistry & Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, United States.
| |
Collapse
|
6
|
Milito A, Cocurullo M, Columbro A, Nonnis S, Tedeschi G, Castellano I, Arnone MI, Palumbo A. Ovothiol ensures the correct developmental programme of the sea urchin Paracentrotus lividus embryo. Open Biol 2022; 12:210262. [PMID: 35042403 PMCID: PMC8767189 DOI: 10.1098/rsob.210262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ovothiols are π-methyl-5-thiohistidines produced in great amounts in sea urchin eggs, where they can act as protective agents against the oxidative burst at fertilization and environmental stressors during development. Here we examined the biological relevance of ovothiol during the embryogenesis of the sea urchin Paracentrotus lividus by assessing the localization of the key biosynthetic enzyme OvoA, both at transcript and protein level, and perturbing its protein translation by morpholino antisense oligonucleotide-mediated knockdown experiments. In addition, we explored the possible involvement of ovothiol in the inflammatory response by assessing ovoA gene expression and protein localization following exposure to bacterial lipopolysaccharide. The results of the present study suggest that ovothiol may be a key regulator of cell proliferation in early developing embryos. Moreover, the localization of OvoA in key larval cells and tissues, in control and inflammatory conditions, suggests that ovothiol may ensure larval skeleton formation and mediate inflammatory processes triggered by bacterial infection. This work significantly contributes to the understanding of the biological function of ovothiols in marine organisms, and may provide new inspiration for the identification of the biological activities of ovothiols in humans, considering the pharmacological potential of these molecules.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.,Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Barcelona, Spain
| | - Maria Cocurullo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Alfredo Columbro
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy.,CRC 'Innovation for Well-Being and Environment' (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine (DIMEVET), Università degli Studi di Milano, Milan, Italy.,CRC 'Innovation for Well-Being and Environment' (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
7
|
Costa PM. Current aspects of DNA damage and repair in ecotoxicology: a mini-review. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1-11. [PMID: 34623548 DOI: 10.1007/s10646-021-02487-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The preservation of genomic stability against environmental stressors is a major adaptive feature that is well-conserved among both prokaryotes and eukaryotes. The complex and fine-tuned mechanisms that evolved to repair DNA following exposure to radiation and chemical insult are also the first line of defence against genotoxicants. Consequently, impairing the DNA damage response leads to accumulation of genomic lesions that may ultimately lead to cell death, mutagenesis and even teratogenesis and neoplasia. Understanding how pollutants affect DNA repair machinery is thus paramount to interpret the often unclear or contradictory findings from genotoxicity assessment. The main purpose of the present mini-review is to contribute to the slowly-growing awareness among ecotoxicologists that DNA damage is not limited to direct interactions of noxious compounds with the DNA molecule. Despite the limited number of studies addressing this issue in the field, special modifications of methods for genotoxicity assessment, combined with state-of-the-art molecular tools, are beginning to show promising results in the unravelling of DNA repair proteins, genes and networks in non-conventional model organisms. I will review the essentials of the most important DNA repair pathways and discuss methods and approaches that can assist steering ecotoxicologists towards a better understanding of genotoxic hazard and risk.
Collapse
Affiliation(s)
- Pedro M Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516, Caparica, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal.
| |
Collapse
|
8
|
Klein S, Frazier V, Readdean T, Lucas E, Diaz-Jimenez EP, Sogin M, Ruff ES, Echeverri K. Common Environmental Pollutants Negatively Affect Development and Regeneration in the Sea Anemone Nematostella vectensis Holobiont. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.786037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The anthozoan sea anemone Nematostella vectensis belongs to the phylum of cnidarians which also includes jellyfish and corals. Nematostella are native to United States East Coast marsh lands, where they constantly adapt to changes in salinity, temperature, oxygen concentration and pH. Its natural ability to continually acclimate to changing environments coupled with its genetic tractability render Nematostella a powerful model organism in which to study the effects of common pollutants on the natural development of these animals. Potassium nitrate, commonly used in fertilizers, and Phthalates, a component of plastics are frequent environmental stressors found in coastal and marsh waters. Here we present data showing how early exposure to these pollutants lead to dramatic defects in development of the embryos and eventual mortality possibly due to defects in feeding ability. Additionally, we examined the microbiome of the animals and identified shifts in the microbial community that correlated with the type of water that was used to grow the animals, and with their exposure to pollutants.
