1
|
Miralha A, Contins M, Carpenter LBT, Pinto RL, Marques Calderari MRC, Neves RAF. Leachates of weathering plastics from an urban sandy beach: Toxicity to sea urchin fertilization and early development. MARINE POLLUTION BULLETIN 2024; 199:115980. [PMID: 38171163 DOI: 10.1016/j.marpolbul.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic leachates have chemical and biological implications for marine environments. This study experimentally evaluated acute effects of weathering plastic leachates (0, 25, 50, 75 and 100 %) on fertilization and early development of the sea urchin Lytechinus variegatus. Fertilization, embryonic and larval development were drastically inhibited (~75 %) when gametes were exposed to intermediate and high leachate concentrations or delayed when exposed to the lowest concentration. Fertilization and first cleavage stages were highly affected by exposure to intermediate and high leachate concentrations. None of the cells incubated at concentrations from 50 % reached blastula stage, suggesting that embryonic development was the most sensitive stage. Abnormalities in embryos and larvae were observed in all leachate treatments. Chemical analysis detected high concentration of bisphenol A, which may induce these observed effects. Our results highlight the potential threats of plastic pollution to sea urchin populations, which may severely affect the structure and functioning of coastal ecosystems.
Collapse
Affiliation(s)
- Agatha Miralha
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil
| | - Mariana Contins
- Science and Culture Forum, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Letícia B T Carpenter
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | - Rafael L Pinto
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | | | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil.
| |
Collapse
|
2
|
Prabhu K, Malode SJ, Shetti NP, Pandiaraj S, Alodhayb A, Muthuramamoorthy M. Electro-sensing layer constructed of a WO 3/CuO nanocomposite, for the electrochemical determination of 2-phenylphenol fungicide. ENVIRONMENTAL RESEARCH 2023; 236:116710. [PMID: 37479212 DOI: 10.1016/j.envres.2023.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023]
Abstract
The abstract highlights the development of an electroanalytical sensor for the detection of 2-phenylphenol (2-PPL) as a contaminant. The novelty of the experiment lies in the utilization of a 1-D nanostructured WO3/CuO nanocomposite integrated with a carbon paste electrode (CPE). The hydrothermal method was used to synthesize the WO3 NPs, which were then characterized using Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) techniques. Tungsten oxides (WO3) have been the subject of extensive study because of their many desirable characteristics, including their ease of preparation, tunable stoichiometry, crystal structure, particle morphology, 2.6 eV bandgap, excellent photocatalytic oxidation capacity, non-toxic nature, and widespread availability. The narrow band gap in CuO makes it an ideal sensing material. Copper oxide has applications in many different industries because it is a semiconductor metal with a narrow band gap in the spectrum of 1.2-1.9 eV and unique optical, electrical, and magnetic properties. Techniques like cyclic voltammetry (CV), and square wave voltammetry (SWV) were used. Real sample analysis was carried out in real-world samples like different types of soil, vegetables, and water. The electroanalytical sensor showed outstanding catalytic behavior by enhancing the peak current of the 2-phenylphenol with the potential shift to the less positive side compared to the unmodified carbon paste electrode in the presence of pH 7.0 phosphate buffer solution (PB). Throughout the experimental study, double distilled was used. Various electro-kinetic parameters like pH, accumulation time study, scan rate, concentration variation, standard heterogeneous rate constant, and participation of electrons, accumulation time, and transfer coefficient have been studied at WO3/CuO/CPE. The limit of detection was quantified together with the limit of quantification. Possible electrochemical oxidation mechanism of the toxic molecule was depicted. Overall, this research contributes to the field of electroanalytical sensing and offers potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Keerthi Prabhu
- Department of Chemistry, K.L.E. Institute of Technology, Hubballi, 580027, Karnataka, India
| | - Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, 580031, Karnataka, India.
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Alodhayb
- Research Chair for Tribology, Surface, And Interface Sciences, Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthumareeswaran Muthuramamoorthy
- Biological and Environmental Sensing Research Unit, King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Li Y, Yin W, Zhan Y, Jia Y, Cui D, Zhang W, Chang Y. Comparative metabolome analysis provides new insights into increased larval mortality under seawater acidification in the sea urchin Strongylocentrotus intermedius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141206. [PMID: 32777501 DOI: 10.1016/j.scitotenv.2020.141206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Mortality and metabolic responses of four-armed larvae of Strongylocentrotus intermedius under CO2-induced seawater acidification were investigated. Gametes of S. intermedius were fertilized and developed to the four-armed larval stage in either current natural seawater pH levels (as Control; pH = 7.99 ± 0.01) or laboratory-controlled acidified conditions (OA1: ΔpH = -0.3 units; OA2: ΔpH = -0.4 units; OA3: ΔpH = -0.5 units) according to the predictions of the Intergovernmental Panel on Climate Change (IPCC). The degrees of spicule exposure and asymmetry and mortality of four-armed larvae of S. intermedius were observed; each had a significant linearly increasing trend as the seawater pH level decreased. Comparative metabolome analysis identified a total of 87 significantly differentially expressed metabolites (SDMs, UP: 57, DOWN: 30) in OA-treated groups compared with the control group. Twenty-three SDMs, including carnitine, lysophosphatidylcholine (LPC) 18:3, lysophosphatidyl ethanolamine (LPE) 16:1, glutathione (GSH) and L-ascorbate, exhibited a linear increasing trend with decreasing seawater pH. Nine SDMs exhibited a linear decreasing trend as the seawater pH declined, including hypoxanthine, guanine and thymidine. Among all SDMs, we further mined 48 potential metabolite biomarkers responding to seawater acidification in four-armed larvae of S. intermedius. These potential metabolite biomarkers were mainly enriched in five pathways: glycerophospholipid metabolism, glutathione metabolism, purine metabolism, pyrimidine metabolism and the tricarboxylic acid cycle (TCA cycle). Our results will enrich our knowledge of the molecular mechanisms employed by sea urchins in response to CO2-induced seawater acidification.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Wenlu Yin
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| | - Yujie Jia
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning 116044, PR China
| | - Dongyao Cui
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Weijie Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, Liaoning 116023, PR China.
| |
Collapse
|
4
|
Karimi-Maleh H, Fakude CT, Mabuba N, Peleyeju GM, Arotiba OA. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J Colloid Interface Sci 2019; 554:603-610. [DOI: 10.1016/j.jcis.2019.07.047] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|