Collapse
|
9
|
First Report of OvoA Gene in Marine Arthropods: A New Candidate Stress Biomarker in Copepods. Mar Drugs 2021; 19:md19110647. [PMID: 34822518 PMCID: PMC8623360 DOI: 10.3390/md19110647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Ovothiol is one of the most powerful antioxidants acting in marine organisms as a defense against oxidative stress during development and in response to environmental cues. The gene involved in the ovothiol biosynthesis, OvoA, is found in almost all metazoans, but open questions existed on its presence among arthropods. Here, using an in silico workflow, we report a single OvoA gene in marine arthropods including copepods, decapods, and amphipods. Phylogenetic analyses indicated that OvoA from marine arthropods separated from the other marine phyla (e.g., Porifera, Mollusca) and divided into two separate branches, suggesting a possible divergence through evolution. In the copepod Calanus finmarchicus, we suggest that OvoA has a defense role in oxidative stress as shown by its high expression in response to a toxic diet and during the copepodite stage, a developmental stage that includes significant morphological changes. Overall, the results of our study open possibilities for the use of OvoA as a biomarker of stress in copepods and possibly also for other marine holozooplankters. The finding of OvoA in copepods is also promising for the drug discovery field, suggesting the possibility of using copepods as a new source of bioactive compounds to be tested in the marine biotechnological sector.
Collapse
|
10
|
Brancaccio M, Tangherlini M, Danovaro R, Castellano I. Metabolic adaptations to marine environments: molecular diversity and evolution of ovothiol biosynthesis in Bacteria. Genome Biol Evol 2021; 13:6323227. [PMID: 34272861 PMCID: PMC8433421 DOI: 10.1093/gbe/evab169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Ovothiols are sulfur-containing amino acids synthesized by marine invertebrates, protozoans, and bacteria. They act as pleiotropic molecules in signaling and protection against oxidative stress. The discovery of ovothiol biosynthetic enzymes, sulfoxide synthase OvoA and β-lyase OvoB, paves the way for a systematic investigation of ovothiol distribution and molecular diversification in nature. In this work, we conducted genomic and metagenomics data mining to investigate the distribution and diversification of ovothiol biosynthetic enzymes in Bacteria. We identified the bacteria endowed with this secondary metabolic pathway, described their taxonomy, habitat and biotic interactions in order to provide insight into their adaptation to specific environments. We report that OvoA and OvoB are mostly encountered in marine aerobic Proteobacteria, some of them establishing symbiotic or parasitic relationships with other organisms. We identified a horizontal gene transfer event of OvoB from Bacteroidetes living in symbiosis with Hydrozoa. Our search within the Ocean Gene Atlas revealed the occurrence of ovothiol biosynthetic genes in Proteobacteria living in a wide range of pelagic and highly oxygenated environments. Finally, we tracked the evolutionary history of ovothiol biosynthesis from marine bacteria to unicellular eukaryotes and metazoans. Our analysis provides new conceptual elements to unravel the evolutionary and ecological significance of ovothiol biosynthesis.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Fano Marine Centre, Fano, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.,Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
11
|
Abstract
The cytochrome P450 (CYP) superfamily is a diverse and important enzyme family, playing a central role in chemical defense and in synthesis and metabolism of major biological signaling molecules. The CYPomes of four cnidarian genomes (Hydra vulgaris, Acropora digitifera, Aurelia aurita, Nematostella vectensis) were annotated; phylogenetic analyses determined the evolutionary relationships amongst the sequences and with existing metazoan CYPs. 155 functional CYPs were identified and 90 fragments. Genes were from 24 new CYP families and several new subfamilies; genes were in 9 of the 12 established metazoan CYP clans. All species had large expansions of clan 2 diversity, with H. vulgaris having reduced diversity for both clan 3 and mitochondrial clan. We identified potential candidates for xenobiotic metabolism and steroidogenesis. That each genome contained multiple, novel CYP families may reflect the large evolutionary distance within the cnidarians, unique physiology in the cnidarian classes, and/or different ecology of the individual species.
Collapse
|
12
|
Milito A, Orefice I, Smerilli A, Castellano I, Napolitano A, Brunet C, Palumbo A. Insights into the Light Response of Skeletonema marinoi: Involvement of Ovothiol. Mar Drugs 2020; 18:md18090477. [PMID: 32962291 PMCID: PMC7551349 DOI: 10.3390/md18090477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.
Collapse
Affiliation(s)
- Alfonsina Milito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics, Cerdanyola, 08193 Barcelona, Spain
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| | - Ida Orefice
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Arianna Smerilli
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy;
| | - Christophe Brunet
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (I.O.); (A.S.); (C.B.)
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: or (A.M.); (A.P.); Tel.: +39-081-5833 (ext. 293/276) (A.M.)
| |
Collapse
|
13
|
Gametogenesis-Related Fluctuations in Ovothiol Levels in the Mantle of Mussels from Different Estuaries: Fighting Oxidative Stress for Spawning in Polluted Waters. Biomolecules 2020; 10:biom10030373. [PMID: 32121166 PMCID: PMC7175103 DOI: 10.3390/biom10030373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/24/2023] Open
Abstract
Reactive oxygen species present a challenge for marine organisms releasing gametes into the water. Thiol-containing molecules protect cells against oxidative stress, and ovothiol (OSH), an antioxidant-reducing mercaptohistidine, has been described as especially relevant in the oocytes of marine invertebrates. Ovothiol synthase (ovoA), in charge of the first step in OSH synthesis, was sequenced in mussels, Mytilus galloprovincialis. Transcription levels of ovoA in mantle did not significantly change along the reproductive cycle. No alterations of ovoA transcription were observed after a laboratory copper (10 µg/L) exposure or in mussels captured in a highly polluted site. Conversely, the metabolomic analysis of the hydrophilic metabolite content in mantle clearly classified mussels according to their site of origin, especially at the most advanced stages of oogenesis. Quantification of OSH-A and -B and glutathione (GSH), revealed stable levels in mantle at early gametogenesis in the unpolluted sampling site, but a strong increase in female mantle previous to spawning in the polluted site. These increased concentrations under pollution suggest that OSH-A accumulates along oogenesis, independent of gene transcription regulation. The concerted accumulation of OSH-A and GSH suggests the building of a balanced cellular redox-system to scavenge ROS produced in the oocyte before and during fertilization.
Collapse
|
14
|
Tarrant AM, Helm RR, Levy O, Rivera HE. Environmental entrainment demonstrates natural circadian rhythmicity in the cnidarian Nematostella vectensis. ACTA ACUST UNITED AC 2019; 222:jeb.205393. [PMID: 31611292 DOI: 10.1242/jeb.205393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Considerable advances in chronobiology have been made through controlled laboratory studies, but distinct temporal rhythms can emerge under natural environmental conditions. Lab-reared Nematostella vectensis sea anemones exhibit circadian behavioral and physiological rhythms. Given that these anemones inhabit shallow estuarine environments subject to tidal inputs, it was unclear whether circadian rhythmicity would persist following entrainment in natural conditions, or whether circatidal periodicity would predominate. Nematostella were conditioned within a marsh environment, where they experienced strong daily temperature cycles as well as brief tidal flooding around the full and new moons. Upon retrieval, anemones exhibited strong circadian (∼24 h) activity rhythms under a light-dark cycle or continuous darkness, but reduced circadian rhythmicity under continuous light. However, some individuals in each light condition showed circadian rhythmicity, and a few individuals showed circatidal rhythmicity. Consistent with the behavioral studies, a large number of transcripts (1640) exhibited diurnal rhythmicity compared with very few (64) with semidiurnal rhythmicity. Diurnal transcripts included core circadian regulators, and 101 of 434 (23%) genes that were previously found to be upregulated by exposure to ultraviolet radiation. Together, these behavioral and transcriptional studies show that circadian rhythmicity predominates and suggest that solar radiation drives physiological cycles in this sediment-dwelling subtidal animal.
Collapse
Affiliation(s)
- Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA
| | - Rebecca R Helm
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, University of North Carolina Asheville, Asheville NC 28804, USA
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Hanny E Rivera
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543, USA.,Biology Department, Boston University, Boston MA 02215, USA
| |
Collapse
|
15
|
Mearns AJ, Bissell M, Morrison AM, Rempel-Hester MA, Arthur C, Rutherford N. Effects of pollution on marine organisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1229-1252. [PMID: 31513312 DOI: 10.1002/wer.1218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This review covers selected 2018 articles on the biological effects of pollutants, including human physical disturbances, on marine and estuarine plants, animals, ecosystems, and habitats. The review, based largely on journal articles, covers field and laboratory measurement activities (bioaccumulation of contaminants, field assessment surveys, toxicity testing, and biomarkers) as well as pollution issues of current interest including endocrine disrupters, emerging contaminants, wastewater discharges, marine debris, dredging, and disposal. Special emphasis is placed on effects of oil spills and marine debris due largely to the 2010 Deepwater Horizon oil blowout in the Gulf of Mexico and proliferation of data on the assimilation and effects of marine debris. Several topical areas reviewed in the past (e.g., mass mortalities ocean acidification) were dropped this year. The focus of this review is on effects, not on pollutant sources, chemistry, fate, or transport. There is considerable overlap across subject areas (e.g., some bioaccumulation data may be appear in other topical categories such as effects of wastewater discharges, or biomarker studies appearing in oil toxicity literature). Therefore, we strongly urge readers to use keyword searching of the text and references to locate related but distributed information. Although nearly 400 papers are cited, these now represent a fraction of the literature on these subjects. Use this review mainly as a starting point. And please consult the original papers before citing them.
Collapse
Affiliation(s)
- Alan J Mearns
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | - Mathew Bissell
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| | | | | | | | - Nicolle Rutherford
- Emergency Response Division, National Oceanic and Atmospheric Administration (NOAA), Seattle, Washington
| |
Collapse
|
16
|
Castellano I, Seebeck FP. On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. Nat Prod Rep 2019; 35:1241-1250. [PMID: 30052250 DOI: 10.1039/c8np00045j] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: up to 2018 Ovothiols are sulfur-containing natural products biosynthesized by marine invertebrates, microalgae, and bacteria. These compounds are characterized by unique chemical properties suggestive of numerous cellular functions. For example, ovothiols may be cytoprotectants against oxidative stress, serve as building blocks of more complex structures and may act as molecular messengers for inter- and intracellular signaling. Detailed understanding of ovothiol physiological role in marine organisms may unearth novel concepts in cellular redox biochemistry and highlight the therapeutic potential of this antioxidant. The recent discovery of ovothiol biosynthetic genes has paved the way for a systematic investigation of ovothiol-modulated cellular processes. In this highlight we review the early research on ovothiol and we discuss key questions that may now be addressed using genome-based approaches. This highlight article provides an overview of recent progress towards elucidating the biosynthesis, function and potential application of ovothiols.
Collapse
Affiliation(s)
- Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli, Italy.
| | | |
Collapse
|
17
|
Waller SJ, Knighton LE, Crabtree LM, Perkins AL, Reitzel AM, Truman AW. Characterizing functional differences in sea anemone Hsp70 isoforms using budding yeast. Cell Stress Chaperones 2018; 23:933-941. [PMID: 29696514 PMCID: PMC6111083 DOI: 10.1007/s12192-018-0900-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Marine organisms experience abiotic stressors such as fluctuations in temperature, UV radiation, salinity, and oxygen concentration. Heat shock proteins (HSPs) assist in the response of cells to these stressors by refolding and maintaining the activity of damaged proteins. The well-conserved Hsp70 chaperone family is essential for cell viability as well as the response to stress. Organisms possess a variety of Hsp70 isoforms that differ slightly in amino acid sequence, yet very little is known about their functional relevance. In this study, we undertook analysis of three principal Hsp70 isoforms NvHsp70A, B, and D from the starlet sea anemone Nematostella vectensis. The functionality of Hsp70 isoforms in the starlet sea anemone was assessed through transcriptional analysis and by heterologous expression in budding yeast Saccharomyces cerevisiae. Interestingly, these isoforms were found to not only differ in expression under stress but also appear to have functional differences in their ability to mediate the cellular stress program. These results contribute to an understanding of Hsp70 isoform specificity, their shared and unique roles in response to acute and chronic environmental stress, and the potential basis of local adaptation in populations of N. vectensis.
Collapse
Affiliation(s)
- Shawn J Waller
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Laura E Knighton
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Lenora M Crabtree
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Abigail L Perkins
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|